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 PREFACE

What is Modern Thermodynamics?

In almost every aspect of nature, we see irreversible changes. But it is Isaac Newton’s 
mechanical paradigm, the clockwork universe governed by time-reversible laws of 
mechanics and its grand success in explaining the motion of heavenly bodies, that has 
dominated our thinking for centuries. During the twentieth century, however, the 
dominance of the mechanical paradigm slowly began to wane. We now recognize 
that the paradigm for periodic phenomena in nature is not a ‘mechanical clock’, such 
as a pendulum, based on time-reversible laws of mechanics, but a ‘thermodynamic 
clock’ based on irreversible processes, such as chemical reactions. The fl ashing of a 
fi refl y, the beating of a heart, and the chirping of a cricket are governed by irreversible 
processes. Modern thermodynamics is a theory of irreversible processes.

Classical thermodynamics, as it was formulated in the nineteenth century by 
Carnot, Clausius, Joule, Helmholz, Kelvin, Gibbs and others, was a theory of initial 
and fi nal states of a system, not a theory that included the irreversible processes that 
were responsible for the transformation of one state to another. It was a theory 
confi ned to systems in thermodynamic equilibrium. That is the way it is still pre-
sented in most introductory texts. Thermodynamics is treated as a subject concerned 
only with equilibrium states. Computations of changes in entropy and other ther-
modynamic quantities are done only for idealized reversible processes that take 
place at an infi nitely slow rate. For such processes, the change in entropy dS = dQ/T. 
Time does not explicitly appear in this formalism: there are no expressions for the 
rate of change of entropy, for instance. For irreversible processes that take place at 
a nonzero rate, it is only stated that dS > dQ/T. The student is left with the impres-
sion that thermodynamics only deals with equilibrium states and that irreversible 
processes are outside its scope. That impression is an inevitable consequence of the 
way nineteenth-century classical thermodynamics was formulated.

Modern thermodynamics, formulated in the twentieth century by Lars Onsager, 
Theophile De Donder, Ilya Prigogine and others, is different. It is a theory of irre-
versible processes that very much includes time: it relates entropy, the central concept 
of thermodynamics, to irreversible processes. In the modern theory, dS is the change 
of entropy in a time interval dt. The change in entropy is written as a sum of two 
terms:

dS = deS + diS

in which deS is the entropy change due to exchange of energy and matter (deS = 
dQ/T for exchange of heat) and diS is the entropy change due to irreversible pro-
cesses. Both these changes in entropy, deS and diS, are computed using rates at which 
irreversible processes, such as heat conduction and chemical reactions, occur. Indeed, 



the rate at which entropy is produced due to irreversible processes, diS/dt, is clearly 
identifi ed – and it is always positive, in accord with the second law. Irreversible 
processes, such as chemical reactions, diffusion and heat conduction that take place 
in nonequilibrium systems, are described as thermodynamic fl ows driven by ther-
modynamic forces; the rate of entropy production diS/dt is, in turn, written in terms 
of the thermodynamic forces and fl ows. In contrast, in most physical chemistry texts, 
since classical thermodynamics does not include processes, students are presented 
with two separate subjects: thermodynamics and kinetics. Each irreversible process, 
chemical reactions, diffusion and heat conduction, is treated separately in a phe-
nomenological manner without a unifying framework. In the modern view, all these 
irreversible processes and the ways in which they interact are under one thermody-
namic framework. In addition to all the classical thermodynamic variables, the 
student is also introduced to the concept of rate of entropy production, a quantity 
of much current interest in the study of nonequilibrium systems.

Modern thermodynamics also gives us a paradigm for the order and self-
organization we see in Nature that is different from the clockwork paradigm of 
mechanics. The self-organization that we see in the formation of beautiful patterns 
in convecting fl uids and in the onset of oscillations and pattern formation in chemi-
cal systems are consequences of irreversible processes. The maintenance of order or 
structure in such systems comes at the expense of entropy production. While it is 
true that increase of entropy can be associated with increase in disorder and dissipa-
tion of usable energy, entropy-producing irreversible processes can yet generate the 
ordered structures we see in Nature. Such structures, which are created and main-
tained by irreversible processes, were termed dissipative structures by Ilya Prigogine. 
It is a topic that fascinates students and excites them with the prospect of making 
new discoveries in the fi eld of thermodynamics.

The dancing Siva or Nataraja on the jacket of the book by Peter Glansdorff 
and Ilya Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, 
sums up the role of irreversible processes in Nature. In his cosmic dance, Siva carries 
in one hand a drum, a symbol of creation and order; in another, he holds fi re, a 
symbol of destruction. So it is with irreversible processes: they create order on the 
one hand and increase disorder (entropy) on the other. I hope this text conveys this 
enduring view to the student: irreversible processes are creators and destroyers of 
order.

This text is an offshoot of Modern Thermodynamics: From Heat Engines to Dis-
sipative Structures, which I co-authored with Ilya Prigogine in 1998. It is intended 
for use in a one-semester course in thermodynamics. It is divided into three parts. 
Part I, Chapters 1–5, contains the basic formalism of modern thermodynamics. Part 
II, Chapters 6–11, contains basic applications, covering both equilibrium and non-
equilibrium systems. Chapter 11 is a concise introduction to linear nonequilibrium 
thermodynamics, Onsager reciprocal relations and dissipative structures. Part III 
contains additional topics that the instructor can include in the course, such as 
thermodynamics of radiation, small systems and biological systems. The text ends 
with an introductory chapter on statistical thermodynamics, a topic that is often 
taught along with thermodynamics.
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1  BASIC CONCEPTS AND THE LAWS 
OF GASES

Introduction

Adam Smith’s Wealth of Nations was published in the year 1776. Seven years earlier 
James Watt (1736–1819) had obtained a patent for his version of the steam engine. 
Both men worked at the University of Glasgow. Yet, in Adam Smith’s great work 
the only use for coal was in providing heat for workers [1]. The machines of the 
eighteenth century were driven by wind, water and animals. Nearly 2000 years had 
passed since Hero of Alexandria made a sphere spin with the force of steam; but 
still fi re’s power to generate motion and drive machines remained hidden. Adam 
Smith (1723–1790) did not see in coal this hidden wealth of nations.

The steam engine revealed a new possibility. Wind, water and animals converted 
one form of motion to another. The steam engine was fundamentally different: it 
converted heat to mechanical motion. Its enormous impact on civilization not only 
heralded the industrial revolution, it also gave birth to a new science: thermodynam-
ics. Unlike the science of Newtonian mechanics, which had its origins in theories of 
motion of heavenly bodies, thermodynamics was born out of a more practical inter-
est: generating motion from heat.

Initially, thermodynamics was the study of heat and its ability to generate motion; 
then it merged with the larger subject of energy and its interconversion from one 
form to another. With time, thermodynamics evolved into a theory that describes 
transformations of states of matter in general, motion generated by heat being a 
consequence of particular transformations. It is founded on essentially two funda-
mental laws, one concerning energy and the other entropy. A precise defi nition of 
energy and entropy, as measurable physical quantities, will be presented in the 
Chapters 2 and 3 respectively. In the following two sections we will give an overview 
of thermodynamics and familiarize the reader with the terminology and concepts 
that will be developed in the rest of the book.

Every system is associated with an energy and an entropy. When matter undergoes 
transformation from one state to another, the total amount of energy in the system 
and its exterior is conserved; total entropy, however, can only increase or, in idealized 
cases, remain unchanged. These two simple-sounding statements have far-reaching 
consequences. Max Planck (1858–1947) was deeply infl uenced by the breadth of the 
conclusions that can be drawn from them and devoted much of himself to the study of 
thermodynamics. In reading this book, I hope the reader will come to appreciate the 
signifi cance of the following often-quoted opinion of Albert Einstein (1879–1955):

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd



4 BASIC CONCEPTS AND THE LAWS OF GASES

A theory is more impressive the greater the simplicity of its premises is, the more different 
kinds of things it relates, and the more extended its area of applicability. Therefore the deep 
impression which classical thermodynamics made upon me. It is the only physical theory of 
universal content concerning which I am convinced that, within the framework of the appli-
cability of its basic concepts, it will never be over thrown.

The thermodynamics of the nineteenth century, which so impressed Planck and 
Einstein, described static systems that were in thermodynamic equilibrium. It was 
formulated to calculate the initial and fi nal entropies when a system evolved from 
one equilibrium state to another. In this ‘Classical Thermodynamics’ there was no 
direct relationship between natural processes, such as chemical reactions and con-
duction of heat, and the rate at which entropy changed. During the twentieth 
century, Lars Onsager (1903–1976), Ilya Prigogine (1917–2003) and others extended 
the formalism of classical thermodynamics to relate the rate of entropy change to 
rates of processes, such as chemical reactions and heat conduction. From the outset, 
we will take the approach of this ‘Modern Thermodynamics’ in which thermody-
namics is a theory of irreversible processes, not merely a theory of equilibrium 
states.

1.1 Thermodynamic Systems

A thermodynamic description of natural processes usually begins by dividing the 
world into a ‘system’ and its ‘exterior’, which is the rest of the world. This cannot 
be done, of course, when one is considering the thermodynamic nature of the entire 
universe – however, although there is no ‘exterior’, thermodynamics can be applied 
to the entire universe. The defi nition of a thermodynamic system depends on the 
existence of ‘boundaries’, boundaries that separate the system from its exterior and 
restrict the way the system interacts with its exterior. In understanding the thermo-
dynamic behavior of a system, the manner in which it exchanges energy and matter 
with its exterior, is important. Therefore, thermodynamic systems are classifi ed into 
three types: isolated, closed and open systems (Figure 1.1) according to the way they 
interact with the exterior.

Isolated systems do not exchange energy or matter with the exterior. Such systems 
are generally considered for pedagogical reasons, while systems with extremely slow 
exchange of energy and matter can be realized in a laboratory. Except for the uni-
verse as a whole, truly isolated systems do not exist in nature.

Closed systems exchange energy but not matter with their exterior. It is obvious 
that such systems can easily be realized in a laboratory: A closed fl ask of reacting 
chemicals which is maintained at a fi xed temperature is a closed system. The Earth, 
on a time-scale of years, during which it exchanges negligible amounts matter with 
its exterior, may be considered a closed system; it only absorbs radiation from the 
sun and emits it back into space.

Open systems exchange both energy and matter with their exterior. All living and 
ecological systems are open systems. The complex organization in open systems is 
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a result of exchange of matter and energy and the entropy generating irreversible 
processes that occur within.

In thermodynamics, the state of a system is specifi ed in terms of macroscopic state 
variables, such as volume V, pressure p, temperature T, and moles Nk of chemical 
constituent k, which are self-evident. These variables are adequate for the descrip-
tion of equilibrium systems. When a system is not in thermodynamic equilibrium, 
more variables, such as rate of convective fl ow or of metabolism, may be needed to 
describe it. The two laws of thermodynamics are founded on the concepts of energy 
U, and entropy S, which, as we shall see, are functions of state variables.

ISOLATED
SYSTEM

Exchange of Energy

CLOSED
SYSTEM

Ex
 of

change
 Matter

Exchange of Energy

OPEN
SYSTEM

Figure 1.1 Isolated, closed and open 
systems. Isolated systems exchange neither 
energy nor matter with the exterior. Closed 
systems exchange heat and mechanical energy 
but not matter with the exterior. Open 
systems exchange both energy and matter 
with the exterior



6 BASIC CONCEPTS AND THE LAWS OF GASES

Since the fundamental quantities in thermodynamics are functions of many vari-
ables, thermodynamics makes extensive use of calculus of many variables. A brief 
summary of some basic properties of functions of many variables is given in Appen-
dix A1.1 (at the end of this chapter). Functions of state variables, such as U and S, 
are often called state functions.

It is convenient to classify thermodynamic variables into two categories. Variables 
such as volume and amount of a substance (moles), which indicate the size of the 
system, are called extensive variables. Variables such as temperature T and pressure 
p, which specify a local property, which do not indicate the system’s size, are called 
intensive variables.

If the temperature is not uniform, then heat will fl ow until the entire system 
reaches a state of uniform temperature. Such a state is the state of thermal equilib-
rium. The state of thermal equilibrium is a special state towards which all isolated 
systems will inexorably evolve. A precise description of this state will be given later 
in this book. In the state of thermal equilibrium, the values of total internal energy 
U and entropy S are completely specifi ed by the temperature T, the volume V and 
the amounts of the system’s chemical constituents Nk (moles):

 U U T V N S S T V Nk k= =( , , ) ( , , )or  (1.1.1)

The values of an extensive variable, such as total internal energy U or entropy S, 
can also be specifi ed by other extensive variables:

 U U S V N S S U V Nk k= =( , , ) ( , , )or  (1.1.2)

As we shall see in the following chapters, intensive variables can be expressed as 
derivatives of one extensive variable with respect to another. For example, we shall 
see that the temperature T = (∂U/∂S)V,Nk

. The laws of thermodynamics and the cal-
culus of many-variable functions give us a rich understanding of many phenomena 
we observe in nature.

1.2 Equilibrium and Nonequilibrium Systems

It is our experience that if a physical system is isolated, its state – specifi ed by mac-
roscopic variables such as pressure, temperature and chemical composition – evolves 
irreversibly towards a time-invariant state in which we see no further physical or 
chemical change. This is the state of thermodynamic equilibrium. It is a state char-
acterized by a uniform temperature throughout the system. The state of equilibrium 
is also characterized by several other physical features that we will describe in the 
following chapters.

The evolution of a system towards the state of equilibrium is due to irreversible 
processes, such as heat conduction and chemical reactions, which act in a specifi c 
direction but not its reverse. For example, heat always fl ows from a higher to a lower 
temperature, never in the reverse direction; similarly, chemical reactions cause 



compositional changes in a specifi c direction not its reverse (which, as we shall see 
in Chapter 4, is described in terms of ‘chemical potential’, a quantity similar to 
temperature, and ‘affi nity’, a thermodynamic force that drives chemical reactions). 
At equilibrium, these processes vanish. Thus, a nonequilibrium state can be 
characterized as a state in which irreversible processes are taking place driving 
the system towards the equilibrium state. In some situations, especially during 
chemical transformations, the rates at which the state is transforming irreversibly 
may be extremely small, and an isolated system might appear as if it is time invari-
ant and has reached its state of equilibrium. Nevertheless, with appropriate specifi -
cation of the chemical reactions, the nonequilibrium nature of the state can be 
identifi ed.

Two or more systems that interact and exchange energy and/or matter will eventu-
ally reach the state of thermal equilibrium in which the temperature within each 
system is spatially uniform and the temperature of all the systems are the same. If 
a system A is in thermal equilibrium with system B and if B is in thermal equilibrium 
with system C, then it follows that A is in thermal equilibrium with C. This ‘transi-
tivity’ of the state of equilibrium is sometimes called the zeroth law. Thus, equilib-
rium systems have a well-defi ned, spatially uniform temperature; for such systems, 
the energy and entropy are functions of state as expressed in (1.1.1).

Uniformity of temperature, however, is not a requirement for the entropy or 
energy of a system to be well defi ned. For nonequilibrium systems, in which the 
temperature is not uniform but is well defi ned locally at every point x, we can defi ne 
densities of thermodynamic quantities such as energy and entropy. Thus, the energy 
density at x

 u T x n xk[ ( ), ( )] = internal energy per unit volume  (1.2.1)

can be defi ned in terms of the local temperature T(x) and the concentration

 n x kk( ) = moles of constituent per unit volume  (1.2.2)

Similarly, an entropy density s(T, nk) can be defi ned. The atmosphere of the Earth, 
shown in Box 1.1, is an example of a nonequilibrium system in which both nk and 
T are functions of position. The total energy U, the total entropy S and the total 
amount of the substance Nk are

 
S s T x n x Vk

V
= ∫ [ ( ), ( )]d

 
(1.2.3)

 
U u T x n x Vk

V
= ∫ [ ( ), ( )]d

 
(1.2.4)

 
N n x Vk k

V
= ∫ ( )d

 
(1.2.5)

In nonequilibrium (non-uniform) systems, the total energy U is no longer a function 
of other extensive variables such as S, V and Nk, as in (1.1.2), and obviously one 
cannot defi ne a single temperature for the entire system because it may not uniform. 

EQUILIBRIUM AND NONEQUILIBRIUM SYSTEMS 7
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Box 1.1 The Atmosphere of the Earth.

Blaise Pascal (1623–1662) explained the nature of atmospheric pressure. The pressure 
at any point in the atmosphere is due to the column of air above it. The atmosphere 
of the Earth is not in thermodynamic equilibrium: its temperature is not uniform and 
the amounts of its chemical constituents (N2, O2, Ar, CO2, etc.) are maintained at a 
nonequilibrium value through cycles of production and consumption.
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In general, each of the variables, the total energy U, entropy S, the amount of sub-
stance Nk and the volume V, is no longer a function of the other three variables, as 
in (1.1.2). But this does not restrict in any way our ability to assign an entropy to 
a system that is not in thermodynamic equilibrium, as long as the temperature is 
locally well defi ned.

In texts on classical thermodynamics, when it is sometimes stated that entropy of 
a nonequilibrium system is not defi ned, it is meant that S is not a function of the 
variables U, V and Nk. If the temperature of the system is locally well defi ned, then 
indeed the entropy of a nonequilibrium system can be defi ned in terms of an entropy 
density, as in (1.2.3).

1.3 Biological and Other Open Systems

Open systems are particularly interesting because in them we see spontaneous self-
organization. The most spectacular example of self-organization in open systems is 
life. Every living cell is an open system that exchanges matter and energy with its 
exterior. The cells of a leaf absorb energy from the sun and exchange matter by 
absorbing CO2, H2O and other nutrients and releasing O2 into the atmosphere. A 
biological open system can be defi ned more generally: it could be a single cell, an 
organ, an organism or an ecosystem. Other examples of open systems can be found 
in industry; in chemical reactors, for example, raw material and energy are the inputs 
and the desired and waste products are the outputs.

As noted in the previous section, when a system is not in equilibrium, processes 
such as chemical reactions, conduction of heat and transport of matter take place 
so as to drive the system towards equilibrium. And all of these processes generate 
entropy in accordance with the Second Law (see Figure 1.2). However, this does 
not mean that the entropy of the system must always increase: the exchange of 
energy and matter may also result in the net output of entropy in such a way that 
the entropy of a system is maintained at a low value. One of the most remarkable 
aspects of nonequilibrium systems that came to light in the twentieth century is the 
phenomenon of self-organization. Under certain nonequilibrium conditions, systems 
can spontaneously undergo transitions to organized states, which, in general, are 
states with lower entropy. For example, nonequilibrium chemical systems can make 
a transition to a state in which the concentrations of reacting compounds vary 
periodically, thus becoming a ‘chemical clock’. The reacting chemicals can also 
spatially organize into patterns with great symmetry. In fact, it can be argued that 
most of the ‘organized’ behavior we see in nature is created by irreversible processes 
that dissipate energy and generate entropy. For these reasons, these structures are 
called dissipative structures [1], and we shall study more about them in Chapter 11. 
In an open system, these organized states could be maintained indefi nitely, but only 
at the expense of exchange of energy and matter and increase of entropy outside the 
system.

BIOLOGICAL AND OTHER OPEN SYSTEMS 9
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   s(T, n)    u(T, n)

    n(x) T(x)
            
        diS/dt ≥ 0 

deS/dt

(a)

T1

T2

T(x)

(b) 

Figure 1.2 (a) In a nonequilibrium system, the tempera-
ture and number density nk(x) may vary with position. 
The entropy and energy of such a system may be described 
by an entropy density s(T, nk) and an energy density 

u(T, nk). The total entropy S s T x n x Vk
V

= ∫ [ ( ), ( )] ,d  the 

total energy U u T x n x Vk
V

= ∫ [ ( ), ( )] ,d  and the total 

molenumber N n x Vk k
V

= ∫ ( ) .d  For such a nonequilib-

rium system, the total entropy S is not a function of U, 
N and the total volume V. The term diS/dt is the rate of 
change of entropy due to chemical reactions, diffusion, 
heat conduction and other such irreversible processes; 
according to the second law, diS/dt can only be positive. 
In an open system, entropy can also change due to 
exchange of energy and matter; this is indicated by the 
term deS/dt, which can be either positive or negative. (b) 
A system in contact with thermal reservoirs of unequal 
temperatures is a simple example of a nonequilibrium 
system. The temperature is not uniform and there is a 
fl ow of heat due to the temperature gradient. The term 
deS/dt is related to the exchange of heat at the boundaries 
in contact with the heat reservoirs, whereas diS/dt is due 
to the irreversible fl ow of heat within the system



1.4 Temperature, Heat and Quantitative Laws of Gases

During the seventeenth and eighteenth centuries, a fundamental change occurred in 
our conception of Nature. Nature slowly but surely ceased to be solely a vehicle of 
God’s will, comprehensible only through theology. The new ‘scientifi c’ conception 
of Nature based on rationalism and experimentation gave us a different world view, 
a view that liberated the human mind from the confi nes of religious doctrine. In the 
new view, Nature obeyed simple and universal laws, laws that humans can know 
and express in the precise language of mathematics. Right and wrong were decided 
through experiments and observation. It was a new dialogue with Nature. Our 
questions became experiments, and Nature’s answers were consistent and 
unambiguous.

It was during this time of great conceptual change that a scientifi c study of 
the nature of heat began. This was primarily due to the development of the 
thermometer, which was constructed and used in scientifi c investigations since 
the time of Galileo Galilei (1564–1642) [2, 3]. The impact of this simple 
instrument was considerable. In the words of Sir Humphry Davy (1778–1829), 
‘Nothing tends to the advancement of knowledge as the application of a new 
instrument’.

The most insightful use of the thermometer was made by Joseph Black (1728–
1799), a professor of medicine and chemistry at Glasgow. Black drew a clear distinc-
tion between temperature, or degree of hotness, and the quantity of heat 
(in terms of current terminology, temperature is an intensive quantity whereas 
heat is an extensive quantity). His experiments using the newly developed ther
mometers established the fundamental fact that the temperatures of all the substanc-
esin contact with each other will eventually reach the same value, i.e. systems that 
can exchange heat will reach a state of thermal equilibrium. This idea was not 
easily accepted by his contemporaries because it seems to contradict the ordinary 
experience of touch, in which a piece of metal felt colder than a piece of wood even 
after they had been in contact for a very long time. But the thermometer proved 
this point beyond doubt. With the thermometer, Black discovered specifi c heat, 
laying to rest the general belief at his time that the amount of heat required to 
increase the temperature of substance by a given amount depended solely on its 
mass, not specifi c to its makeup. He also discovered latent heats of fusion and 
evaporation of water – the latter with the enthusiastic help from his pupil James 
Watt (1736–1819) [4].

Though the work of Joseph Black and others established clearly the distinction 
between heat and temperature, the nature of heat remained an enigma for a long 
time. Whether heat was an indestructible substance without mass, called the ‘caloric’, 
that moved from substance to substance or whether it was a form of microscopic 
motion was still under debate as late as the nineteenth century. After considerable 
debate and experimentation it became clear that heat was a form of energy that 
could be transformed to other forms, and so the caloric theory was abandoned – 
though we still measure the amount of heat in ‘calories’, in addition to using the SI 
units of joules.

TEMPERATURE, HEAT AND QUANTITATIVE LAWS OF GASES 11
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Temperature can be measured by noting the change of a physical property, such 
as the volume of a fl uid (such as mercury), the pressure of a gas or the electrical 
resistance of a wire, with degree of hotness. This is an empirical defi nition of tem-
perature. In this case, the uniformity of the unit of temperature depends on the 
uniformity with which the measured property changes as the substance gets hotter. 
The familiar Celsius scale, which was introduced in the eighteenth century by Anders 
Celsius (1701–1744), has largely replaced the Fahrenheit scale, which was also intro-
duced in the eighteenth century by Gabriel Fahrenheit (1686–1736). As we shall see 
in the following chapters, the development of the Second Law of thermodynamics 
during the middle of the nineteenth century gave rise to the concept of an absolute 
scale of temperature that is independent of material properties. Thermodynamics is 
formulated in terms of the absolute temperature. We shall denote this absolute 
temperature by T.

Joseph Black (1728–1799) (Reproduced with permission from the Edgar Fahs Smith Collec-
tion, University of Pennsylvania Library)



THE LAWS OF GASES

In the rest of this section we will present an overview of the laws of gases without 
going into much detail. We assume the reader is familiar with the laws of ideal gases 
and some basic defi nitions are given in Box 1.2.

One of the earliest quantitative laws describing the behavior of gases was due to 
Robert Boyle (1627–1691), an Englishman and a contemporary of Isaac Newton 
(1642–1727). The same law was also discovered by Edmé Mariotte (1620(?)–1684) 
in France. In 1660, Boyle published his conclusion in his ‘New experiments physico-
mechanical, touching the spring of the air and its effects’: at a fi xed temperature T, 
the volume V of a gas was inversely proportional to the pressure p, i.e.:

 
V

f T
p

f T T= 1
1

( )
( ) is some function of the temperature

 
(1.4.1)

Robert Boyle (1627–1691) (Reproduced with permission from the Edgar Fahs Smith Collec-
tion, University of Pennsylvania Library)
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Box 1.2 Basic Defi nitions.

Pressure is defi ned as the force per unit area. The pascal is the SI unit of pressure:

pascal (Pa) = 1 N m−2

The pressure due to a column of fl uid of uniform density r and height h equals hrg, 
where g is the acceleration due to gravity (9.806 m s−2). The pressure due to the Earth’s 
atmosphere changes with location and time, but it is often close to 105 Pa at the sea 
level. For this reason, a unit called the bar is defi ned:

1 bar = 105 Pa = 100 kPa

The atmospheric pressure at the Earth’s surface is also nearly equal to the pressure due 
to a 760 mm column of mercury. For this reason, the following units are defi ned:

torr = pressure due to 1.00 mm column of mercury

1 atmosphere (atm) = 760 torr = 101.325 kPa

1 atm equals approximately 10 N cm−2 (1 kg weight/cm2 or 15 lb/inch2). The atmospheric 
pressure decreases exponentially with altitude (see Box 1.1).

Temperature is usually measured in kelvin (K), Celsius (°C) or Fahrenheit (°F). The 
Celsius and Fahrenheit scales are empirical, whereas (as we shall see in Chapter 3) 
the kelvin scale is an absolute scale based on the Second Law of thermodynamics: 0 K 
is the absolute zero, the lowest possible temperature. Temperatures measured in these 
scales are related as follows:

T/°C = (5/9)[(T/°F) − 32]   T/K = (T/°C) + 273.15

On the Earth, the highest recorded temperature is 57.8 °C, or 136 °F; it was recorded 
in El Azizia, Libiya, in 1922. The lowest recorded temperature is −88.3 °C, or −129 °F; 
it was recorded in Vostok, Antarctica. In the laboratory, sodium gas has been cooled 
to temperatures as low as 10−9 K, and temperatures as high as 108 K have been reached 
in nuclear fusion reactors.

Heat was initially thought to be an indestructible substance called the caloric. 
According to this view, caloric, a fl uid without mass, passed from one body to another, 
causing changes in temperature. However, in the 19th century it was established that 
heat was not an indestructible caloric but a form of energy that can convert to other 
forms of energy (see Chapter 2). Hence, heat is measured in the units of energy. In this 
text we shall mostly use the SI units in which heat is measured in joules, though the 
calorie is an often-used unit of heat. A calorie was originally defi ned as the amount of 
heat required to increase the temperature of 1 g of water from 14.5 °C to 15.5 °C. The 
current practice is to defi ne a thermo-chemical calorie as 4.184 J.

The gas constant R appears in the ideal gas law, pV = NRT. Its numerical values 
are:

R = 8.314 J K mol−1 (or Pa m3 K−1 mol−1)  = 0.08314 bar L K−1 mol−1 
= 0.0821 atm L K−1 mol−1

The Avogadro number NA = 6.023 × 1023 mol−1. The Boltzmann constant kB = R/NA = 
1.3807 × 10−23 J K−1.



(Though the temperature that Boyle knew and used was the empirical temperature, 
as we shall see in Chapter 3, it is appropriate to use the absolute temperature T in 
the formulation of the law of ideal gases. To avoid excessive notation we shall use 
T whenever it is appropriate.) Boyle also advocated the view that heat was not an 
indestructible substance (caloric) that passed from one object to another but was 
‘.  .  .  intense commotion of the parts  .  .  .’ [5].

At constant pressure, the variation of volume with temperature was studied by 
Jacques Charles (1746–1823) who established that

 

V
T

f p f p p= 2 2( ) ( ) is some function of the pressure
 

(1.4.2)

In 1811, Amedeo Avogadro (1776–1856) announced his hypothesis that, under 
conditions of the same temperature and pressure, equal volumes of all gases con-
tained equal numbers of molecules. This hypothesis greatly helped in explaining the 
changes in pressure due to chemical reactions in which the reactants and products 
were gases. It implied that, at constant pressure and temperature, the volume of a 
gas is proportional to the amount of the gas. Hence, in accordance with Boyle’s law 
(1.4.1), for N moles of a gas:

 
V N

f T
p

= 1( )

 
(1.4.3)

Jacques Charles (1746–1823) (Reproduced with permission from the Edgar Fahs Smith 
Collection, University of Pennsylvania Library)
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A comparison of (1.4.1), (1.4.2) and (1.4.3) leads to the conclusion that f1(T) is pro-
portional to T and to the well-known law of ideal gases:

 pV NRT=  (1.4.4)

in which R is the gas constant. Note: R = 8.314 41 J K−1 mol−1 (or Pa m3 K−1 mol−1) = 
0.083 14 bar L K−1 mol−1 = 0.0821 atm L K−1 mol−1.

As more gases were identifi ed and isolated by the chemists during the eighteenth 
and nineteenth centuries, their properties were studied. It was found that many 
obeyed Boyle’s law approximately. For most gases, this law describes the experi-
mentally observed behavior fairly well for pressures to about 10 atm. As we shall 
see in the next section, the behavior of gases under a wider range of pressures can 
be described by modifi cations of the ideal gas law that take into consideration the 
molecular size and intermolecular forces.

For a mixture of ideal gases, we have the Dalton’s law of partial pressures, 
according to which the pressure exerted by each component of the mixture is 
independent of the other components of the mixture, and each component obeys 
the ideal gas equation. Thus, if pk is the partial pressure due to component k, we 
have

 p V N RTk k=  (1.4.5)

Joseph-Louis Gay-Lussac (1778–1850), who made important contributions to the 
laws of gases, discovered that a dilute gas expanding into vacuum did so without 
change in temperature. James Prescott Joule (1818–1889) also verifi ed this fact in 
his series of experiments that established the equivalence between mechanical energy 
and heat. In Chapter 2 we will discuss Joule’s work and the law of conservation of 
energy in detail. When the concept of energy and its conservation was established, 
the implication of this observation became clear. Since a gas expanding into vacuum 
does not do any work during the processes of expansion, its energy does not change. 
The fact that the temperature does not change during expansion into vacuum while 
the volume and pressure do change implies that the energy of a given amount of 
ideal gas depends only on its temperature T, not on its volume or pressure. Also, a 
change in the ideal gas temperature occurs only when its energy is changed through 
exchange of heat or mechanical work. These observations lead to the conclusion 
that the energy of a given amount of ideal gas is a function only of its temperature 
T. Since the amount of energy (heat) needed to increase the temperature of an ideal 
gas is proportional to the amount of the gas, the energy is proportional to N, the 
amount of gas in moles. Thus, the energy of the ideal gas, U(T, N), is a function 
only of the temperature T and the amount of gas N. It can be written as

 U T N NU T( , ) ( )= m  (1.4.6)

in which Um is the total internal energy per mole, or molar energy. For a mixture of 
gases the total energy is the sum of the energies of the components:



 
U T N U T N N U Tk k

k
k k

k

( , ) ( , ) ( )= =∑ ∑ m

 
(1.4.7)

in which the components are indexed by k. Later developments established that

 U cRT Um = + 0  (1.4.8)

to a good approximation, in which U0 is a constant. For monatomic gases, such as 
He and Ar, c = 3/2; for diatomic gases, such as N2 and O2, c = 5/2. The factor c can 
be deduced from the kinetic theory of gases, which relates the energy U to the motion 
of a gas molecules.

The experiments of Gay-Lussac also showed that, at constant pressure, the rela-
tive change in volume dV/V due to increase in temperature had nearly the same value 

Joseph-Louis Gay-Lussac (1778–1850) (Reproduced with permission from the Edgar Fahs 
Smith Collection, University of Pennsylvania Library)
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for all dilute gases; it was equal to 1/273 °C−1. Thus, a gas thermometer in which the 
volume of a gas at constant pressure was the indicator of temperature t had the 
quantitative relation

 V V t= +0 1( )α  (1.4.9)

in which a = 1/273 is the coeffi cient of expansion at constant pressure. In Chapter 
3 we will establish the relation between the temperature t, measured by the gas 
thermometer, and the absolute temperature T.

The above empirical laws of gases played an important part in the development 
of thermodynamics. They are the testing ground for any general principle and are 
often used to illustrate these principles. They were also important for developments 
in the atomic theory of matter and chemistry.

For most gases, such as CO2, N2, and O2, the ideal gas law was found to be an 
excellent description of the experimentally observed relation between p, V and T 
only for pressures up to about 20 atm. Signifi cant improvements in the laws of 
gases did not come until the molecular nature of gases was understood. In 1873, more 
than 200 years after Boyle published his famous results, Johannes Diderik van 
der Waals (1837–1923) proposed an equation in which he incorporated the effects 
of attractive forces between molecules and molecular size on the pressure and 
volume of a gas. We shall study van der Waals’ equation in detail in the next section, 
but here we would like to familiarize the reader with its basic form so that it can be 
compared with the ideal gas equation. According to van der Waals, p, V, N and T are 
related by

 
p a

N
V

V Nb NRT  ( )+





− =
2

2

 
(1.4.10)

In this equation, the constant a is a measure of the attractive forces between 
molecules and b is proportional to the size of the molecules. For example, the values 
of a and b for helium are smaller than the corresponding values for a gas such as 
CO2. The values of the constants a and b for some of the common gases are given 
in Table 1.1. Unlike the ideal gas equation, this equation explicitly contains molecu-
lar parameters and it tells us how the ideal gas pressure and volume are to be ‘cor-
rected’ because of the molecular size and intermolecular forces. We shall see how 
van der Waals arrived at this equation in the next section. At this point, students 
are encouraged to pause and try deriving this equation on their own before proceed-
ing to the next section.

As one might expect, the energy of the gas is also altered due to forces between 
molecules. In Chapter 6 we will see that the energy Uvw of a van der Waals gas can 
be written as

 
U U a

N
V

Vvw ideal= − 



  

2

 
(1.4.11)



The van der Waals equation was a great improvement over the ideal gas law, in 
that it described the observed liquefaction of gases and the fact that, above a 
certain temperature, called the critical temperature, gases could not be liquefi ed 
regardless of the pressure, as we will see in the following section. But still, it was 
found that the van der Waals equation failed at very high pressures (Exercise 1.13). 
The various improvements suggested by Clausius, Berthelot and others are discussed 
in Chapter 6.

1.5 States of Matter and the van der Waals Equation

The simplest transformations of matter caused by heat is the melting of solids 
and the vaporization of liquids. In thermodynamics, the various states of matter 
(solid, liquid, gas) are often referred to as phases. Every compound has a defi nite 
temperature Tm at which it melts and a defi nite temperature Tb at which it boils. In 
fact, this property can be used to identify a compound or separate the constituents 
of a mixture. With the development of the thermometer, these properties could 
be studied with precision. As noted earlier, Joseph Black and James Watt 
discovered another interesting phenomenon associated with the changes of phase: 
at the melting or the boiling temperature, the heat supplied to a system does 
not result in an increase in temperature; it only has the effect of converting the sub-
stance from one phase to another. This heat that lays ‘latent’ or hidden without 
increasing the temperature was called the latent heat. When a liquid solidifi es, for 

Table 1.1 Van der Waals constants a and b and critical constants Tc, pc and Vmc for selected gases

Gas a/bar  L2  mol−2 b/L  mol−1 Tc/K pc/bar Vmc/L  mol−1

Acetylene (C2H2) 4.516 0.0522 308.3 61.39 0.113
Ammonia (NH3) 4.225 0.0371 405.5 113.5 0.072
Argon (Ar) 1.355 0.0320 150.9 49.55 0.075
Carbon dioxide (CO2) 3.658 0.0429 304.1 73.75 0.094
Carbon monoxide (CO) 1.472 0.0395 132.9 34.99 0.093
Chlorine (Cl2) 6.343 0.0542 416.9 79.91 0.123
Ethanol (C2H5OH) 12.56 0.0871 513.9 61.32 0.167
Helium (He) 0.0346 0.0238 5.19 2.22 0.057
Hydrogen (H2) 0.245 0.0265 32.97 12.93 0.065
Hydrogen chloride (HCl) 3.700 0.0406 324.7 83.1 0.081
Methane (CH4) 2.300 0.0430 190.5 46.04 0.099
Nitric oxide (NO) 1.46 0.0289 180 64.8 0.058
Nitrogen (N2) 1.370 0.0387 126.2 33.9 0.090
Oxygen (O2) 1.382 0.0319 154.59 50.43 0.073
Propane (C3H8) 9.385 0.0904 369.82 42.50 0.203
Sulfur dioxide (SO2) 6.865 0.0568 430.8 78.84 0.122
Sulfur hexafl uoride (SF6) 7.857 0.0879 318.69 37.7 0.199
Water (H2O) 5.537 0.0305 647.14 220.6 0.056

Source: An extensive listing of van der Waals constants can be found in D.R. Lide (ed.), CRC Handbook of Chemistry 
and Physics, 75th edition. 1994, CRC Press: Ann Arbor, MI.
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example, this heat is given out to the surroundings. This phenomenon is summarized 
in Figure 1.3.

Clearly, the ideal gas equation, good as it is in describing many properties of gases, 
does not help us to understand why gases convert to liquids when compressed. An 
ideal gas remains a gas at all temperatures and its volume can be compressed without 
limit. In 1822, Gay-Lussac’s friend Cagniard de la Tour (1777–1859) discovered that 
a gas does not liquefy when compressed unless its temperature is below a critical 
value, called the critical temperature. This behavior of gases was studied in detail by 
Thomas Andrews (1813–1885), who published his work in 1869. During this time, 
atomic theory was gaining more and more ground, while Maxwell, Clausius and 
others advanced the idea that heat was related to molecular motion and began to 
fi nd an explanation of the properties of gases, such as pressure and viscosity, in the 
random motion of molecules. It was in this context that Johannes Diderik van der 
Waals (1837–1923) sought a single equation of state for the liquid and gas phases 
of a substance. In 1873, van der Waals presented his doctoral thesis titled ‘On the 
continuity of the gas and liquid state’, in which he brilliantly explained the conver-
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Figure 1.3 The change in temperature of 1 mol of H2O 
versus amount of heat, at a pressure of 1 atm. At the melting 
point, absorption of heat does not increase the temperature 
until all the ice melts. It takes about 6 kJ to melt 1 mol of 
ice, the ‘latent heat’ discovered by Joseph Black. Then the 
temperature increases until the boiling point is reached, at 
which point it remains constant until all the water turns to 
steam. It takes about 40 kJ to convert 1 mol of water to 
steam



sion of a gas to a liquid and the existence of critical temperature as the consequence 
of forces between molecules and molecular volume.

Van der Waals realized that two main factors modify the ideal gas equation: the 
effect of molecular volume and the effect of intermolecular forces. Since molecules 
have a nonzero volume, the volume of a gas cannot be reduced to an arbitrarily 
small value by increasing p. The corresponding modifi cation of the ideal gas equa-
tion would be (V − bN) = NRT/p, in which the constant b is the limiting volume of 
1 mol of the gas, as p → ∞. The constant b is sometimes called the ‘excluded volume’. 
The effect of intermolecular forces, van der Waals noted, is to decrease the pressure, 
as illustrated in Figure 1.4. Hence, the above ‘volume-corrected’ equation is further 
modifi ed to

STATES OF MATTER AND THE VAN DER WAALS EQUATION 21

(a) (b)

Figure 1.4 Van der Waals considered molecular interac-
tion and molecular size to improve the ideal gas equation. 
(a) The pressure of a real gas is less than the ideal gas pres-
sure because intermolecular attraction decreases the speed 
of the molecules approaching the wall. Therefore, p = pideal 
− dp. (b) Since the molecules of a gas have a nonzero size, 
the volume available to molecules is less than the volume of 
the container. Each molecule has a volume around it that is 
not accessible to other molecules because the distance 
between the centers of the molecules cannot be less than the 
sum of the molecular radii. As a result, the volume of the 
gas cannot decrease below this ‘excluded volume’. Thus, V 
in the ideal gas equation is replaced with (V − bN) so that 
as p → ∞, V → bN
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p
NRT

V bN
p=

−
− δ

Next, van der Waals related the factor dp to the number density N/V using 
the kinetic theory of gases, which showed how molecular collisions with container 
walls cause pressure. Pressure depends on the number of molecules that collide with 
the walls per unit area, per unit time; therefore, it is proportional to the number 
density N/V (as can be seen from the ideal gas equation). In addition, each molecule 
that is close to a container wall and moving towards it experiences the retarding 
attractive forces of molecules behind it (see Figure 1.4); this force would also be 

Johannes van der Waals (1837–1923) (Reproduced with permission from the Edgar Fahs 
Smith Collection, University of Pennsylvania Library)



proportional to number density N/V; hence, dp should be proportional to two 
factors of N/V, so that one may write dp = a(N/V)2, in which the constant a is a 
measure of the intermolecular forces. The expression for pressure that van der Waals 
proposed is

p
NRT

V bN
a

N
V

=
−

−
2

2

or, as it is usually written:
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(1.5.1)

This turns out to be an equation of state for both the liquid and the gas phase. Van 
der Waals’ insight revealed that the two phases, which were considered distinct, can, 
in fact, be described by a single equation. Let us see how.

For a given T, a p–V curve, called the p–V isotherm, can be plotted. Such iso-
therms for the van der Waals equation (1.5.1) are shown in Figure 1.5. They show 
an important feature: the critical temperature Tc studied by Thomas Andrews. If the 
temperature T is greater than Tc then the p–V curve is always single valued, much 
like the ideal gas isotherm, indicating that there is no transition to the liquid state. 
But for lower temperatures, T < Tc, the isotherm has a maximum and a minimum. 
There are two extrema because the van der Waals equation is cubic in V. This region 
represents a state in which the liquid and the gas phases coexist in thermal equilib-
rium. On the p–V curve shown in Figure 1.5, the gas begins to condense into a liquid 
at point A; the conversion of gas to liquid continues until point C, at which all the 
gas has been converted to liquid. Between A and C, the actual state of the gas does 
not follow the path AA′BB′C along the p–V curve because this curve represents an 
unstable supersaturated state in which the gas condenses to a liquid. The actual state 
of the gas follows the straight line ABC. As T increases, the two extrema move closer 
and fi nally coalesce at T = Tc. For a mole of a gas, the point (p, V) at which the two 
extrema coincide is defi ned as the critical pressure pc and critical molar volume Vmc. 
For T higher than Tc, there is no phase transition from a gas to a liquid; the distinc-
tion between gas and liquid disappears. (This does not happen for a transition 
between a solid and a liquid because a solid is more ordered than a liquid; the two 
states are always distinct.) Experimentally, the critical constants pc, Vmc and Tc can 
be measured and they are tabulated (Table 1.1 lists some examples). We can relate 
the critical parameters to the van der Waals parameters a and b by the following 
means. We note that if we regard p(V, T) as a function of V, then, for T < Tc, the 
derivative (∂p/∂V)T = 0 at the two extrema. As T increases, at the point where the 
two extrema coincide, i.e. at the critical point T = Tc, p = pc and V = Vmc, we have 
an infl ection point. At an infl ection point, the fi rst and second derivatives of a func-
tion vanish. Thus, at the critical point:
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Using these equations one can obtain the following relations between the critical 
constants and the constants a and b (Exercise 1.17):

 
a RTV b

V
    = =9

8 3
c mc

mc

 
(1.5.3)

in which Vmc is the molar critical volume. Conversely, we can write the critical con-
stants in terms of the van der Waals constants a and b (Exercise 1.17):
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Figure 1.5 The van der Waals isotherms for CO2 (Tc = 
304.14 K). When T < Tc, there is a region AA′BB′C in which, 
for a given value of p, the van der Waals equation does not 
specify a unique volume V; in this region, the gas transforms 
to a liquid. The segment A′BB′ is an unstable region; 
states corresponding to points on this segment are not 
experimentally realizable. Experimentally realizable states 
are on the dotted line ABC. The observed state follows the 
path ABC. A detailed description of this region is discussed 
in Chapter 7



Table 1.1 contains the values of a and b and critical constants for some gases.

THE LAW OF CORRESPONDING STATES

Every gas has a characteristic temperature Tc, pressure pc, and volume Vmc which 
depend on the molecular size and intermolecular forces. In view of this, one can 
introduce dimensionless reduced variables defi ned by
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(1.5.5)

Van der Waals showed that, if his equation is rewritten in terms of these reduced 
variables, one obtains the following ‘universal equation’ (Exercise 1.18), which is 
independent of the constants a and b:
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This is a remarkable equation because it implies that gases have corresponding 
states: at a given value of reduced volume and reduced temperature, all gases have 
the same reduced pressure. This statement is called the law of corresponding states 
or principle of corresponding states, which van der Waals enunciated in an 1880 
publication. Noting that the reduced variables are defi ned wholly in terms of the 
experimentally measured critical constants, pc, Vmc and Tc, he conjectured that the 
principle has a general validity, independent of his equation of state. According 
to the principle of corresponding states, then, at a given Tr and Vmr the reduced 
pressures pr of all gases should be the same (which is not necessarily the value given 
by (1.5.6)).

The deviation from ideal gas behavior is usually expressed by defi ning a compress-
ibility factor:

Z
V

V
pV
RT

= =m

m,ideal

m

which is the ratio between the actual volume of a gas and that of the ideal gas at a 
given T and p. Ideal gas behavior corresponds to Z = 1. For real gases, at low pres-
sures and temperatures, it is found that Z < 1; but for higher pressures and tempera-
tures, Z > 1. It is also found that there is a particular temperature, called the Boyle 
temperature, at which Z is nearly 1 and the relationship between p and V is close 
to that of an ideal gas (Exercise 1.11). One way to verify the law of corresponding 
states experimentally is to plot Z as a function of reduced pressure pr at a given 
reduced temperature Tr. The compressibility factor Z can be written in terms of the 
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reduced variables: Z = (pcVmc/RTc)(prVmr/Tr); if the value of (pcVmc/RTc) = Zc is the 
same for all gases (for the van der Waals gas Zc = (pcVmc/RTc) = 3/8 (Exercise 1.18)) 
then Z is a function of the reduced variables. Experimental values of Z for different 
gases could be plotted as a functions of pr for a fi xed Tr. If the law of corresponding 
states is valid, then at a given value of Tr and pr the value of Z must be the same 
for all gases. The plot shown in Figure 1.6 indicates that the validity of the law of 
corresponding states is fairly general.
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Figure 1.6 Compressibility factor Z as a function of reduced van der Waals’ 
variables. (Reprinted with permission from Goug-Jen Su, Industrial and 
Engineering Chemistry, 38 (1946) 803. Copyright 1946, American Chemical 
Society)



The van der Waals equation and the law of corresponding states, however, 
have their limitations, which van der Waals himself noted in his 1910 Nobel 
Lecture:

But closer examination showed me that matters were not so simple. To my surprise I realized 
that the amount by which the volume must be reduced is variable, that in extremely dilute 
state this amount, which I notated b, is fourfold the molecular volume* – but that this amount 
decreases with decreasing external volume and gradually falls to about half. But the law 
governing this decrease has still not been found.

Van der Waals also noted that the experimental value of Zc = (pcVmc/RTc) for most 
gases was not 3/8 = 0.375, as predicted by his equation, but was around 0.25 (0.23 
for water and 0.29 for Ar). Furthermore, it became evident that the van der Waals 
constant a depended on the temperature – Rudolf Clausius even suggested that a 
was inversely proportional to T. Thus, the parameters a and b might themselves be 
functions of gas density and temperature. As a result, a number of alternative equa-
tions have been proposed for the description of real gases. For example, engineers 
and geologists often use the following equation, known as the Redlich–Kwong 
equation:
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The constants a and b in this equation differ from those in the van der Waals equa-
tion; they can be related to the critical constants and they are tabulated just as the 
van der Waals a and b are. We will discuss other similar equations used to describe 
real gases in Chapter 6.

The limitation of van der Waals-type equations and the principle of correspond-
ing states lies in the fact that molecular forces and volume are quantifi ed with just 
two parameters, a and b. As explained below, two parameters can characterize the 
forces between small molecules fairly well, but larger molecules require more 
parameters.

MOLECULAR FORCES AND THE LAW OF CORRESPONDING STATES

From a molecular point of view, the van der Waals equation has two parameters, 
a and b, that describe molecular forces, often called van der Waals’ forces. These 
forces are attractive when the molecules are far apart but are repulsive when they 
come into contact, thus making the condensed state (liquid or solid) hard to com-
press. It is the repulsive core that gives the molecule a nonzero volume. The typical 
potential energy between two molecules is expressed by the so-called Lennard–Jones 
energy:

*Molecular volume is the actual volume of the molecules (NA4pr3/3 for a mole of spherical molecules 
of radius r).
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Figure 1.7 shows a plot of this potential energy as a function of the distance r 
between the centers of the molecules. As the distance between the molecules decreases, 
so ULJ decreases, reaches a minimum, and sharply increases. The decreasing part of 
ULJ is due to the term −(s/r)6, which represents an attractive force, and the sharply 
increasing part is due to the term (s/r)12, which represents a repulsive core. The 
Lennard–Jones energy reaches a minimum value of −e when r = 21/6s (Exercise 1.20). 
The two van der Waals parameters, a and b, are related to e and s respectively, the 
former being a measure of the molecular attractive force and the latter a measure 
of the molecular size. In fact, using the principles of statistical thermodynamics, for 
a given e and s  the values of a and b can be calculated. Such a relationship between 
the molecular interaction potential and the parameters in the van der Waals equa-
tion of state gives us an insight into the limitations of the law of corresponding 
states, which depends on just two parameters, a and b. If more than two parameters 
are needed to describe the forces between two molecules adequately, then we can 
also expect the equation of state to depend on more than two parameters. Lennard–
Jones-type potentials that use two parameters are good approximations for small 
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Figure 1.7 Lennard–Jones ‘6–12’ potential energy between 
two molecules as a function of the distance between their 
centers. It is common to specify e in units of kelvin using 
the ratio e/kB, in which kB is the Boltzmann constant. The 
assumed Lennard–Jones parameter values for the above 
curve are e/kB = 197 K (which corresponds to eNA = 
1.638 kJ mol−1) and s = 430 pm. These values represent the 
approximate interaction energy between CO2 molecules



molecules; for larger molecules the interaction energy depends not only on the dis-
tance between the molecules, but also on their relative orientation and other factors 
that require more parameters. Thus, signifi cant deviation from the law of corre-
sponding states can be observed for larger molecules.

1.6 An Introduction to Kinetic Theory of Gases

When Robert Boyle published his study on the nature of the ‘spring of the air’ (what 
we call pressure today) and argued that heat was an ‘intense commotion of the 
parts’, he did not know how pressure actually arose. During the seventeenth century, 
a gas was thought to be a continuous substance. A century later, Daniel Bernoulli 
(1700–1782) published the idea that the mechanism that caused pressure is the rapid 
collisions of molecules with the walls of the container [5]. In his 1738 publication, 
Hydrodynamica, Bernoulli presented his calculation of the average force on the 
container walls due to molecular collisions and obtained a simple expression for the 
pressure: p = (mnv2

avg/3), in which m is the molecular mass, n is the number of mole-
cules per unit volume and vavg is the average speed of molecules. At that time, no 
one had any idea how small gas molecules were or how fast they moved, but 
Bernoulli’s work was an important step in explaining the properties of a gas in terms 
of molecular motion. It was the beginnings of a subject that came to be known as 
the kinetic theory of gases.

The kinetic theory of gases was largely developed in the late nineteenth century. 
Its goal was to explain the observed properties of gases by analyzing the random 
motion of molecules. Many quantities, such as pressure, diffusion constant and the 
coeffi cient of viscosity, could be related to the average speed of molecules, their 
mass, size, and the average distance they traversed between collisions (called the 
mean free path). As we shall see in this section, the names of James Clerk Maxwell 
(1831–1879) and Ludwig Boltzmann (1844–1906) are associated with some of the 
basic concepts in this fi eld, while, as is often the case in science, several others con-
tributed to its development [4, 5]. In this introductory section we shall deal with 
some elementary aspects of kinetic theory, such as the mechanism that causes pres-
sure and the relation between average kinetic energy and temperature.

KINETIC THEORY OF PRESSURE

As Daniel Bernoulli showed, using the basic concepts of force and randomness, it 
is possible to relate the pressure of a gas to molecular motion: pressure is the average 
force per unit area exerted on the walls by colliding molecules.

We begin by noting some aspects of the random motion of molecules. First, if all 
directions have the same physical properties, then we must conclude that motion 
along all directions is equally probable: the properties of molecules moving in one 
direction will be the same as the properties of molecules moving in any other direc-
tion. Let us assume the average speed of the gas molecules is vavg. We denote its x, 
y and z components of the by vx avg, vy avg, and vz avg. Thus:
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Because all directions are equivalent, we must have
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The following quantities are necessary for obtaining the expression for pressure:

 N = amount of gas in moles
 V = gas volume
 M = Molar mass of the gas
 m = mass of a single molecule = M/NA 

(1.6.3)

 n = number of molecules per unit volume = NNA/V
 NA = Avogadro number

Now we calculate the pressure by considering the molecular collisions with the wall. 
In doing so, we will approximate the random motion of molecules with molecules 
moving with an average speed vavg. (A rigorous derivation gives the same result.) 
Consider a layer of a gas, of thickness ∆x, close to the wall of the container (see 
Figure 1.8). When a molecule collides with the wall, which we assume is perpendicu-
lar to the x-axis, the change in momentum of the molecule in the x direction equals 
2mvx avg. In the layer of thickness ∆x and area A, because of the randomness of 
molecular motion, about half the molecules will be moving towards the wall; the 
rest will be moving away from the wall. Hence, in a time ∆t = ∆x/vavg about half 
the molecules in the layer will collide with the wall. The number of molecules in the 
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Figure 1.8 Rapid collisions 
of gas molecules with the 
walls of the container give rise 
to pressure. By computing 
the average momentum trans-
ferred to the wall by colliding 
molecules, pressure can be 
related to the average of the 
square of molecular velocity



layer is (∆xA)n and the number of molecules colliding with the walls is (∆xA)n/2. 
Now, since each collision imparts a momentum 2mvx avg, in a time ∆t, the total 
momentum imparted to the wall is 2mvx avg (∆xA)n/2. Thus, the average force F on 
the wall of area A is
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(1.6.4)

Pressure p, which is the force per unit area, is thus
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Since the direction x is arbitrary, it is better to write this expression in terms of the 
average speed of the molecule rather than its x component. By using (1.6.2) and the 
defi nitions (1.6.3), we can write the pressure in terms the macroscopic variables M, 
V and N:

 
p mnv M

N
V

v= =1
3

1
3

2 2
avg avg

 
(1.6.6)

This expression relates the pressure to the square of the average speed. A rigorous 
description of the random motion of molecules leads to the same expression for the 
pressure with the understanding that v2

avg is to be interpreted as the average of the 
square of the molecular velocity, a distinction that will become clear when we discuss 
the Maxwell velocity distribution. When Daniel Bernoulli published the above result 
in 1738, he did not know how to relate the molecular velocity to temperature; that 
connection had to wait until Avogadro stated his hypothesis in 1811 and the for-
mulation of the ideal gas law based on an empirical temperature that coincides with 
the absolute temperature that we use today (see Equation (1.4.9)). On comparing 
expression (1.6.6) with the ideal gas equation, pV = NRT, we see that
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Using the Boltzmann constant kB = R/NA = 1.3807 × 10−23 J K−1 and noting M = mNA, 
we can express (1.6.7) as a relation between the kinetic energy and temperature:
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(1.6.8)

This is a wonderful result because it relates temperature to molecular motion, in 
agreement with Robert Boyle’s intuition. It shows us that the average kinetic energy 

AN INTRODUCTION TO KINETIC THEORY OF GASES 31



32 BASIC CONCEPTS AND THE LAWS OF GASES

of a molecule equals 3kBT/2. It is an important step in our understanding of the 
meaning of temperature at the molecular level.

From (1.6.8) we see that the total kinetic energy of 1 mol of a gas equals 3RT/2. 
Thus, for monatomic gases, whose atoms could be thought of as point particles that 
have neither internal structure nor potential energy associated with intermolecular 
forces (He and Ar are examples), the total molar energy of the gas is entirely kinetic; 
this implies Um = 3RT/2. The molar energy of a gas of polyatomic molecules is larger. 
A polyatomic molecule has additional energy in its rotational and vibrational 
motion. In the nineteenth century, as kinetic theory progressed, it was realized that 
random molecular collisions result in equal distribution of energy among each of 
the independent modes of motion. According to this equipartition theorem, the 
energy associated with each independent mode of motion equals kBT/2. For a point 
particle, for example, there are three independent modes of motion, corresponding 
to motion along each of the three independent spatial directions x, y and z. Accord-
ing to the equipartition theorem, the average kinetic energy for motion along the x 
direction is mv2

x avg = kBT/2, and similarly for the y and z directions, making the total 
kinetic energy 3(kBT/2) in agreement with (1.6.8). For a diatomic molecule, which 
we may picture as two spheres connected by a rigid rod, there are two independent 
modes of rotational motion in addition to the three modes of kinetic energy of the 
entire molecule. Hence, for a diatomic gas the molar energy Um = 5RT/2, as we noted 
in the context of Equation (1.4.8). The independent modes of motion are often called 
degrees of freedom.

MAXWELL–BOLTZMANN VELOCITY DISTRIBUTION

A century after Bernoulli’s Hydrodynamica was published, the kinetic theory of 
gases began to make great inroads into the nature of the randomness of molecular 
motion. Surely molecules in a gas move with different velocities. According to 
(1.6.8), the measurement of pressure only tells us the average of the square of 
the velocities. It does not tell us what fraction of molecules have velocities with 
a particular magnitude and direction. In the later half of the nineteenth century, 
James Clerk Maxwell (1831–1879) directed his investigations to the probability dis-
tribution of molecular velocity that specifi es such details. We shall denote the prob-
ability distribution of the molecular velocity v by P(v). The meaning of P(v) is as 
follows:

P(v) dvx dvy dvz is the fraction of the total number of molecules whose velocity vectors have 
their components in the range (vx, vx + dvx), (vy, vy + dvy) and (vz, vz + dvz).

As shown in the Figure 1.9, each point in the velocity space corresponds to a velocity 
vector; P(v) dvx dvy dvz is the probability that the velocity of a molecule lies within 
an elemental volume dvx, dvy and dvz at the point (vx, vy, vz). P(v) is called the probabil-
ity density in the velocity space.

The mathematical form of P(v) was obtained by James Clerk Maxwell; the 
concept was later generalized by Ludwig Boltzmann (1844–1906) to the probability 



distribution of the total energy E of the molecule. According to the principle 
discovered by Boltzmann, when a system reaches thermodynamic equilibrium, the 
probability that a molecule is in a state with energy E is proportional to exp(−E/kBT). 
If r(E) is the number of different states in which the molecule has energy E, then

 P E E E k T( ) ( )∝ ρ e / B−  (1.6.9)

The quantity r(E) is called the density of states. Relation (1.6.9), called the Boltzmann 
principle, is one of the fundamental principles of physics. Using this principle, equi-
librium thermodynamic properties of a substance can be derived from molecular 
energies E − a subject called statistical thermodynamics, presented in Chapter 17. 
In this introductory section, however, we will only study some elementary conse-
quences of this principle.

The energy of a molecule E = Etrans + Erot + Evib + Eint +  .  .  .  , in which Etrans is the 
kinetic energy of translational motion of the whole molecule, Erot is the energy of 
rotational motion, Evib is the energy of vibrational motion, Eint is the energy of the 
molecule’s interaction with other molecules and fi elds such as electric, magnetic or 
gravitational fi elds, and so on. According to the Boltzmann principle, the probability 
that a molecule will have a translational kinetic energy Etrans is proportional to 
exp(−Etrans/kBT) (the probabilities associated with other forms of energy are factors 
that multiply this term). Since the kinetic energy due to translational motion of the 
molecule is mv2/2, we can write the probability as a function of the velocity v by which 
we mean probability that a molecule’s velocity is in an elemental cube in velocity 
space, as shown in the Figure 1.9. For a continuous variable, such as velocity, we 
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Figure 1.9 The probability distribution for 
the velocity is defi ned in the velocity space. 
P(v)dvx dvy dvz is the probability that the 
velocity of a molecule is within the shown 
cube
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must defi ne a probability density P(v) so that the probability that a molecule’s veloc-
ity is in an elemental cube of volume dvx dvy dvz located at the tip of the velocity vector 
v is P(v) dvx dvy dvz. According to the Boltzmann principle, this probability is
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so that a requirement of the very defi nition of a probability, 
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= 1, is met. The normalization factor z, as defi ned in (1.6.11), can be calculated using 
the defi nite integral:
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(Some integrals that are often used in kinetic theory are listed at the end of this 
chapter in Appendix 1.2.) With the normalization factor thus determined, the prob-
ability distribution for the velocity can be written explicitly as
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This is the Maxwell velocity distribution. Plots of this function show the well-known 
Gaussian or ‘bell-shaped’ curves shown in Figure 1.10a. It must be noted that this 
velocity distribution is that of a gas at thermodynamic equilibrium. The width of 
the distribution is proportional to the temperature. A gas not in thermodynamic 
equilibrium has a different velocity distribution and the very notion of a temperature 
may not be well defi ned; but such cases are very rare. In most situations, even if the 
temperature changes with location, the velocity distribution locally is very well 
approximated by (1.6.13). Indeed, in computer simulations of gas dynamics it is 
found that any initial velocity distribution evolves into the Maxwell distribution 
very quickly, in the time it takes a molecule to undergo few collisions, which in most 
cases is less than 10−8 s.
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Figure 1.10 Probability distributions of nitrogen. 
(a) Maxwell velocity distribution of the x-component of 
the velocity vx at T = 100 K and 300 K. The width of the 
distribution is proportional to T. (b) f(v) versus speed 
at T = 100 K and 300 K
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THE MAXWELL SPEED DISTRIBUTION

The average velocity of a molecule is clearly zero because every direction of velocity 
and its opposite are equally probable (but the average of the square of the velocity 
is not zero). However, the average speed, which depends only on the magnitude of 
the velocity, is not zero. From the Maxwell velocity distribution (1.6.13) we can 
obtain the probability distribution for molecular speed, i.e. the probability that a 
molecule will have a speed in the range (v, v + dv) regardless of direction. This can 
be done by summing or integrating P(v) over all the directions in which the velocity 
of a fi xed magnitude can point. In spherical coordinates, since the volume element 
is v2 sin q dq dj dv, the probability is written as P(v)v2 sin q dq dj dv. The integral over 
all possible directions is
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The quantity 4pP(v)v2 is the probability density for the molecular speed. We shall 
denote it by f(v). With this notation, the probability distribution for molecular 
speeds can be written explicitly as
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Because the molar mass M = mNA and R = kBNA, the above expressions can also be 
written as
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The shape of the function f(v) is shown in the Figure 1.10b. This graphs show that, 
at a given temperature, there are a few molecules with very low speeds and a few 
with large speeds; we can also see that f(v) becomes broader as T increases. The 
speed v at which f(v) reaches its maximum is the most probable speed.

With the above probability distributions we can calculate several average values. 
We shall use the notation in which the average value of a quantity X is denoted by 
〈X〉. The average speed is given by the integral
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For the probability distribution (1.6.15), such integrals can be calculated using 
integral tables or Mathematica or Maple. While doing such calculations, it is con-
venient to write the probability f(v) as
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Using the appropriate integral in Appendix 1.2 at the end of this chapter, the average 
speed can be obtained in terms of T and the molar mass M (Exercise 1.23):
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Similarly, one can calculate the average energy of a single molecule using m and kB 
instead of M and R (Exercise 1.23):
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A rigorous calculation of the pressure using the Maxwell–Boltzmann velocity dis-
tribution leads to the expression (1.6.6) in which v2

avg = 〈v2〉. Also, the value of v at 
which f(v) has a maximum is the most probable speed. This can easily be determined 
by setting df/dv = 0, a calculation left as an exercise.

What do the above calculations tell us? First, we see that the average speed of a 
molecule is directly proportional to the square root of the absolute temperature and 
inversely proportional to its molar mass. This is one of the most important results 
of the kinetic theory of gases. Another point to note is the simple dependence of the 
average kinetic energy of a molecule on the absolute temperature (1.6.20). It shows 
that the average kinetic energy of a gas molecule depends only on the temperature 
and is independent of its mass.

Appendix 1.1 Partial Derivatives

DERIVATIVES OF MANY VARIABLES

When a variable such as energy U(T, V, Nk) is a function of many variables V, T 
and Nk, its partial derivative with respect to each variables is defi ned by holding all 
other variables constant. Thus, for example, if U(T, V, N) = (5/2)NRT − a(N2/V) 
then the partial derivatives are
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The subscripts indicate the variables that are held constant during the differentia-
tion. In cases where the variables being held constant are understood, the subscripts 
are often dropped. The change in U, i.e. the differential dU, due to changes in N, V 
and T is given by

 
d d d dU

U
T

T
U
V

V
U
N

N
V N T N V T

= ∂
∂





 + ∂

∂




 + ∂

∂




, , ,  

(A1.1.4)

For functions of many variables, there is a second derivative corresponding to every 
pair of variables: ∂2U/∂T∂V, ∂2U/∂N∂V, ∂2U/∂T 2, etc. For the ‘cross-derivatives’ such 
as ∂2U/∂T∂V, which are derivatives with respect to two different variables, the order 
of differentiation does not matter. That is:
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The same is valid for all higher derivatives, such as ∂3U/∂T 2∂V; i.e. the order of dif-
ferentiation does not matter.

BASIC IDENTITIES

Consider three variables x, y and z, each of which can be expressed as a function of 
the other two variables, x = x(y, z), y = y(z, x) and z = z(x, y). (p, V and T in the 
ideal gas equation pV = NRT is an example.) Then the following identities are 
valid:
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Consider a functions of x and y, f = f(x, y), other than z. Then:
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Appendix 1.2 Elementary Concepts in Probability Theory

In the absence of a deterministic theory that enables us to calculate the quantities 
of interest to us, one uses probability theory. Let xk, in which k = 1, 2, 3,  .  .  .  , n, 
represent all possible n values of a random variable x. For example, x could be the 
number of molecules at any instant in a small volume of 1 nm3 within a gas or the 
number of visitors at a website at any instant of time. Let the corresponding prob-
abilities for these n values of x be P(xk). Since xk, k = 1, 2,  .  .  .  , n, represents all 
possible states:
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AVERAGE VALUES

We shall denote the average value of a quantity A by 〈A〉. Thus, the average value 
of x would be
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Similarly, the average value of x2 would be
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More generally, if f(xk) is a function of x, its average value would be

f f x P xk k
k
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If the variable x takes continuous values in the range (a, b), then the average values 
are written as integrals:
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For a given probability distribution, the standard deviation s is defi ned as

 S x x= −( )〈 〉 2  (A1.2.5)
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SOME COMMON PROBABILITY DISTRIBUTIONS

Binomial distribution. This is the probability distribution associated with two out-
comes H and T (such as a coin toss) with probabilities p and (1 − p). The probability 
that, in N trials, m are H and (N − m) are T is given by
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Poisson distribution. In many random processes the random variable is a number 
n. For example, the number of gas molecules in a small volume within a gas will 
vary randomly around an average value. Similarly, so is the number of molecules 
undergoing chemical reaction in a given volume per unit time. The probability of n 
in such processes is given by the Poisson distribution:
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The Poisson distribution has one parameter, a; it is equal to the average value of n, 
i.e. 〈n〉 = a.

Gaussian distribution. When a random variable x is a sum of many variables, its 
probability distribution is generally a Gaussian distribution:
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The Gaussian distribution has two parameters, x0 and s. The average value of x is 
equal to x0 and the standard deviation equals s.

SOME USEFUL INTEGRALS

(a) e−
∞

∫ = 





ax x
a

2

0

1 21
2

d
/π

(b) x x
a

axe−
∞

∫ =2

0

1
d

(c) x x
a a

ax2

0

1 2
2 1

4
e−

∞

∫ = 



d

/π

(d) x x
a

ax3

0
2

2 1
2

e−
∞

∫ =d



More generally:

(e)  x x
n

a a
n ax

n n
2

0
1

1 2
2 1 3 5 2 1

2
e

. . . ( )−
∞

+∫ = × × × × − 



d

/π

(f) x x
n

a
n ax

n
2 1

0
1

2

2
1+ −

∞

+∫ = 



e d

!

Appendix 1.3 Mathematica Codes

The following Mathematica codes show how to defi ne functions, plot them using 
the ‘Plot’ command, create numerical text output fi les using the ‘Export’ command 
and do algebraic calculations and evaluate derivatives.

CODE A: EVALUATING AND PLOTTING PRESSURE USING THE 
EQUATION OF STATE

(* Values of a and b for CO2; We set N=1 *)

a=3.658; (* L^2.bar.mol^-2*)

b=0.0429; (* L.mol^-1*)

R=0.0831; (* L.bar.K^-1.mol^-1 *)

PVW[V_,T_]:= (R*T/(V-b)) - (a/(V^2));

PID[V_,T_]:= R*T/V;

PID[1.5,300]

PVW[1.5,300]

TC=(8/27)*(a/(R*b))

16.62

15.4835

304.027

Using the functions defi ned above, p–V curves could be plotted using the following 
command:

Plot[{PVW[V,270],PVW[V,304],PVW[V,330]},{V,0.06,0.6}]
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- Graphics -
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To write output fi les for spreadsheets use the ‘Export’ command and the fi le format 
‘CSV’. For more detail, see the Mathematica help fi le for the ‘Export’ command. 
In the command below, the output fi lename is data.txt. This fi le can be read by most 
spreadsheets and graphing software.

Export[“data.txt”, Table[{x, PVW[x, 270], PVW[x, 304], PVW[x, 350]

 {x, 0.07, 0.6, 0.005}], “CSV”]

data.txt

Table[{x, PVW[x, 300]}, {x, 0.06, 0.1, 0.01}]//TableForm

0.06 441.784

0.07 173.396

0.08 100.405

0.09 77.6944

0.1 70.8025

CODE B: MATHEMATICA CODE FOR OBTAINING CRITICAL CON-
STANTS FOR THE VAN DER WAALS EQUATION

Clear[a,b,R,T,V];

p[V_,T_]:=(R*T/(V-b)) -(a/V^2);

(* At the critical point the fi rst and second derivatives of p

with respect to V are zero*)

(* First derivative *)

D[p[V,T],V]

2
3 2

a
V

RT
b V

−
− +( )

(* Second derivative *)

D[p[V,T],V,V]

− +
− +

6 2
4 3

a
V

RT
b V( )

Solve[{(-6*a)/V^4 + (2*R*T)/(-b + V)^3==0,

(2*a)/V^3 - (R*T)/(-b + V)^2==0},{T,V}]

T
a
bR

V b→ →{ }{ }8
27

3,

Now we can substitute these values in the equation for p and obtain pc.

T = (8*a)/(27*b*R); V = 3*b;

p[V,T]

a
b27 2

Thus, we have all the critical variables: pc = a/27b2, Tc = 8a/27bR, Vc = 3b.



CODE C: MATHEMATICA CODE FOR THE LAW OF CORRESPONDING 
STATES

Clear[a,b,R,T,V];

 T = Tr*(8*a)/(27*b*R); V = Vr*3*b; pc = a/(27*b^2);

 (* In terms of these variables the reduced pressure pr = p/pc. This can 

now be calculated*)

 p[V,T]/pc

27
9

8
27 3

2
2 2

b
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b Vr
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b b bVr
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FullSimplify
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Thus, we have the following relation for the reduced variables, which is the law of 
corresponding states: pr = [8Tr/(3Vr − 1)] − 3/V2

r.

CODE D: THE MAXWELL–BOLTZMANN SPEED DISTRIBUTION FOR 
A GAS OF MASS M AT TEMPERATURE T CAN BE PLOTTED USING 
THE FOLLOWING CODE

Clear[a,b,R,T,V];

M = 28.0*10-3; (*molar mass in kg*) R = 8.314(*J/K.mol*) 

b = M/(2*R);

p v_ T_ Pi
M

Pi R T
v Exp

b v
T

/
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Plot[{p[v,300], p[v,100]}, {v,0,1500}]
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Examples

Example 1.1 The atmosphere consists of 78.08% by volume of N2 and 20.95% of 
O2. Calculate the partial pressures due to the two gases.
Solution The specifi cation ‘percentage by volume’ may be interpreted as follows. 
If the components of the atmosphere were to be separated, at the pressure of 1 atm, 
the volume occupied by each component is specifi ed by the volume percent. Thus, 
if we isolate the N2 in 1.000 L of dry air, at a pressure of 1 atm its volume will be 
0.781 L. According to the ideal gas law, at a fi xed pressure and temperature, the 
amount of gas N = V(p/RT), i.e. the molar amount is proportional to the volume. 
Hence, percentage by volume is the same as percentage in N, i.e. 1.000 mol of air 
consists of 0.781 mol of N2. According to the Dalton’s law (see (1.4.5)), the partial 
pressure is proportional to N; so, the partial pressure of N2 is 0.781 atm and that of 
O2 is 0.209 atm.

Example 1.2 Using the ideal gas approximation, estimate the change in the total 
internal energy of 1.00 L of N2 at p = 2.00 atm and T = 298.15 K if its temperature 
is increased by 10.0 K. What is the energy required to heat 1.00 mol of N2 from 0.0 K 
to 298 K?
Solution The energy of an ideal gas depends only on the amount of gas N and the 
temperature T. For a diatomic gas such as N2 the energy per mole equals (5/2)RT 
+ U0. Hence, for N moles of N2 the change in energy ∆U for a change in temperature 
from T1 to T2 is

∆U = N(5/2)R(T2 − T1)

In the above case

N
pV
RT

= = × = ×− −
−2 00 1 00

0 0821 298 15
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(Note the different units of R used in this calculation.)

The energy required to heat 1.00 mol of N2 from 0 K to 298 K is

(5/2)RT = (5/2)(8.314 J K−1 mol−1)(298 K) = 6.10 kJ mol−1

Example 1.3 At T = 300 K, 1.00 mol of CO2 occupies a volume of 1.50 L. Calculate 
the pressures given by the ideal gas equation and the van der Waals equation. (The 
van der Waals constants a and b can be obtained from Table 1.1.)
Solution The ideal gas pressure is

p = × × =
− −1 00 0 0821 300

1 50
16 4

1 1. .
.

.
mol atmL mol K K

L
atm

The pressure according to the van der Waals equation is

p
NRT

V Nb
a

N
V

=
−

−
2

2

Since the van der Waals constants a and b given in Table 1.1 are in units of 
L2 atm mol−2 and L mol−2 respectively, we will use the value or R = 0.0821 atm L 
mol−1 K−1. This will give the pressure in atmospheres:

p =
−

− =1.00(0.0821)300
1.50 1.00(0.0421)

atm3 59
1 00
1 50

15 3
2

.
.
.

.

Exercises

 1.1 Describe an experimental method, based on the ideal gas law, to obtain the 
molecular mass of a gas.

 1.2 The density of dry air at p = 1.0 bar and T = 300 K is 1.161 kg m−3. Assuming 
that it consists entirely of N2 and O2 and using the ideal gas law, determine 
the amount of each gas in moles in a volume of 1 m3 and their mole 
fractions.

 1.3 The molecule density of interstellar gas clouds is about 104 molecules/mL. 
The temperature is approximately 10 K. Calculate the pressure. (The lowest 
vacuum obtainable in the laboratory is about three orders of magnitude 
larger.)

 1.4 A sperm whale dives to a depth of more than 1.5 km into the ocean to feed. 
Estimate the pressure the sperm whale must withstand at this depth. (Express 
your answer in atmospheres.)
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 1.5 (a) Calculate the amount of gas in moles per cubic meter of atmosphere at 
p = 1 tm and T = 298 K using the ideal gas equation.
(b) The atmospheric content of CO2 is about 360 ppmv (parts per million by 
volume). Assuming a pressure of 1.00 atm, estimate the amount of CO2 in a 
10.0 km layer of the atmosphere at the surface of the Earth. The radius of 
the Earth is 6370 km. (The actual amount of CO2 in the atmosphere is about 
6.0 × 1016 mol.)
(c) The atmospheric content of O2 is 20.946% by volume. Using the result in 
part (b), estimate the total amount of O2 in the atmosphere.
(d) Life on Earth consumes about 0.47 × 1016 mol of O2 per year. What per-
centage of the O2 in the atmosphere does life consume in a year?

 1.6 The production of fertilizers begins with the Haber processes, which is the 
reaction 3H2 + N2 → 2NH3 conducted at about 500 K and a pressure of about 
300 atm. Assume that this reaction occurs in a container of fi xed volume and 
temperature. If the initial pressure due to 300.0 mol H2 and 100.0 mol N2 is 
300.0 atm, what will the fi nal pressure be? What will the fi nal pressure be if 
initially the system contained 240.0 mol H2 and 160.0 mol N2? (Use the ideal 
gas equation even though the pressure is high.)

 1.7 The van der Waals constants for N2 are a = 1.370 L2 atm mol−2 and b = 
0.0387 L mol−1. Consider 0.5 mol of N2(g) is in a vessel of volume 10.0 L. 
Assuming that the temperature is 300 K, compare the pressures predicted by 
the ideal gas equation and the van der Waals equation.
(a) What is the percentage error in using the ideal gas equation instead of 
the van der Waals equation?
(b) Keeping V = 10.0 L, use Maple/Mathematica to plot p versus N for N = 
1 to 100, using the ideal gas and the van der Waals equations. What do you 
notice regarding the difference between the pressure predicted by the two 
equations?

 1.8 For 1.00 mol of Cl2 in a volume of 2.50 L, calculate the difference in the energy 
between Uideal and Uvw. What is the percentage difference when compared 
with Uideal?

 1.9 (a) Using the ideal gas equation, calculate the volume of 1 mol of a gas at a 
temperature of 25 °C and a pressure of 1 atm. This volume is called the Avo-
gadro volume.
(b) The atmosphere of Venus is 96.5% CO2(g). The surface temperature is 
about 730 K and the pressure is about 90 atm. Using the ideal gas equation, 
calculate the volume of 1 mol of CO2(g) under these conditions (Avogadro 
volume on Venus).
(c) Use Maple/Mathematica and the van der Waals equation to obtain the 
Avogadro volume on Venus and compare it (fi nd the percentage difference) 
with the result obtained using the ideal gas equation.



1.10 The van der Waals parameter b is a measure of the volume excluded due to 
the fi nite size of the molecules. Estimate the size of a single molecule from 
the data in Table 1.1.

1.11 For the van der Waals equation, express the pressure as a power series in 1/
Vm. Using this expression, determine the Boyle temperature TB at which p ≈ 
RTB/Vm.

1.12 For the Redlich–Kwong equation

p
RT

V b
a

T V V b
=

−
−

−m m m

1
( )

 show that there is a critical temperature above which there is no transition to 
a liquid state.

1.13 Though the van der Waals equation was a big improvement over the ideal 
gas equation, its validity is also limited. Compare the following experimental 
data with the predictions of the van der Waals equation for 1 mol of CO2 at 
T = 40 °C. (Source: I. Prigogine and R. Defay, Chemical Thermodynamics. 
1967, London: Longmans.)

 

p/atm Vm/L mol−1

   1 25.574
  10  2.4490
  25  0.9000
  50  0.3800
  80  0.1187
 100  0.0693
 200  0.0525
 500  0.0440
1000  0.0400

1.14  (a) Use Mathematica/Maple to plot the van der Waals p–V curves for Ar, 
N2 and C3H8 using the data listed in Table 1.1 (see Appendix 1.3 for sample 
programs). In particular, compare the van der Waals curves for CO2 and He 
and the ideal gas equation.

1.15 For CO2, plot the compressibility factor Z = pVm/RT as function of the 
reduced pressure pr for fi xed reduced temperatures Tr = 1.2 and Tr = 1.7. 
Verify that the Z–pr curves are the same for all van der Waals’ gases. (This 
can be plotted using Parametric Plots.)

1.16 Using Table 1.1 and the relations (1.5.4) obtain the critical temperature Tc, 
critical pressure pc and critical molar volume Vmc for CO2, H2 and CH4. Write 
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a Maple/Mathematica code to calculate the van der Waals constants a and b 
given Tc, pc and Vmc for any gas.

1.17 (a) From the van der Waals equation, using (1.5.2) obtain (1.5.3) and (1.5.4). 
(These calculations may also be done using Mathematica/Maple). (b) Show 
that Zc = (pcVmc/RTc) = 3/8 a constant for all van der Waals gases.

1.18 Using Mathematica/Maple, obtain Equation (1.5.6) from (1.5.5).

1.19 For CO2, plot p–V isotherms for the van der Waals and Redlich–Kwong 
equations on the same graph for T = 200 K, 300 K and 400 K. The table below 
lists some constants a and b for the Redlich–Kwong equation (Source: J.H. 
Noggle, Physical Chemistry. 1996, Harper Collins):

1.20 Show that the Lennard–Jones energy

U r
r r

LJ( ) = 



 − 













4

12 6

ε σ σ

 has a minimum value equal to −e at r = 21/6s.

1.21 Estimate the average distance between molecules at T = 300 K and p = 1.0 atm. 
(Hint: consider a cube of side 10 cm in which the molecules occupy points on 
a three-dimensional cubic lattice.)

1.22 According to the Graham’s law of diffusion, the rate of diffusion of gas mol-
ecules is inversely proportional to the square root of its mass. Explain why 
this is so using the kinetic theory of gases. How would you expect the diffu-
sion coeffi cient to depend on the temperature?

1.23 (a) Using the integrals in Appendix 1.2, obtain the average speed (1.6.19) and 
kinetic energy (1.6.20) of a gas molecule.
(b) Using the Maxwell probability distribution f(v), obtain the most probable 
speed of a molecule of molar mass M at a temperature T.

 

a/bar L2 mol−1 K−1/2 b/L mol−1

Ar 16.71 0.0219
CO2 64.48 0.0296
O2 17.36 0.0221



2  THE FIRST LAW OF 
THERMODYNAMICS

The Idea of Energy Conservation amidst New Discoveries

The concepts of kinetic energy, associated with motion, and potential energy, associ-
ated with conservative forces such as gravitation, were well known at the beginning 
of nineteenth century. For a body in motion, the conservation of the sum of kinetic 
and potential energy is a direct consequence of Newton’s laws (Exercise 2.1). But 
this concept had no bearing on the multitude of thermal, chemical and electrical 
phenomena that were being investigated at that time. And, during the fi nal decades 
of the eighteenth and initial decades of the nineteenth century, new phenomena were 
being discovered at a rapid pace.

The Italian physician Luigi Galvani (1737–1798) discovered that a piece of charged 
metal could make the leg of a dead frog twitch! The amazed public was captivated 
by the idea that electricity can generate life as dramatized by Mary Shelley (1797–
1851) in her Frankenstein. Summarizing the results of his investigations in a paper 
published in 1791, Galvani attributed the source of electricity to animal tissue. But 
it was the physicist Alessandro Volta (1745–1827) who recognized that the ‘galvanic 
effect’ is due to the passage of electric current. In 1800, Volta went on to construct 
the so-called Volta’s pile, the fi rst ‘chemical battery’; electricity could now be gener-
ated from chemical reactions. The inverse effect, the driving of a chemical reaction 
by electricity, was demonstrated by Michael Faraday (1791–1867) in the 1830s. The 
newly discovered electric current could also produce heat and light. To this growing 
list of interrelated phenomena, the Danish physicist Hans Christian Oersted (1777–
1851) added the generation of magnetic fi eld by an electrical current in 1819. In 
Germany, in 1822, Thomas Seebeck (1770–1831) (who helped Goethe in his scien-
tifi c investigations) demonstrated that ‘thermoelectric effect’, the generation of elec-
tricity by heat. The well-known Faraday’s law of induction, the generation of an 
electrical current by a changing magnetic fi eld, came in 1831. All these discoveries 
presented a great web of interrelated phenomena in heat, electricity, magnetism and 
chemistry to the nineteenth-century scientists (Figure 2.1).

Soon, within the scientifi c community that faced this multitude of new phenom-
ena, the idea that all these effects really represented the transformation of one 
indestructible quantity, ‘the energy’, began to take shape [1]. This law of conserva-
tion of energy is the First Law of thermodynamics. We will see details of its formu-
lation in the following sections.

The mechanical view of nature holds that all energy is ultimately reducible to 
kinetic and potential energy of interacting particles. Thus, the law of conservation 
of energy may be thought of as essentially the law of conservation of the sum of 
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kinetic and potential energies of all the constituent particles. A cornerstone for the 
formulation of the First Law is the decisive experiments of James Prescott Joule 
(1818–1889) of Manchester, a brewer and an amateur scientist. Here is how Joule 
expressed his view of conservation of energy [2, 3]:

Indeed the phenomena of nature, whether mechanical, chemical or vital, consist almost 
entirely in a continual conversion of attraction through space,* living force† and heat into 
one another. Thus it is that order is maintained in the universe – nothing is deranged, nothing 
ever lost, but the entire machinery, complicated as it is, works smoothly and harmoniously. 
And though, as in the awful vision of Ezekiel, ‘.  .  .  wheel may be in the middle of wheel  .  .  .’, 
and everything may appear complicated and involved in the apparent confusion and intricacy 
of an almost endless variety of causes, effects, conversion, and arrangements, yet is the most 
perfect regularity preserved – the whole being governed by the sovereign will of God.

In practice, however, we measure energy in terms of heat and changes in macro-
scopic variables, such as chemical composition, electrical voltage and current, not 
the kinetic and potential energies of molecules. Energy can take many forms, e.g. 
mechanical work, heat, chemical energy, and it can reside in electric, magnetic and 
gravitational fi elds. For each of these forms we can specify the energy in terms of 
macroscopic variables, and the changes of energy in each form have a mechanical 
equivalent.

2.1 The Nature of Heat

Though the distinction between temperature and heat was recognized in the eight-
eenth century as a result of the work of Joseph Black and others, the nature of heat 
was not clearly understood until the middle of the nineteenth century. Robert Boyle, 

Heat

Mechanical
Work 

Electricity

Magnetism 
Chemical

Transformations 

Figure 2.1 Interrelations between various phenomena dis-
covered in the nineteenth century

* Potential energy.
† Kinetic energy.
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James Prescott Joule (1818–1889) (Reproduced courtesy of the AIP Emilio Segre Visual 
Archive, Physics Today Collection)

Isaac Newton and others held the view that heat was the microscopic chaotic motion 
of particles. An opposing view, which prevailed in France, was that heat was an 
indestructible fl uid-like substance without mass that was exchanged between mate-
rial bodies. This indestructible substance was called caloric and it was measured in 
‘calories’ (see Box 2.1). In fact, such fi gures as Antoine-Laurent Lavoisier (1743–
1794), Jean Baptiste Joseph Fourier (1768–1830), Pierre-Simon de Leplace (1749–
1827) and Siméon-Denis Poisson (1781–1840) all supported the caloric theory of 
heat. Even Sadi Carnot (1796–1832), in whose insights the Second Law originated, 
initially used the concept of caloric, though he later rejected it.
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The true nature of heat as a form of energy that can interconvert to other forms 
of energy was established after much debate. One of the most dramatic demonstra-
tions of the conversion of mechanical energy to heat was performed by Benjamin 
Thompson, an American born in Woburn, Massachusetts, whose adventurous life 
took him to Bavaria where he became Count Rumford (1753–1814) [4]. Rumford 
immersed metal cylinders in water and drilled holes in them. The heat produced due 
to mechanical friction could bring the water to a boil! He even estimated that the 
production of 1 cal of heat requires about 5.5 J of mechanical work [5].

Box 2.1 Basic Defi nitions.

Heat can be measured by the change in temperature it causes in a body. In this text 
we shall mostly use the SI units in which heat is measured in joules, though the calorie 
is an often-used unit of heat.

The calorie. The calorie, a word derived from the caloric theory of heat, was origi-
nally defi ned as the amount of heat required to increase the temperature of 1 g of water 
by 1 °C. When it was realized that this amount depended on the initial temperature of 
the water, the following defi nition was adopted: a calorie is the amount of heat required 
to increase the temperature of 1 g of water from 14.5 °C to 15.5 °C at a pressure of 
1 bar. The current practice is to defi ne 1 cal as 4.184 J. In fact, the International Union 
of Pure and Applied Chemistry (IUPAC) defi nes three types of calorie: the thermo-
chemical calorie, calth = 4.184 J; the international calorie, calIT = 4.1868 J; the 15 °C 
calorie, cal15 ≈ 4.1855 J.

Work and heat. In classical mechanics, when a body undergoes a displacement ds 
by a force F, the mechanical work done dW = F·ds. Work is measured in joules. Dis-
sipative forces, such as friction between solids in contact, or viscous forces in liquids, 
convert mechanical energy to heat. Joule’s experiments demonstrated that a certain 
amount of mechanical work, regardless of the manner in which it is performed, always 
produces the same amount of heat. Thus, an equivalence between work and heat was 
established.

Heat capacity. The heat capacity C of a body is the ratio of the heat absorbed dQ 
to the resulting increase in temperature dT:

C
Q
T

= d
d

For a given dQ, the change in temperature dT depends on whether the substance is 
maintained at constant volume or at constant pressure. The corresponding heat capaci-
ties are denoted by CV and Cp respectively. Heat capacities are generally functions of 
temperature.

Molar heat capacity is the heat capacity of 1 mol of the substance. We shall denote 
it by CmV or Cmp.

Specifi c heat of a substance is the heat required to change the temperature of a unit 
mass (usually 1.0 g or 1.0 kg) of the substance by 1 °C.
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It was the results of the careful experiments of James Prescott Joule, reported in 
1847, that established beyond doubt that heat was not an indestructible substance, 
that, in fact, it can be transformed to mechanical energy and vice versa [5, 6]. 
Furthermore, Joule showed that there is an equivalence between heat and 
mechanical energy in the following sense: a certain amount of mechanical energy, 
regardless of the particular means of conversion, always produces the same amount 
of heat (4.184 J produce 1 cal of heat). This meant heat and mechanical energy can 
be thought of as different manifestations of the same physical quantity, the 
‘energy’.

But still, what is heat? One could say that physical and chemical processes have 
a natural tendency to convert all other forms of energy to heat. In the classical 
picture of particle motion, it is the kinetic energy associated with chaotic motion, 
as we saw in Chapter 1. Molecules in incessant motion collide and randomize their 
kinetic energy and the Maxwell–Boltzmann velocity distribution is quickly estab-
lished; the average kinetic energy, which equals 3kBT/2, generally increases with 
absorption of heat. However, heat does not change the temperature of the body 
during phase transformations, but transforms the phase.

But that is not all we can say about heat. In additions to particles, we also have 
fi elds. The interaction between the particles is described by fi elds, such as electro-
magnetic fi elds. Classical physics had established that electromagnetic radiation was 
a physical quantity that can carry energy and momentum. So when particles gain 
or lose energy, some of it can transform into the energy of the fi eld. The energy 
associated with electromagnetic radiation is an example. The interaction between 
matter and radiation also leads to a state of thermal equilibrium in which a tem-
perature can be associated with radiation. Radiation in thermal equilibrium with 
matter is called ‘heat radiation’ or ‘thermal radiation’. So heat can also be in the 
form of radiation. We shall study the thermodynamics of thermal radiation in some 
detail in Chapter 12.

During the twentieth century, our view of particles and fi elds has been unifi ed by 
modern quantum fi eld theory. According to quantum fi eld theory, all particles are 
excitations of quantum fi elds. We now know, for example, that the electromagnetic 
fi eld is associated with particles we call photons, though it also has a wave nature. 
Similarly, other fi elds, such as those associated with nuclear forces, have correspond-
ing particles. Just as photons are emitted or absorbed by molecules undergoing a 
transition from one state to another (see Figure 2.2) – which in the classical picture 
corresponded to emission or absorption of radiation – other particles, such as 
mesons, can be absorbed and emitted by nuclear particles in high-energy processes. 
The energy density of thermal radiation depends only on the temperature.

One of the most remarkable discoveries of modern physics is that every particle 
has an antiparticle. When a particle encounters its antiparticle they may annihilate 
each other, converting their energy into other forms, such as photons. All this has 
expanded our knowledge of the possible states of matter. As mentioned above, the 
average kinetic energy of particles is proportional to temperature. At the tempera-
tures we normally experience, collisions between molecules result in the emission 



54 THE FIRST LAW OF THERMODYNAMICS

of photons, but not other particles. At suffi ciently high temperatures (greater than 
1010 K), other particles can also be similarly created as a result of collisions. Particle 
creation is often in the form of particle–antiparticle pairs (see Figure 2.3). Thus, 
there are states of matter in which there is incessant creation and annihilation of 
particle–antiparticle pairs, a state in which the number of particles does not remain 
constant. This state of matter is a highly excited state of a fi eld. The notion of ther-
modynamic equilibrium and a temperature should apply to such a state as well.

m

Figure 2.2 Classical picture of a gas of mol-
ecules (m) at low temperatures in equilibrium 
with radiation (g)

e+

es

e+

es

Figure 2.3 A gas of electrons (e−) and posi-
trons (e+) in equilibrium with radiation (g) 
at very high temperatures. At temperatures 
over 1010 K, particle–antiparticle pair cre-
ation and annihilation begins to occur and 
the total number of particles is no longer a 
constant. At these temperatures, electrons, 
positrons and photons are in a state called 
thermal radiation. The energy density of 
thermal radiation depends only on 
temperature



Fields in thermal equilibrium can be more generally referred to as thermal radia-
tion. One of the characteristic properties of thermal radiation is that its energy 
density is only a function of temperature; unlike the ideal gas, the number of particle 
of each kind itself depends on the temperature. ‘Blackbody radiation’, the study of 
which led Max Planck (1858–1947) to the quantum hypothesis, is thermal radiation 
associated with the electromagnetic fi eld. At high enough temperatures, all particles 
(electrons and positrons, protons and anti-protons) can exist in the form of thermal 
radiation. Immediately after the big bang, when the temperature of the universe was 
unimaginably high, the state of matter in the universe was in the form of thermal 
radiation. As the universe expanded and cooled, the photons remained in the state 
of thermal radiation which can be associated with a temperature, but the protons, 
electrons and neutrons are no longer in that state. In its present state, the radiation 
that fi lls the universe is in an equilibrium state of temperature about 2.7 K, but the 
observed abundance of elements in the universe is not that expected in a state of 
thermodynamic equilibrium [7].

2.2  The First Law of Thermodynamics: The Conservation 
of Energy

As mentioned at the beginning of this chapter, though mechanical energy (kinetic 
energy plus potential energy) and its conservation was known from the time of 
Newton and Leibnitz, energy was not thought of as a general and universal quantity 
until the nineteenth century [5, 8].

With the establishment of the mechanical equivalence of heat by Joule, it became 
accepted that heat is form of energy that could be converted to work and vice versa. 
It was in the second half of the nineteenth century that the concept of conservation 
of energy was clearly formulated. Many contributed to this idea, which was very 
much ‘in the air’ at that time. For example, the law of ‘constant summation of heats 
of reaction’ formulated in 1840 by the Russian chemist Germain Henri Hess (1802–
1850). This was essentially the law of energy conservation in chemical reactions. 
This law, now called Hess’s law, is routinely used to calculate heats of chemical 
reactions.

It can be said that the most important contributions to the idea of conservation 
of energy as a universal law of nature came from Julius Robert von Mayer (1814–
1878), James Prescott Joule (1818–1889) and Hermann von Helmholtz (1821–1894). 
Two of the landmarks in the formulation of the law of conservation of energy 
are a paper by Robert von Mayer titled ‘Bermerkungen über die Kräfte der unbe-
lebten Natur’ (‘Remarks on the forces of inanimate nature’), published in 1842, and 
a paper by Helmholtz titled ‘Uber die Erhaltung der Kraft’ (‘On the conservation 
of force’) that appeared in 1847 [5, 6].

The law of conservation of energy can be stated and utilized entirely in terms of 
macroscopic variables. A transformation of state may occur due to exchange of heat, 
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performance of work and change in chemical composition and other such macro-
scopic processes. Each of these processes is associated with a change in energy, and 
the First Law of thermodynamics could be stated as:

When a system undergoes a transformation of state, the algebraic sum of the different energy 
changes, heat exchanged, work done, etc., is independent of the manner of the transforma-
tion. It therefore depends only on the initial and fi nal states of the transformation.

For example, as shown in Figure 2.4, when Nk is constant, a transformation of 
volume and temperature of a gas mixture from the state O to the state X may occur 
via different paths, each following different intermediate volumes and temperatures. 
For each path, the total amount of heat exchanged and the mechanical work done 

Hermann von Helmholtz (1821–1894) (Reproduced with permission from the Edgar Fahs 
Smith Collection, University of Pennsylvania Library)



O

X
V

T

Figure 2.4 The change of energy 
Ux during a transformation from 
normal or reference state ‘O’ to the 
state ‘X’ is independent of the 
manner of transformation. In 
the fi gure, the state of a system 
is specifi ed by its volume V and 
temperature T.

will be different. But, as the First Law states, the sum of the two will be the same, 
independent of the path. Since the total change in energy is independent of the path, 
the infi nitesimal change dU associated with any transformation must depend solely 
on the initial and fi nal states. An alternative way of stating this assertion is that in 
every cyclic process (closed path) that restores the system to its initial state, the 
integral of the energy change is zero:

 dU�∫ = 0  (2.2.1)

Equation (2.2.1) may also be considered a statement of the First Law. Since changes 
in U are independent of the transformation path, its change from a fi xed state O to 
any fi nal state X is entirely specifi ed by X. The state X of many systems is specifi ed 
by the state variables T, V and Nk. For such systems, if the value of U at the state 
O is arbitrarily defi ned as U0, then U is a function of the state X:

 U U T V N Uk= +( , , ) 0  (2.2.2)

If more variables (such as electric or magnetic fi elds) are needed to specify the state 
of a system, then U will be a function of those variables as well. In this formulation, 
the energy U can only be defi ned up to an arbitrary additive constant. Its absolute 
value cannot be specifi ed.
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Yet another way of stating the First Law is as an ‘impossibility’, a restriction 
nature imposes on physical processes. For example, in Max Planck’s treatise [9], the 
First Law is stated thus:

.  .  .  it is in no way possible, either by mechanical, thermal, chemical, or other devices, to obtain 
perpetual motion, i.e. it is impossible to construct an engine which will work in a cycle and 
produce continuous work, or kinetic energy, from nothing (author’s italics).

It is easy to see that this statement is equivalent to the above formulation summa-
rized in Equation (2.2.1). We note again that this statement is entirely in macro-
scopic, operational terms and has no reference whatsoever to the microscopic 
structure of matter. The process described above is called perpetual motion of the 
fi rst kind.

For a closed system, the energy exchanged with its exterior in a time dt may be 
divided into two parts: dQ, the amount of heat, and, dW, the amount of mechanical 
energy. Unlike the change in total energy dU, the quantities dQ and dW are not 
independent of the manner of transformation; we cannot specify dQ or dW simply 
by knowing the initial and fi nal states because their values depend on the path or 
the process that causes the energy exchange. Hence, it is not possible to defi ne a 
function Q that depends only on the initial and fi nal states, i.e. heat is not a state 
function. While every system can be said to possess a certain amount of energy U, 
the same cannot be said of heat Q or work W. But there is no diffi culty in specifying 
the amount of heat exchanged in a particular transformation. The process that 
causes the heat exchange enables us to specify dQ as the heat exchanged in a time 
interval dt.

Most introductory texts on thermodynamics do not include irreversible processes; 
they describe all transformations of state as idealized, infi nitely slow changes. In 
that formulation, dQ cannot be defi ned in terms of a time interval dt because the 
transformation does not occur in fi nite time; in fact, classical thermodynamics does 
not contain time at all. This point is clearly stated in the well-known physical chem-
istry text by Alberty and Silbey [10]: ‘Thermodynamics is concerned with equilib-
rium states of matter and has nothing to do with time’. It is a theory based solely 
on states with no explicit inclusion of irreversible processes, such as heat conduction. 
This poses a problem: because Q is not a state function, the heat exchanged dQ 
cannot be uniquely specifi ed by initial and fi nal states. To overcome this diffi culty, 
an ‘imperfect differential’ dQ is defi ned to represent the heat exchanged in a trans-
formation, a quantity that depends on the initial and fi nal states and the path of 
transformation. In our approach we will avoid the use of imperfect differentials. 
The heat fl ow is described by processes that occur at a fi nite time and, with the 
assumption that the rate of heat fl ow is known, the heat exchanged dQ in a time dt 
is well defi ned. The same is true for the work dW. Idealized, infi nitely slow reversible 
processes still remain useful for some conceptual reasons and we will use them 
occasionally, but we will not restrict our presentation to reversible processes as many 
texts do.

The total change in energy dU of a closed system in a time dt is



 d d dU Q W= +  (2.2.3)

The quantities dQ and dW can be specifi ed in terms of the rate laws for heat transfer 
and the forces that do the work. For example, the heat supplied in a time dt by a 
heating coil of resistance R carrying a current I is given by dQ = VI dt = (I2R) dt, 
in which V is the voltage drop across the coil.

For open systems there is an additional contribution due to the fl ow of matter 
dUmatter (Figure 2.5):

 d d d d matterU Q W U= + +  (2.2.4)

Also, for open systems we defi ne the volume not as the volume occupied by a fi xed 
amount of substance, but by the boundary of the system, e.g. as a membrane. Since 
the fl ow of matter into and out of the system can be associated with mechanical 
work (as, for instance, the fl ow of molecules into the system through a semi-perme-
able membrane due to excess external pressure), dW is not necessarily associated 
with changes in the system volume. The calculation of changes in energy dU in open 
systems does not pose any fundamental diffi culty. In any process, if changes in T, 
V and Nk can be computed, then the change in energy can be calculated. The total 

dU = dQ + dW + dUmatter

T V Nk

dU = deU

Figure 2.5 The law of conserva-
tion of energy: the total energy of 
an isolated system U remains a con-
stant. The change in the energy dU 
of a system, in a time dt, can only 
be due to exchange of energy deU 
with the exterior in the form of heat, 
mechanical work dW, and through 
the exchange of matter dUmatter. The 
energy change of the system is equal 
and opposite to that of the exterior

THE FIRST LAW OF THERMODYNAMICS: THE CONSERVATION OF ENERGY 59



60 THE FIRST LAW OF THERMODYNAMICS

change in the energy can then be obtained by integrating U(T, V, Nk) from the initial 
state A to the fi nal state B:

 d B A

A

B

U U U = −∫  (2.2.5)

Because U is a state function, this integral is independent of the path.
Let us now consider some specifi c examples of exchange of energy in forms other 

than heat.

• For closed systems, if dW is the mechanical work due to a volume change, then 
we may write

 d dmechW p V= −  (2.2.6)

 in which p is the pressure at the moving surface and dV is the change in volume 
(see Box 2.2).

• For transfer of charge dq across a potential difference f

 d dU qq = φ  (2.2.7)

• For dielectric systems, the change of electric dipole moment dP in the presence of 
an electric fi eld E is associated with a change of energy

 d delectU E P= –  (2.2.8)

• For magnetic systems, the change of magnetic dipole moment dM in the presence 
of a magnetic fi eld B is associated with a change of energy

 d dmagU B M= –  (2.2.9)

• For a change of surface area dΣ with an associated interfacial energy g (interfacial 
energy per unit area)

 d dsurfU = γ Σ  (2.2.10)

In general, the quantity dW is a sum of all the various forms of ‘work’, each term 
being a product of an intensive variable and a differential of an extensive 
variable.

Thus, in general, the change in the total internal energy may be written as

 d d d d dU Q p V q E P= − + + +φ . . .  (2.2.11)



Box 2.2 Mechanical Work due to Change in Volume.

Mechanical work: dW = F·ds

p

A

dx
p dV

The force on the piston of area A due to a pressure p is pA. An expanding gas does 
work; hence, its energy decreases. The decrease in the energy when the gas pressure 
moves the piston by an amount dx is

dW = −pA dx = −pdV

in which dV is the change in volume of the gas. The negative sign is used to ensure 
that the energy of the gas decreases when V increases. By considering small displace-
ments of the surface of a body at pressure p, the above expression for the work done 
by a gas can be shown to be generally valid.

ISOTHERMAL VOLUME CHANGE

By keeping a gas in contact with a reservoir at temperature T and slowly changing its 
volume, a constant-temperature or isothermal process can be realized. For such a 
process, the change in the energy of the gas equals the isothermal work given by the 
expression:

Work d d
i

f

i

f
f

i

= − = − = − 
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NRT
V

V NRT
V
V

V

V

V

V

ln

The negative sign indicates that an expanding gas transfers its energy to the exterior. 
During an isothermal expansion, fl ow of heat from the reservoir to the gas keeps T 
constant.
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This change of energy of a system is a function of state variables such as T, V 
and Nk.

For systems undergoing chemical transformations, the total energy U = U(T, 
V, Nk) may be expressed as a function of T, V and the molar amounts of the 
constituents Nk. As a function of T, V and Nk, total differential of U can be 
written as

 d d d dU
U
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U
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(2.2.12)

The exact form of the function U(T, V, Nk) for a particular system is obtained 
empirically. One way of obtaining the temperature dependence of U is the measure-
ment of the molar heat capacity CmV at constant volume (see Box 2.1 for basic defi ni-
tions of heat capacity and specifi c heat). At constant volume, since no work is 
performed, dU = dQ. Hence:
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 (2.2.13)

If CmV is determined experimentally (Box 2.3), then the internal energy U(T, V) is 
obtained through integration of CmV:

 U T V N U T V N N C T V TV
T

T

( , , ) ( , , ) ( , )− = ∫0
0

m d  (2.2.14)

in which T0 is a the temperature of a reference state. If, for example, CmV is 
independent of temperature and volume, as is the case for an ideal gas, then we 
have

 U C NT UVIdeal m= + 0  (2.2.15)

in which U0 is an arbitrary additive constant. As noted earlier, U can only be defi ned 
up to an additive constant. For ideal monatomic gases CmV = (3/2)R and for diatomic 
gases CmV = (5/2)R.

The notion of total internal energy is not restricted to homogeneous systems in 
which quantities such as temperature are uniform. For many systems, temperature 
is locally well defi ned but may vary with the position x and time t. In addition, the 
equations of state may remain valid in every elemental volume dV (i.e. in a small 
volume element defi ned appropriately at every point x) in which all the state varia-
bles are specifi ed as densities. For example, corresponding to the energy U(T, V, Nk) 
we may defi ne the energy destiny u(x, T), energy per unit volume, at the point x at 
time t, which can be expressed as a function the local temperature T(x, t) and the 



Box 2.3 Calorimetry.

Calorimeter. Heat evolved or absorbed during a transformation, such as a chemical 
reaction, is measured using a calorimeter. The transformation of interest is made to 
occur inside a chamber which is well insulated from the environment to keep heat loss 
to a minimum. To measure the heat generated by a process, fi rst the heat capacity of 
the calorimeter should be determined. This is done by noting the increase in the tem-
perature of the calorimeter due to a process for which the heat evolved is known. The 
heat produced by a current-carrying resistor, for example, is known to be I2R joules 
per second, in which I is the current in amps and R is the resistance in ohms. (Using 
Ohm’s law, V = IR, in which V is the voltage across the resistor in volts, the heat gener-
ated per second may also be written as VI.) If the heat capacity Ccal of the calorimeter 
is known, then one only needs to note the change in the temperature of the calorimeter 
to determine the heat generated by a process.

dT

dQ

Calorimetry is widely used in present-day laboratories.
Bomb calorimeter. The heat of combustion of a compound is determined in a bomb 

calorimeter. In a bomb calorimeter, the combustion takes place in a chamber pressur-
ized to about 20 atm with pure oxygen to ensure that the combustion is complete.

Isothermal calorimeter. In this type of calorimeter, the sample that absorbs or gener-
ates heat due to a physico-chemical process is maintained at a constant temperature 
using a sensitive heat exchanger that can record the amount of heat exchanged. This 
technique is highly developed and sensitive enough to measure enthalpy changes as 
low as a few nanojoules. It is a method widely used to study the thermodynamics of 
biological systems.

molar density nk(x, t) (moles of k per unit volume, also called number density) which 
in general are functions of both position x and time t:

 u x t u T x t n x tk( , ) ( ( , ), ( , ))=  (2.2.16)

The law of conservation of energy is a local conservation law: the change in energy 
in a small volume can only be due to a fl ow of energy into or out of the volume. 
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Two spatially separated regions cannot exchange energy unless the energy passes 
through the region connecting the two parts.*

2.3 Elementary Applications of the First Law

RELATION BETWEEN CmP AND CmV

The First Law of thermodynamics leads to many simple and useful conclusions. It 
leads to a relation between the molar heat capacities at constant pressure Cmp and 
at constant volume CmV (Figure 2.6 and Table 2.1). Consider a one-component 
substance. Then, using (2.2.3) and (2.2.6), and the fact that U is a function of the 
volume and temperature, the change in the energy dU can be written as

 d d d d dU Q p V
U
T
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V
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= − = ∂
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 (2.3.1)

From this it follows that the heat exchanged by the gas can be written as

 d d dQ
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 (2.3.2)

* One might wonder why energy conservation does not take place non-locally, disappearing at one 
location and simultaneous appearing at another. Such conservation, it turns out, is not compatible with 
the theory of relativity. According to relativity, events that are simultaneous but occurring at different 
locations to one observer may not be simultaneous to another. Hence, the simultaneous disappearance 
and appearance of energy as seen by one observer will not be simultaneous for all. For some observers, 
energy would have disappeared at one location fi rst and only some time later would it reappear at the 
other location, thus violating the conservation law during the time interval separating the two events.

Heat 

V = Constant 
p = Constant 

Heat 

Figure 2.6 Molar heat capacity at constant 
pressure is larger than that at constant 
volume



If the gas is heated at a constant volume, then, since no work is done, the change 
in the energy of the gas is entirely due to the heat supplied. Therefore:
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On the other hand, if the gas is heated at constant pressure, then from (2.3.2) we 
have:
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Comparing (2.3.3) and (2.3.4), we see that CV and Cp are related by
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  (2.3.5)

The right-hand side of (2.3.5) is equal to the additional amount of heat required to 
raise the temperature in a constant-pressure, or ‘isobaric’, process to compensate 
for the energy expended due to expansion of volume.

Relation (2.3.5) is generally valid for all substances. For an ideal gas, it reduces 
to a simple form. As mentioned in Chapter 1 (see Equations (1.4.6) and (1.4.8)), the 
energy U is only a function of the temperature and is independent of the volume. 
Hence, in (2.3.5), (∂U/∂V)T = 0; for 1 mol of an ideal gas, since pV = RT, the 

Table 2.1 Molar heat capacities CmV and Cmp for some substances at T = 298.15  K and 
p = 1  bar

Substance Cmp/J  mol−1  K−1 CmV/J  mol−1  K−1

Ideal monatomic (5/2)R (3/2)R
Ideal diatomic (7/2)R (5/2)R
Noble gases (He, Ne, Ar, Kr, Xe) 20.8 12.5
N2(g) 29.17 20.82
O2(g) 29.43 21.07
CO2(g) 37.44 28.93
H2(g) 28.83 20.52
H2O(l) 75.33
CH3OH(l) 81.21
C6H6(l) 132.9
Cu(s) 24.47
Fe(s) 25.09

Source: P.J. Linstrom and W.G. Mallard (eds), NIST Chemistry WebBook, NIST Standard Reference Data-
base Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg, MD (http://
webbook.nist.gov).
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remaining term p(∂V/∂T)p = R. Therefore, for the molar heat capacities, (2.3.5) 
reduces to the simple relation

 C C Rp Vm m– =  (2.3.6)

ADIABATIC PROCESSES IN AN IDEAL GAS

In an adiabatic process, the state of a system changes without any exchange of heat. 
Using the equation dU = dQ − pdV, we can write

 d d d d d dQ U p V
U
T
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 + = 0  (2.3.7)

For an ideal gas, since U is a function of temperature but not of volume, and because 
(∂U/∂T)V = NCmV, (2.3.7) reduces to

 C N T p VVm d d+ = 0  (2.3.8)

If the change in volume occurs so that the ideal gas equation is valid during the 
process of change, then we have

 C T
RT
V

VVm d d+ = 0  (2.3.9)

(For very rapid changes in volume, the relation between p, V and T may deviate 
from the ideal gas law.) But since R = Cmp − CmV for an ideal gas, we can write (2.3.9) 
as
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Integration of (2.3.10) gives

 TV
C

C
p

V

( ) .γ γ− = =1 const where m

m

 (2.3.11)

Using pV = NRT, the above relation can be transformed into

 pV T pγ γ γ= =−const or const. .1  (2.3.12)

Thus, the First Law gives us (2.3.11) and (2.3.12), which characterize adiabatic pro-
cesses in an ideal gas. Table 2.2 lists the ratio of heat capacities g for some gases. 
We shall discuss adiabatic processes in real gases in Chapter 6.



SOUND PROPAGATION

An example of an adiabatic process in nature is the rapid variations of pressure 
during the propagation of sound. These pressure variations, which are a measure of 
the sound intensity, are small. A measure of these pressure variations is prms, the 
root-mean-square value of the sound pressure with respect to the atmospheric pres-
sure, i.e. prms is the square root of the average value of (p − patms)2. The unit for 
measuring sound intensity is the bel (B; named in honor of Alexander Graham Bell). 
The usual practice is to express the intensity in units of decibels (dB). The decibel 
can be expressed as a logarithmic measure of the pressure variations defi ned by

 I
p
p

= 





10 10

2

0
2

log rms  (2.3.13)

in which the reference pressure p0 = 2 × 10−8 kPa (=2 × 10−10 bar) roughly corresponds 
to audibility threshold in humans – an astoundingly low threshold, which in units 
of energy intensity equals a mere 2 × 10−12 W m−2. The logarithmic scale is used 
because it corresponds roughly to the sensitivity of the ear. We normally encounter 
sound whose intensity is in the range 10–100 dB, corresponding to a pressure varia-
tions in the range 6 × 10−10 to 2 × 10−5 bar. These small variations of pressure for 
audible sound occur in the frequency range 20 Hz–20 kHz (music being in the range 
40–4000 Hz).

Owing to the rapidity of pressure variations, hardly any heat is exchanged by the 
volume of air that is undergoing the pressure variations and its surroundings. It is 
essentially an adiabatic process. As a fi rst approximation, we may assume that the 
ideal gas law is valid for these rapid changes. In introductory physics texts it is shown 
that the speed of sound Csound in a medium depends on the bulk modulus B and the 
density r according to the relation

 C
B

sound =
ρ

 (2.3.14)

Table 2.2 Ratios of molar heat capacities and speed of sound Csound at T = 298.15  K and 
p = 1  bar

Gas Cmp/J  mol−1  K−1 CmV/J  mol−1  K−1 g = Cmp/CmV Csound/m  s−1

Ar(g) 20.83 12.48 1.669 321.7
CO2(g) 37.44 28.93 1.294 268.6
H2(g) 28.83 20.52 1.405 1315
He(g) 20.78 12.47 1.666 1016
N2(g) 29.17 20.82 1.401 352.1
O2(g) 29.43 21.07 1.397 328.7

Source: E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical properties of fl uid systems. In 
NIST Chemistry WebBook, NIST Standard Reference Database Number 69, P.J. Linstrom and W.G. Mallard 
(eds), June 2005, National Institute of Standards and Technology, Gaithersburg MD, (http://webbook.nist.
gov).
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The bulk modulus B = −dp/(dV/V), relates the relative change in the volume of a 
medium dV/V due to a change in pressure dp; the negative sign indicates that for 
positive dp the change dV is negative. If the propagation of sound is an adiabatic 
process, in the ideal gas approximation, then the changes in volume and pressure 
are such that pVg = constant. By differentiating this relation, one can easily see that 
the bulk modulus B for an adiabatic process is

 B V
p
V

p= − =d
d

γ  (2.3.15)

For an ideal gas of density r and molar mass M, we have

 p
NRT

V
NM
V

RT
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RT
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= = = ρ

Hence:

 B
RT

M
= γρ

 (2.3.16)

Using this expression in (2.3.14) we arrive at the conclusion that, if the propagation 
of sound is an adiabatic process, the velocity C is given by

 C
RT
M

sound = γ
 (2.3.17)

Experimental measurements of sound confi rm this conclusion to a good approxima-
tion. The velocities of sound in some gases are listed in Table 2.2.

2.4  Thermochemistry: Conservation of Energy in 
Chemical Reactions

During the fi rst half of the nineteenth century, chemists mostly concerned them-
selves with the analysis of compounds and chemical reactions and paid little atten-
tion to the heat evolved or absorbed in a chemical reaction. Though the early work 
of Lavoisier (1743–1794) and Laplace (1749–1827) established that heat absorbed 
in a chemical reaction was equal to the heat released in the reverse reaction, the 
relation between heat and chemical reactions was not investigated very much. The 
Russian chemist Germain Henri Hess (1802–1850) was rather an exception among 
the chemists of his time in regard to his interest in the heat released or absorbed by 
chemical reactions [11]. Hess conducted a series of studies in neutralizing acids and 



measuring the heats released (see Box 2.4). This, and several other experiments on 
the heats of chemical reactions, led Hess to his ‘law of constant summation’, which 
he published in 1840, 2 years before the appearance of Robert von Mayer’s paper 
on the conservation of energy:

The amount of heat evolved during the formation of a given compound is constant, inde-
pendent of whether the compound is formed directly or indirectly in one or in a series of 
steps [12].

Hess’s work was not very well known for many decades after its publication. The 
fundamental contribution of Hess to thermochemistry was made known to chemists 
largely through Wilhelm Ostwald’s (1853–1932) Textbook of General Chemistry, 
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published in 1887. The above statement, known as Hess’s law, was amply confi rmed 
in the detailed work of Mercellin Berthelot (1827–1907) and Julius Thompsen (1826–
1909) [13]. As we shall see below, Hess’s law is a consequence of the law of conser-
vation of energy and is most conveniently formulated in terms of a state function 
called enthalpy.

Hess’s law refers to the heat evolved in a chemical reaction under constant (atmos-
pheric) pressure. Under such conditions, a part of the energy released during the 

reaction may be converted to work W p V
V

V
= −∫ d

1

2
, if there is a change in volume 

from V1 to V2. Using the basic equation of the First Law, dU = dQ − Vdp, the 
heat evolved ∆Qp during a chemical transformation at a constant pressure can be 
written as

 ∆Q U p V U U p V Vp

U
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= + = − + −∫ ∫d d
1

2

1

2

2 1 2 1( ) ( )  (2.4.1)

From this we see that the heat released can be written as a difference between two 
terms, one referring to the initial state (U1, V1) the other to the fi nal state (U2, V2):

 ∆Q U pV U pVp = + − +( ) ( )2 2 1 1  (2.4.2)

Since U, p and V are specifi ed by the state of the system and are independent of the 
manner in which that state was reached, the quantity U + pV is a state function, 
fully specifi ed by the state variables. According to (2.4.2), the heat evolved ∆Qp is 
the difference between the values of the function (U + pV) at the initial and the fi nal 
states. The state function (U + pV) is called enthalpy H:

Box 2.4 The Experiments of Germain Henry Hess.

Hess conducted a series of studies in which he fi rst diluted sulfuric acid with different 
amounts of water and then neutralized the acid by adding a solution of ammonia. Heat 
was released in both steps. Hess found that, depending on the amount of water added 
during the dilution, different amounts of heat were released during the dilution and 
the subsequent neutralization with ammonia. However, the sum of the heats released 
in the two processes was found to be the same [11]. The following example, in which 
∆H are the heats released, illustrates Hess’s experiments:

1 2 1 5 32 4 2 41

3

2
L of H SO H SO LM M

Dilution NH solution
∆ ∆H H →  →. NNeutral solution

1 2 1 02 4 2 41

3

2
L of H SO H SOM M

Dilution NH solution
∆ ∆′ ′ →  →H H. 33L Neutral solution

Hess found that ∆H1 + ∆H2 = ∆H1′ + ∆H2′ to a good approximation.



 H U pV≡ +  (2.4.3)

The heat released by a chemical reaction at constant pressure ∆Qp = H2 − H1. Since 
∆Qp depends only on the values of enthalpy at the initial and fi nal states, it is inde-
pendent of the ‘path’ of the chemical transformation, in particular if the transforma-
tion occurs ‘directly or indirectly in one or in a series of steps’, as Hess concluded.

As a simple example, consider the reaction

 2P(s) + 5Cl (g) PCl (s)2 5→ 2  (2.A)

in which 2 mol of P reacts with 5 mol of Cl2 to produce 2 mol of PCl5. In this reac-
tion, 886 kJ of heat is released. The reaction can occur directly when an adequate 
amount of Cl2 is present or it could be made to occur in two steps:

 2P(s) + 3Cl (g) 2PCl (l)2 3→  (2.B)

 2PCl (g) + 2Cl (g) 2PCl (s)3 2 5→  (2.C)

In reactions (2.B) and (2.C), for the molar quantities shown in the reaction, the heats 
evolved are 640 kJ and 246 kJ respectively. If the change in the enthalpies between 
the initial and fi nal states of reactions (2.A), (2.B) and (2.C) are denoted by ∆HrA, 
∆HrB and ∆HrC respectively, then we have:

 ∆ ∆ ∆H H HrA rB rC= +  (2.4.4)

The heat evolved or enthalpy change in a chemical reaction under constant pressure 
is usually denoted by ∆Hr and is called the enthalpy of reaction. The enthalpy of 
reaction is negative for exothermic reactions and it is positive for endothermic 
reactions.

The First Law of thermodynamics applied to chemical reactions in the form of 
Hess’s law gives us a very useful way of predicting the heat evolved or absorbed in 
a chemical reaction if we can formally express it as a sum of chemical reactions for 
which the enthalpies of reaction are known. In fact, if we can assign a value for the 
enthalpy of 1 mol of each compound, then the heats of reactions can be expressed 
as the difference between sums of enthalpies of the initial reactants and the fi nal 
products. In reaction (2.C), for example, if we can assign enthalpies for a mole of 
PCl3(g), Cl2(g) and PCl5(s), then the enthalpy of this reaction will be the difference 
between the enthalpy of the product PCl5(s) and the sum of the enthalpies of the 
reactants PCl3(g) and Cl2(g). But from the defi nition of enthalpy in (2.4.3) it is clear 
that it could only be specifi ed with respect to a reference or normal state because U 
can only be defi ned in this way.

A convenient way to calculate enthalpies of chemical reactions at a specifi ed 
temperature has been developed by defi ning a standard molar enthalpy of formation 
∆H0

f [X] for each compound X as described in Boxes 2.5 and 2.6.
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Standard enthalpies of formation of compounds can be found in tables of ther-
modynamic data [14]. Using these tables and Hess’s law, the standard enthalpies of 
reactions can be computed by viewing the reaction as ‘dismantling’ of the reactants 
to their constituent elements and recombining them to form the products. Since the 
enthalpy for the dismantling step is the negative of the enthalpy of formation, the 
enthalpy of the reaction

 a b c dX Y W Z+ → +  (2.4.5a)

for example, can be written as

 ∆ ∆ ∆ ∆ ∆H a H b H c H d Hr f f f fX Y W Z0 0 0 0 0= − − + +[ ] [ ] [ ] [ ]  (2.4.5b)

Box 2.5 Basic Defi nitions of Standard States

Like the energy U, the quantitative specifi cation of enthalpy and other thermodynamic 
quantities that we will discuss in later chapters can be done with reference to a standard 
state at a specifi ed temperature T, standard pressure p0, standard molality mo and 
standard concentration c0. Though the choice of p0, m0 and c0 depends on the system 
under consideration, the most common choice for tabulating data is

T = 298.15, p0 = 1 bar =105 Pa; m0 = 1 mol kg−1 and c0 = 1 mol dm−3

The standard state of a pure substance at particular temperature is its most stable state 
(gas, liquid or solid) at a pressure of 1 bar (105 Pa).

Notation used to indicate the standard state: g = gas; l = liquid; s = pure crystalline 
solid.

In a gas phase, the standard state of a substance, as a pure substance or as a com-
ponent in a gas mixture, is the hypothetical state exhibiting ideal gas behavior at p = 
1 bar. (Note that this defi nition implies that real gases at p = 1 bar are not in their 
standard state.*)

In a condensed phase (solid or liquid), the standard state of a substance, as a pure 
substance or as component of a mixture, is the state of the pure substance in the liquid 
or solid phase at the standard pressure p0.

For a solute in a solution, the standard state is a hypothetical ideal solution of 
standard concentration c0 at the standard pressure p0. Notation used to indicate the 
standard state: ai = completely dissociated electrolyte in water; ao = undissociated 
compound in water.

* Since the energy of an ideal gas depends only on the temperature, the standard state energy and enthalpy of 
a gas depend only on the temperature. This implies that real gases at a pressure of 1 bar are not in their stan-
dard state; their energies and enthalpies differ from that of the standard state of a gas at that temperature. 
For a real gas, at a temperature T and pressure of 1 bar, the energy Ureal(T) = U0

ideal(T) + ∆U(T), in which ∆U(T) 
is the correction due to the nonideality of the gas; it is sometimes called ‘internal energy imperfection’. Simi-
larly, the enthalpy of a real gas at a temperature T and pressure of 1 bar is Hreal(T) = H0

ideal(T) + ∆H(T). The 
corrections, ∆U(T) and ∆H(T), are small, however, and they can be calculated using the equation of state such 
as the van der Waals equation.



Enthalpies of various chemical transformations are discussed in detail in later chap-
ters and in the exercises at the end of this chapter.

Though it is most useful in thermochemistry, the enthalpy H, as defi ned in (2.4.3), 
is a function of state that has a wider applicability. For example, we can see that 
the constant-pressure heat capacity Cp can be expressed in terms of H as follows. 
Since the heat exchanged in a process that takes place at constant pressure is equal 
to the change in the system’s enthalpy:

 d d d dQ U p V Hp p= + =  (2.4.6)

in which the subscripts denote a constant-pressure process. If the system consists of 
1 mol of a substance, and if the change in temperature due to the exchange of heat 
is dT, then it follows that
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 (2.4.7)

Also, in general, the change in enthalpy in a chemical reaction (not necessarily 
occurring at constant pressure) can be written as

 ∆
∆

H H H U U p V pV
U p V pV

r f i f i f f i i

r f f i i

= − = − + −
= + −

( ) ( )
( )

 (2.4.8)

in which the subscripts ‘i’ and ‘f’ denote the initial and fi nal states. In an isothermal 
processes occurring at temperature T, if all the gaseous components in the reaction 

Box 2.6 Basic Defi nitions used in Thermochemistry

Standard reaction enthalpies at a specifi ed temperature are reaction enthalpies in which 
the reactants and products are in their standard states.

Standard molar enthalpy of formation ∆H0
f[X] of a compound X, at a specifi ed tem-

perature T, is the enthalpy of formation of the compound X from its constituent ele-
ments in their standard state. Consider the example where X = CO2(g):

C(s) O (g) CO (g)2
CO (g)

2
f+  →∆H 0

2[ ]

The enthalpies of formation of elements in their standard state are defi ned to be zero at 
any temperature.

Thus, the enthalpies of formation ∆H0
f[H2], ∆H0

f[O2] and ∆H0
f[Fe] are defi ned to be 

zero at all temperatures.
The consistency of the above defi nition is based on the fact that in ‘chemical reac-

tions’ elements do not transform among themselves, i.e. reactions between elements do 
not result in the formation of other elements (though energy is conserved in such a 
reaction).
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can be approximated to be ideal gases and if the change in volume of the non-
gaseous components can be neglected, then the changes of enthalpy and energy are 
related by

 ∆ ∆ ∆H U N RTr r r= +  (2.4.9)

in which ∆Nr is the change in the total molar amount of the gaseous reactants, a 
relation used in obtaining enthalpies of combustion using a bomb colorimeter.

VARIATION OF ENTHALPY WITH TEMPERATURE

Being a state function, enthalpy is a function of T. Using the relation (2.4.7), 
the dependence of enthalpy on T can be expressed in terms of the molar heat cap-
acity Cmp:

 H T p N H T p N N C T Tp

T

T

( , , ) ( , , ) ( )− = ∫0

0

m d  (2.4.10)

Though the variation of Cmp with temperature is generally small, the following equa-
tion, called the Shomate equation, is often used:

 C A BT CT DT
E

T
pm = + + + +2 3

2
 (2.4.11)

Values of the coeffi cients A, B, C, D and E for some gases are shown in Table 2.3.
From (2.2.14) and (2.4.10) it is clear that the temperature dependence of the total 

internal energy U and enthalpy H of any particular gas can be obtained if its heat 
capacity is known as a function of temperature. Sensitive calorimetric methods are 
available to measure heat capacities experimentally.

Using the relation (2.4.10), if the reaction enthalpy at a pressure p0 (which could 
be the standard pressure p0 = 1 bar) is known at one temperature T0, then the reac-
tion enthalpy at any other temperature T can be obtained if the molar heat capacities 

Table 2.3 Values of constants A, B, C, D and E in (2.4.11) for some gases. The range of validity is 
300 to 1200  K (p = 1  bar)

Gas A/J  mol−1  K−1 B/10−3  J  mol−1  K−2 C/10−6  J  mol−1  K−3 D/10−9  J  mol−1  K−4 E/106  J  mol−1  K

O2(g) 29.66 6.137 −1.186 0.0958 −0.2197
N2(g) 29.09 8.218 −1.976 0.1592  0.0444
CO2(g) 24.99 55.19 −33.69 7.948 −0.1366

Source: P.J. Linstrom and W.G. Mallard (eds), NIST Chemistry WebBook, NIST Standard Reference Database Number 
69, June 2005, National Institute of Standards and Technology, Gaithersburg, MD (http://webbook.nist.gov).



Cmp for the reactants and the products are known. The enthalpies of reactants or 
products X at the temperatures T and T0 are related according to (2.4.10):

 H T p N H T p N N C T Tp

T

T

X X X X X m d( , , ) ( , , ) ( )0 0 0

0

− = ∫  (2.4.12)

in which the subscript X identifi es the reactants or products. Then, by subtracting 
the sum of the enthalpies of reactants from the sum of the enthalpies of the products 
(as shown in (2.4.5b)) we arrive at the following relation between the reaction 
enthalpies ∆Hr(T, p0) and ∆Hr(T0, p0):

 ∆ ∆ ∆H T p H T p C T Tp
T

T

r r d( , ) ( , ) ( )0 0 0
0

− = ∫  (2.4.13)

in which ∆Cp is the difference in the heat capacities of the products and the reactants. 
Thus, the ∆Hr(T, p0) at any arbitrary temperature T can be obtained knowing 
∆Hr(T0, p0) at a reference temperature T0. Relation (2.4.13) was fi rst noted by Gustav 
Kirchhoff (1824–1887), and is sometimes called Kirchhoff ’s law. The change in reac-
tion enthalpy with temperature is generally small.

VARIATION OF ENTHALPY WITH PRESSURE

The variation of H with pressure, at a fi xed temperature, can be obtained from the 
defi nition H = U + pV. Generally, H and U can be expressed as functions of p, T 
and N. For changes in H we have

 ∆ ∆ ∆H U pV    ( )= +  (2.4.14)

At constant T0, and N, in the ideal gas approximation, ∆H = 0 for gases. This is 
because U and the product pV are functions only of temperature (see Chapter 1); 
hence H = U + pV is a function only of T and is independent of pressure. The change 
in H due to a change in p is mainly due to intermolecular forces, and it becomes 
signifi cant only for large densities. These changes in H can be calculated, for example, 
using the van der Waals equation.

For most solids and liquids, at a constant temperature, the total energy U does 
not change much with pressure. Since the change in volume is rather small unless 
the changes in pressure are very large, the change in enthalpy ∆H due a change in 
pressure ∆p can be approximated by

 ∆ ∆H V p  ≈  (2.4.15)

A more accurate estimate can be made from a knowledge of the compressibility of 
the compound.

The First Law thus provides a powerful means of understanding the heats of 
chemical reactions. It enables us to compute the heats of reactions of an enormous 
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number of reactions using the heats of formation of compounds at a standard tem-
perature and pressure. The table entitled ‘Standard Thermodynamic Properties’ at 
the end of the book lists the standard heats of formation of some compounds. In 
addition, with a knowledge of heat capacities and compressibilities, the heats of 
reactions at any temperature and pressure can be calculated given those at a refer-
ence temperature and pressure.

COMPUTATION OF ∆Hr USING BOND ENTHALPIES

The concept of a chemical bond gives us a better understanding of the nature of a 
chemical reaction: it is essentially the breaking and making of bonds between atoms. 
The heat evolved or absorbed in a chemical reaction can be obtained by adding the 
heat absorbed in the breaking of bonds and the heat evolved in the making of bonds. 
The heat or enthalpy needed to break a bond is called the bond enthalpy.

For a particular bond, such as a C—H bond, the bond enthalpy varies from 
compound to compound, but one can meaningfully use an average bond enthalpy 
to estimate the enthalpy of a reaction. For example, the reaction 2H2(g) + O2(g) → 
2H2O(g) can be written explicitly indicating the bonds as:

 2(H—H) + O¨O → 2(H—O—H)

This shows that the reaction involves the breaking of two H—H bonds and one 
O¨O bond and the making of four O—H bonds. If the bond enthalpy of the H—H 
bond is denoted by ∆H[H—H] etc., the reaction enthalpy ∆Hr may be written as

 ∆Hr = 2∆H[H—H] + ∆H[O¨O] − 4∆H[O—H]

This is a good way of estimating the reaction enthalpy of a large number of reactions 
using a relatively small table of average bond enthalpies. Table 2.4 lists some average 
bond enthalpies which can be used to estimate the enthalpies of a large number of 
reactions.

2.5 Extent of Reaction: A State Variable for Chemical Systems

In each chemical reaction, the changes in the mole numbers Nk are related through 
the stoichiometry of the reaction. In fact, only one parameter is required to specify 
the changes in Nk resulting from a particular chemical reaction. This can be seen as 
follows. Consider the elementary chemical reaction:

 H (g) I (g) 2HI(g)2 2+ �  (2.5.1)

which is of the form

 A B 2C+ �  (2.5.2)



In this case the changes in the molar amounts dNA, dNB and dNC of the components 
A, B and C are related by the stoichiometry. We can express this relation as

 
d d d

dA B CN N N
−

=
−

= ≡
1 1 2

ξ  (2.5.3)

in which we have introduced a single variable dx that expresses all the changes 
in the mole numbers due to the chemical reaction. This variable x introduced by 
Theophile De Donder [15, 16] is basic for the thermodynamic description of 
chemical reactions and is called the extent of reaction or degree of advancement. 
The rate of conversion (or reaction velocity) is the rate at which the extent of reac-
tion changes with time:

 Rate of conversion (or reaction velocity)
d
d

= ξ
t

 (2.5.4)

If the initial values of Nk are written as Nk0, then the values of all Nk during the 
reactions can be specifi ed by the extent of reaction x:

 N Nk k k= +0 ν ξ  (2.5.5)

Table 2.4 Average bond enthalpies for some common bonds

Bond enthalpy/kJ  mol−1

H C N O F Cl Br I S P Si

H 436
C (single) 412 348
C (double) 612
C (triple) 811
C (aromatic) 518
N (single) 388 305 163
N (double) 613 409
N (triple) 890 945
O (single) 463 360 157 146
O (double) 743 497
F 565 484 270 185 155
Cl 431 338 200 203 254 252
Br 366 276 219 193
I 299 238 210 178 151
S 338 259 250 212 264
P 322 172
Si 318 374 176

Source: L. Pauling, The Nature of the Chemical Bond. 1960, Cornell University Press: Ithaca.
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in which nk is the stoichiometric coeffi cient of the reacting component Nk. nk is nega-
tive for reactants and positive for products. In this defi nition x = 0 for the initial 
state.

If the changes in the Nk in a system are due to chemical reactions, then the total 
internal energy U of such a system can be expressed in terms of the initial Nk0, which 
are constants, and the extents of reaction xi defi ned for each of the reactions. For 
example, consider a system consisting of three substances A, B and C undergoing a 
single reaction (2.5.2). Then the molar amounts can be expressed as: NA = NA0 − x, 
NB = NB0 − x, and NC = NC0 + 2x. The value of x completely specifi es all the molar 
amounts NA, NB and NC. Hence, the total energy U may be regarded as a function 
U(T, V, x) with the understanding that the initial molar amounts NA0, NB0 and NC0 
are constants in the function U. If more than one chemical reaction is involved, then 
one extent of reaction xi is defi ned for each independent reaction i and each mole 
number is specifi ed in terms of the extents of reaction of all the chemical reactions 
in which it takes part. Clearly, the xi are state variables, and internal energy can be 
expressed as a function of T, V and xi: U(T, V, xi).

In terms of the state variables T, V, and xi, the total differential of U becomes

 d d d dU
U
T

T
U
V

V
U

V T k V Tk k i k

= ∂
∂
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∂
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Using the First Law, the partial derivatives of U can be related to ‘thermal coeffi -
cients’ which characterize the system’s response to heat under various conditions. 
Consider a system with one chemical reaction. We have one extent of reaction x. 
Then, by using the First Law:
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which can be written as

 d d d dQ
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Just as the partial derivative (∂U/∂T)V has the physical meaning of being the heat 
capacity at constant volume CV, the other derivatives, called thermal coeffi cients, 
can be related to experimentally measurable quantities. The derivative rT,V ≡ 
(∂U/∂x)V,T, for example, is the amount of heat evolved per unit change in the extent 
of reaction (one equivalent of reaction) at constant V and T. If it is negative, then 
the reaction is exothermic; if it is positive, then the reaction is endothermic. Just as 
we derived the relation (2.3.6) between the thermal coeffi cients Cp and CV, one can 
derive several interesting relations between these thermal coeffi cients as a conse-
quence of the First Law [17].



Also, since the extent of reaction is a state variable, the enthalpy of a reacting 
system can be expressed as function of the extent of reaction:

 H H p T= ( , , )ξ  (2.5.9)

The heat of reaction per unit change of x, which we shall denote as hp,T, is the deriva-
tive of H with respect to x:

 h
H

p T

p T

,

,

= ∂
∂





ξ

 (2.5.10)

2.6  Conservation of Energy in Nuclear Reactions and Some 
General Remarks

At terrestrial temperatures, transformations of states of matter are mostly chemical, 
radioactivity being an exception. Just as molecules collide and react at terrestrial 
temperatures, at very high temperatures that exceed 106 K, typical of temperatures 
attained in the stars, nuclei collide and undergo nuclear reactions. At these tempera-
tures, the electrons and nuclei of atoms are completely torn apart. Matter turns into 
a state that is unfamiliar to us and the transformations that occur are between nuclei, 
which is why it is called ‘nuclear chemistry’.

All the elements heavier than hydrogen on our and other planets are a result of 
nuclear reactions, generally referred to as nucleosynthesis, that occurred in the stars 
[18]. Just as we have unstable molecules that dissociate into other more stable mol-
ecules, some of the nuclei that were synthesized in the stars are unstable and they 
disintegrate: these are the ‘radioactive’ elements. The energy released by radioactive 
elements turns into heat, and this is a source of heat for the Earth’s interior. For 
example, the natural radioactivity in granite due to 238U, 235U, 232Th and 40K pro-
duces a small amount of heat equal to about 5 mcal per gram of granite per year; 
however, accumulation of such heat over billions of years in the interior of the Earth 
is signifi cant.

Under special circumstances, nuclear reactions can occur on the Earth, as in the 
case of nuclear fi ssion of uranium and in the nuclear fusion of hydrogen in special 
reactors. Nuclear reactions release vastly greater amounts of energy than chemical 
reactions. The energy released in a nuclear reaction can be calculated from the dif-
ference in the rest mass of the reactants and the products using the famous relation 
E2 = p2c2 + m2

0c4, derived by Einstein, in which E is the total energy of a particle, p 
is its momentum, m0 its rest mass and c is the velocity of light in vacuo. If the total 
rest mass of the products is lower than total rest mass of the reactants, then the dif-
ference in energy due to change in the rest mass turns into the kinetic energy of the 
products. This excess kinetic energy turns into heat due to collisions. If the difference 
in the kinetic energy of the reactants and products is negligible, then the heat 
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released ∆Q = ∆m0c2, in which ∆m0 is the difference in the rest mass between the 
reactants and the products. In nuclear fusion, two deuterium nuclei 2H can combine 
to form a helium nucleus and a neutron is released:

 2H + 2H → 3He + n

 ∆m0 = 2(mass of 2H) − (mass of 3He + mass of n)
 = 2(2.0141) amu − (3.0160 + 1.0087) amu
 = 0.0035 amu

where amu stands for atomic mass unit. Since 1 amu = 1.6605 × 10−27 kg, when 2 mol 
of 2H react to produce 1 mol of 3He and 1 mol of n, the difference in mass ∆m0 = 
3.5 × 10−6 kg. The corresponding heat released is:

 ∆ ∆E m c =  = 3.14 10 kJ mol0
2 8 1× −

If a nuclear process occurs at constant pressure, then the heat released is equal to 
the enthalpy and all the thermodynamic formalism that applies to the chemical 
reactions also applies to nuclear reactions. Needless to say, in accordance with the 
First Law, Hess’s law of additivity of reaction enthalpies is also valid for nuclear 
reactions.

GENERAL REMARKS

Thermodynamically, energy is only defi ned up to an additive constant. In physical 
processes, it is only the change in energy (2.2.11) that can be measured, which leaves 
the absolute value of energy undetermined. With the advent of the theory of relativ-
ity, which has given us the relation between rest mass, momentum and energy, 
E2 = p2c2 + m2

0c4, the defi nition of energy has become as absolute as the defi nition 
of mass and momentum. The absolute value of the energy of elementary particles 
can be used to describe matter in the state of thermal radiation that we discussed in 
Section 2.1.

The conservation of energy has become the founding principle of physics. During 
the early days of nuclear physics, studies of b radiation, or ‘b decay’ as it is often 
called, showed initially that the energy of the products was not equal to the energy 
of the initial nucleus. This resulted in some reexamination of the law of conservation 
of energy, with some physicists wondering if it could be violated in some processes. 
Asserting the validity of the conservation of energy, Wolfgang Pauli (1900–1958) 
suggested in 1930 that the missing energy was carried by a new particle which inter-
acted extremely weakly with other particles and, hence, was diffi cult to detect. This 
particle later acquired the name neutrino. Pauli was proven right 25 years later. 
Experimental confi rmation of the existence of the neutrino came in 1956 from the 
careful experiments conducted by Frederick Reines and (the now late) Clyde Cowen. 
Since then our faith in the law of conservation of energy has become stronger than 
ever. Frederick Reines received the Physics Noble Prize in 1995 for the discovery of 



the elusive neutrino; for the interesting history behind the discovery of the neutrino, 
see Ref. [19].

2.7 Energy Flows and Organized States

In Nature, the role of energy is much more than just a conserved quantity: energy 
fl ows are crucial to life, ecosystems and human activity that we call ‘economy’. It 
could be said that energy fl ows have a creative role, in that out of these fl ows emerge 
complex processes that range from global biogeochemical cycles to the photosyn-
thetic bacteria. In this section, we present a brief introduction to energy fl ow and 
some of its consequences. We will discuss more about nonequilibrium systems which 
become organized spontaneously in Chapter 11.

SELF-ORGANIZATION

At the outset we must note that what is of interest to us in a thermodynamic system 
is not only its state, but also the processes that take place in it and the way the system 
interacts with its exterior. The state of thermodynamic equilibrium is static, devoid 
of processes: in this state there is no fl ow of energy or matter from one point to 
another and no chemical change takes place. When a system is driven out of equili-
brium by energy and matter fl ows, however, irreversible processes begin to emerge 
within the system. These processes are ‘irreversible’ in that the transformations they 
cause have a defi nite direction. Heat conduction is an example of an irreversible 
process: heat always fl ows towards a region at a lower temperature, never in the 
opposite direction. The concept of entropy, which will be introduced in the following 
chapters, makes the notion of irreversibility more precise; but even without the 
concept of entropy, one can see through simple examples how irreversible processes 
can create structure and organization in a system. One such example involving heat 
fl ow is illustrated in Figure 2.7. It consists of a fl uid placed between two metal plates. 

Heat flow

Th

Tc

Th

Tc

(a) (b)

Figure 2.7 Energy fl ows can cause self-organized patterns 
to emerge. A fl uid is placed between two plates and heated 
from below. The temperature difference ∆T = Th − Tc 
between the two plates drives a heat fl ow. (a) When ∆T is 
small, the heat fl ow is due to conduction and the fl uid is 
static. (b) When ∆T exceeds a critical value, organized con-
vection patterns emerge spontaneously
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The lower plate is maintained at a temperature Th, which is higher than that of the 
upper plate temperature Tc. The temperature difference will cause a fl ow of heat 
through the fl uid. If the difference in the temperature ∆T = (Th − Tc) is increased, 
there is a point at which a well-organized pattern of convection cells emerges. The 
threshold value of ∆T depends on the fl uid properties, such as thermal expansion 
coeffi cient and viscosity. What is remarkable about this familiar convection pattern 
is that it emerges entirely out of chaotic motion associated with heat. Furthermore, 
the fl uid’s organized convection pattern now serves a ‘function’: it increases the rate 
of heat fl ow. This is an example in which the energy fl ow drives a system to an 
organized state which in turn increases the energy fl ow.

The convection pattern exists as long as there is heat fl ow; if the heat fl ow is 
stopped, then the system evolves to equilibrium and the pattern disappears. Such 
patterns in nonequilibrium systems should be distinguished from patterns that we 
might see in a system in equilibrium, such as layers of immiscible fl uids separated 
by differences in density. Organized states in nonequilibrium systems are maintained 
by fl ow of energy and matter and, as we shall see in later chapters, production of 
entropy.

In the formulation of modern thermodynamics, fl ows of matter and energy are 
thermodynamic fl ows. The laws that govern them can be formulated in thermody-
namic terms, as we shall see in later chapters. Empirical laws governing heat fl ow 
and radiative cooling have been known for centuries. Some commonly used laws 
are summarized in Box 2.7. These laws can be used to analyze heat fl ows in various 
systems.

PROCESS FLOWS

An important application of the First Law is to the analysis of energy fl ows asso-
ciated with fl uids in industrial processes and engines. Energy fl ows in this case 
include the kinetic and potential energies of the fl uid in addition to the thermody-
namic internal energy U. The First Law applies to the total energy

 E U Mv= + +1
2

2 Ψ  (2.7.1)

in which M is the mass of the system and Ψ is its potential energy. In describing 
energy fl ows, it is convenient to use energy and mass densities:

Internal energy density u (J m−3)
Mass density r (kg m−3)

When the change in potential energy is insignifi cant, the energy fl owing in and out 
of a system is in the form of heat, mechanical work and kinetic and internal energy 
of matter (Figure 2.8). Let us assume that matter with energy density ui is fl owing 
into the system under a pressure pi and velocity vi. Consider a displacement dxi = vi 
dt of the matter fl owing in through an inlet with area of cross-section Ai, in time dt 



Box 2.7 Laws of Heat Flow

Heat fl ow or heat current Jq is defi ned as the amount of heat fl owing per unit surface 
area per unit time.

T + δΤ T 

δx

Jq = −κ (δT/δx)

CONDUCTION

Jean Baptiste Joseph Fourier (1768–1830) proposed a general law of heat conduction 
in his 1807 memoir which states that the heat current is proportional to the gradient 
of temperature:

J i j kq = − ∇ = − ∂
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in which k (W m−1 K−1) is the thermal conductivity and î, ĵ  and k̂ are unit vectors. 
The SI units of Jq are W m−2.

CONVECTION

A law of cooling due to convection, attributed to Newton, states that the rate of heat 
loss dQ/dt of a body at temperature T surrounded by a fl uid at temperature T0 is pro-
portional to the difference (T − T0) and the body’s surface area A:

d
d
Q
t

hA T T= − −( )0

in which h (W m−2 K−1) is the heat transfer coeffi cient. This law is a good approximation 
when heat loss is mainly due to convection and that due to radiation can be ignored.

RADIATION

When thermal equilibrium between matter and radiation (Chapter 12) is analyzed, it 
is found that heat radiated by a body at temperature T is proportional to T4 and the 
heat radiation absorbed from the surroundings at temperature T0 is proportional to 
T 0

4. The net radiative heat loss is equal to

d
d
Q
t

eA T T= − −σ ( )4
0
4

in which s = 5.67 10−8 W m−2 K−4 is the Stefan–Boltzmann constant, A is the surface 
area of the body and e is the body’s emissivity (the maximum e = 1 for a black body). 
At high temperatures, the cooling of bodies is due to convective and radiative heat 
losses.
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(see Figure 2.8). The amounts of the various forms of energy entering the system 
through the inlet due to this displacement are:

Internal energy uiAi dxi

Kinetic energy (1/2)rv2
iAi dxi

Mechanical work piAi dxi

Similar considerations apply for the energy fl owing through the outlet, for which 
we use the subscript ‘o’ instead of ‘i’. In addition, we assume, in time dt, there is a 
net heat output dQ and mechanical energy output dW that are not associated with 
matter fl ow (which are positive for a net output and negative for a net input). Taking 
all these into consideration, we see the total change in energy dU in a time dt is

d d d d d d d di i i i i i i i i i o o o o o oU W Q u A x v A x p A x u A x v A x= − − + + + − −1
2

1
2

2 2ρ ρ oo

o o od− p A x
 

(2.7.2)

By defi ning enthalpy per unit volume h = u + p, and by noting that dxi = vidt and 
dxo = vodt, the above expression can be written as
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In many situations, the system may reach a steady state in which all its thermody-
namic quantities are constant, i.e. dU/dt = 0. Also, in such a state, the mass of matter 

SYSTEM 
dQ

dW
dxi

pi

Ai

dxo

po

Ao

ui ρi vi

uo ρo vo

Figure 2.8 Energy fl ow through a system. The subscripts i 
and o identify the variables for the infl ow and outfl ow 
respectively. p is the pressure, A is the area of cross-section, 
u is the energy density, r is the mass density and v is the fl ow 
velocity. The change in the energy of the system in a time 
dt is given by (2.7.3), in which h is the enthalpy density



fl owing into the system is equal to the mass fl owing out. Since the mass of matter 
fl owing into and out of the system in time dt is (riviAi) dt and (rovoAo) dt respectively, 
we have (riviAi) dt = (rovoAo) dt for a steady state. Hence, we can rewrite (2.7.3) as

 
d
d

d
d

d
d

i

i

i o

o

oW
t

Q
t

h v h v m
t

+ = +





− +









ρ ρ

2 2

2 2
 (2.7.4)

in which dm/dt = riviAi = rovoAo is the mass fl ow rate. In this expression, dW/dt is 
the rate of work output and dQ/dt is the rate of heat output. Thus, we obtain a 
relation between the work and heat output and the change of enthalpy densities and 
the kinetic energy of the matter fl owing through the system.

This general equation can be applied to various situations. In a steam turbine, for 
example, steam enters the system at a high pressure and temperature and leaves the 
system at a lower pressure and temperature, delivering its energy to the turbine, 
which converts it to mechanical energy. In this case the heat output dQ/dt is negli-
gible. We then have
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The ratio h/r is the specifi c enthalpy (enthalpy per unit mass) and its values at a 
given pressure and temperature are tabulated in ‘steam tables’. The term dm/dt 
(kg s−1) is the rate of mass fl ow through the system in the form of steam and, in many 
practical situations, the term (v2

i − v2
o) is small compared with the other terms in 

(2.7.5). Thus, the rate of work output in a turbine is related to the rate of steam fl ow 
and the specifi c enthalpy through the simple relation
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Using steam tables, the expected work output can be calculated. Note that if there 
are heat losses, i.e. if dQ/dt > 0, then the work output dW/dt is correspondingly less. 
Explicit examples of the application of (2.7.4) are given at the end of this chapter.

SOLAR ENERGY FLOW

In discussing energy fl ows, it is useful to have a quantitative idea of the energy fl ows 
on a global scale. Figure 2.9 summarizes the fl ows that result from the solar energy 
incident on the Earth. The energy from the sun traverses 150 × 106 km (93 million 
miles) before it reaches the Earth’s atmosphere. The amount of solar energy reaching 
the Earth (called the ‘total solar radiance’) is about 1300 W m−2 which amounts to 
a total of about 54.4 × 1020 kJ year−1. About 30% of this energy is refl ected back into 
space by clouds and other refl ecting surfaces, such as snow. A signifi cant fraction 
of the solar energy entering the Earth’s surface goes to drive the water cycle, the 
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evaporation and condensation as rain (Exercise 2.20). Of the solar energy not lost 
due to refl ection, it is estimated that only a small fraction, about 0.08 × 1020 kJ year−1, 
or 0.21%, goes into the biosphere through photosynthesis. The energy consumed by 
human economies is estimated to be about 0.0037 × 1020 kJ year−1, which is about 
5% of the energy that fl ows into photosynthesis. The interior of the Earth also has 
a vast amount of geothermal energy that fl ows to the surface at a rate of about 0.01 
× 1020 kJ year−1. The solar energy entering the Earth system is ultimately radiated 
back into space, and the total energy contained in the crust and the atmosphere is 
essentially in a steady state which is not a state of thermodynamic equilibrium. This 
fl ow of 38.1 × 1020 kJ year−1 drives the winds, creates rains and drives the cycle of 
life.

ENERGY FLOWS IN BIOLOGICAL SYSTEMS

The process of life is impossible without the fl ow of energy. Energy enters the bio-
sphere through photosynthesis, which results in the production of biochemical 
compounds, such as carbohydrates, from CO2, H2O and other simple compounds 
containing nitrogen and other elements. Photosynthesis releases O2 into the atmo-
sphere while removing CO2 (Figure 2.10). The solar energy is captured in the 
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13.0 
Atmosphere  
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54.4 
Energy from the Sun 

16.3 
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surface 

Units: 1020 kJ/year 

Human energy use: 0.0037 Energy in the water cycle: 12.5
Wind energy:  0.11  Geothermal heat flux: 0.01

Figure 2.9 Annual solar energy fl ow through the Earth’s atmosphere and the 
surface. (Source: T.G. Spiro and W.M. Stigliani, Chemistry of the Environ-
ment, second edition. 2003, Prentice Hall: Upper Saddle River, NJ)



biomolecules which contain more energy than the compounds from which they are 
synthesized. The ‘high-energy’ products of photosynthesis are in turn the energy 
source for organisms that feed on them. Photosynthesis, the primary source of 
‘food’, drives a complex food chain that sustains ‘higher organisms’ and ultimately 
a complex ecosystem. The energy fl ow in higher organisms is through the conversion 
of carbohydrates back to CO2 and H2O; this fl ow drives life processes: feeding, 
reproducing, fl ying, running, etc. While living cells do not exist in a steady state but 
go through a cycle of life and death, the ecosystems as a whole could be in a self-
sustaining ‘steady state’ on a long time-scale. As energy fl ows through the biosphere, 
it is converted to heat and is returned to the atmosphere. The metabolic processes 
in a human, for example, generate about 100 J s−1 of heat. The heat generated in the 
biosphere is ultimately radiated back into space. We shall discuss the thermody-
namic aspects of life processes in more detail in Chapter 13.

Appendix 2.1 Mathematica Codes

CODE A: MATHEMATICA CODE FOR EVALUATING WORK DONE IN THE 
ISOTHERMAL EXPANSION OF A GAS

Clear[p,V,T,a,b]
p[V_,T_]:=(R*T/(V-b))-(a/VŸ2);

p[V,T]dlv
V1

V2

∫
aV1-aV2-R T V1 V2 Log[-b+V1]+R T V1 V2 Log[-b+V2]

V1V2

Simplify[%]

a
V1 V2

-R T Log[-b+V1]+R T Log[-b+V2]− +
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Figure 2.10 Energy fl ow through the biosphere
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The same integral can also be evaluated using the ‘Integrate’ command:
Clear[p,V,T,a,b];
p[V_,T_]:=(R*T/(V-b))-(a/VŸ2);
Integrate[p[V,T],{V,V1,V2}]

aV1-aV2-R T V1 V2 Log[-b+V1]+R T V1 V2 Log[-b+V2]

V1V2

Simplify[%]

a
V1 V2

-R T Log[-b+V1]+R T Log[-b+V2]− +
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Examples

Example 2.1 A bullet of mass 20.0 g traveling at a speed of 350.0 m s−1 is lodged 
into a block of wood. How many calories of heat are generated in this process?



Solution In this process, the kinetic energy (KE) of the bullet is converted to 
heat.

KEbullet = mv2/2 = (1/2)20.0×10−3 kg × (350 m s−1)2 = 1225 J

1225 J = 1225J/4.184 J cal−1 = 292.6 cal

Example 2.2 Calculate the energy ∆U required to increase the temperature of 
2.50 mol of an ideal monatomic gas from 15.0 °C to 65.0 °C.
Solution Since the specifi c heat CV = (∂U/∂T)V, we see that

∆U C T C T TV V

T

T

= = −∫ d f i

i

f

( )

Since CV for a monatomic ideal gas is (3/2)R:

U = (3/2)(8.314 J mol−1 K−1)(2.5 mol)(65.0 − 15.0) K = 1559 J

Example 2.3 The velocity of sound in CH4 at 41.0 °C was found to be 466.0 m s−1. 
Calculate the value of g, the ratio of specifi c heats, at this temperature.
Solution Equation (2.3.17) gives the relation between g and the velocity of 
sound:

γ = = × ×
×

=
− −MC

RT

2 3 1 216 04 10 466
8 314 314 15

1 33sound kg ms
K

. ( )
. .

.

Example 2.4 1 mol of N2(g) at 25.0 °C and a pressure of 1.0 bar undergoes an iso-
thermal expansion to a pressure of 0.132 bar. Calculate the work done.
Solution For an isothermal expansion:

Work f

i

= − 



NRT

V
V

ln

For an ideal gas, at constant T, PiVi = PfVf. Hence:

Work

J K

f

i

i

f

= − 





= − 



 = − −

NRT
V
V

NRT
P
P

ln

ln . ( . ) ln
.

1 0 8 314
11 00

0 132
5 03

bar
bar

kJ
.

.






= −

Example 2.5 Calculate the heat of combustion of propane in the reaction at 
25 °C:

C3H8(g) + 5O2(g) → 3CO2(g) + 4H2O(l)
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Solution From the table of heats of formation at 298.15 K we obtain

∆H0
r = −∆H0

f[C3H8] − 5∆H0
f[O2] + 3∆H0

f[CO2] + 4∆H0
f[H2O]

 = −(−103.85 kJ) − (0) + 3(−393.51 kJ) + 4(−285.83 kJ) = −2220 kJ

Example 2.6 For the reaction N2(g) + 3H2(g) → 2NH3(g), at T = 298.15 K the 
standard enthalpy of reaction is −46.11 kJ mol−1. At constant volume, if 1.0 mol of 
N2(g) reacts with 3.0 mol of H2(g), what is the energy released?
Solution The standard enthalpy of reaction is the heat released at constant pressure 
of 1.0 bar. At constant volume, since no mechanical work is done, the heat released 
equals the change in internal energy ∆U. From Equation (2.4.9) we see that

∆Hr = ∆Ur + ∆NrRT

In the above reaction, ∆Nr = −2. Hence:

∆Ur = ∆Hr − (−2)RT = −46.11 kJ + 2(8.314 J K−1)298.15 = −41.15 kJ

Example 2.7 Apply the energy fl ow equation to a thermal power station for which 
the energy fl ow is as shown in the fi gure below. The power station takes in heat to 
run an electrical power generator.

Solution A thermal power plant may be considered as a system with the following 
properties: heat fl ows into the system, a part of it is converted to mechanical energy 
that runs an electrical power generator, and the unused heat is expelled. There is no 
fl ow of matter. Applying Equation (2.7.4) to this system, we see that dm/dt = 0, and 
we are left with dW/dt = −dQ/dt. Since dQ/dt is the net outfl ow of heat, a negative 
value of dQ/dt means that the infl ow of heat is larger than the outfl ow, i.e. part of 
the heat fl owing into the system is converted to mechanical energy that runs the 
power generator. What fraction of the heat energy fl owing into the system is con-
verted to mechanical energy depends on the effi ciency of the power plant. In Chapter 
3 we will discuss Sadi Carnot’s discovery that conversion of heat to mechanical 
energy has limitations; it is impossible to convert 100% of the heat fl owing into the 
system in to mechanical energy.

Example 2.8 N2 is fl owing into a nozzle with a velocity vi = 35.0 m s−1 at T = 300.0 K. 
The temperature of the gas fl owing out of the nozzle is 280.0 K. Calculate the 

Qin 

Qout 

Wout 



Solution For fl ow through a nozzle, there is no net output of heat or work. Apply-
ing Equation (2.7.4) to this system, we see that dW/dt = 0 and dQ/dt = 0. Hence:

h v h vi

i

i o

o

o

ρ ρ
+ = +

2 2

2 2

in which the subscripts ‘i’ and ‘o’ denote the quantities for infl ow and outfl ow 
respectively. Using the given values of T for the fl ows, the specifi c enthalpies h/r of 
the gas fl owing in and out of the nozzle can be calculated as follows. For an ideal 
gas, enthalpy H = U + pV = cNRT + NRT = (c + 1)RTN. (c = 5/2 for a diatomic gas 
such as N2.) If the molar mass of the gas is M, then

h
H
V

c RT
M

NM
V

c RT
M

= = + = +( ) ( )1 1 ρ

i.e.

h c RT
Mρ

= +( )1

Now we can write the specifi c enthalpies in terms of temperature in the above expres-
sion and obtain

v v c R
M

T To i
i o

2 2

2 2
1= + + −( )

( )

For a diatomic gas N2, c = 5/2. We have vi = 35.0 m s−1, M = 28 × 10−3 kg mol−1, 
Ti = 300.0 K and T0 = 280.0 K. Using these values, vo can be calculated: vo 
= 206 m s−1.

Example 2.10 A steam turbine operates under the following conditions: steam 
fl ows into a turbine through an inlet pipe of radius 2.50 cm, at a velocity 
80.0 m s−1, at p = 6.0 MPa and T = 450.0 °C. The spent steam fl ows out at 
p = 0.08 MPa, T = 93.0 °C through an outlet pipe of radius 15.0 cm. Assuming 
steady-state conditions, calculate the power output using the following data from 
steam tables:

velocity of the gas fl owing out of the nozzle. (Assume the ideal gas law for the 
fl owing gas.)
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at p = 6.0 MPa, T = 450.0 °C, the specifi c volume 1/r = 0.052 m3 kg−1 and 
h/r = 3301.4 kJ kg−1

at p = 0.08 MPa, T = 93.0 °C, the specifi c volume 1/r = 2.087 m3 kg−1 and 
h/r = 2665.4 kJ kg−1

Solution At steady state, the mass fl owing in must equal the mass fl owing out (mass 
balance). Hence, Aiviri = Aovoro. Using this equation and the given data, we can 
calculate the velocity of the steam in the outlet:

vo
m kg m

m kg m
ms= =

−

−
−π

π
( . ) ( . )
( . ) ( . )

. .
0 025 19 2
0 15 0 479

80 0 89 0
2 3

2 3
1 mms−1

The rate of mass fl ow is

d
d

m kg m ms kgsi i i
m
t

Av= = =− − −ρ π( . ) ( . ) .0 025 19 2 80 3 012 3 1 1

Now we can apply Equation (2.7.4) to calculate the power output. In this case, 
mechanical energy is the output and we may assume negligible heat losses, i.e. 
dQ/dt = 0. We then have

d
d

d
d

i

i

i o

o

oW
t

h v h v m
t

= +





− +









ρ ρ

2 2

2 2

Using the steam-table data, we see that hi/ri = 3301.4 kJ kg−1 and ho/ro = 
2665.4 kJ kg−1. Thus, the power output is

d
d

kJs
W
t

= − + − = =−[( . . ) . ( . . )] .3301 4 2665 4 10 0 5 80 0 89 0 3 01 1915 13 2 2 1 ..9MW

Exercises

 2.1 For a conservative force F = −∂V(x)/∂x, in which V(x) is the potential, using 
Newton’s laws of motion, show that the sum of kinetic and potential energy 
is a constant.

 2.2 How many joules of heat are generated by the brakes of a 1000 kg car when 
it is brought to rest from a speed of 50 km h−1? If we use this amount of heat 
to heat 1.0 L of water from an initial temperature of 30 °C, estimate the fi nal 
temperature assuming that the heat capacity of water is about 1 cal mL−1 (1 cal 
= 4.184 J).



 2.3 The manufacturer of a heater coil specifi es that it is a 500 W device.
(a) At a voltage of 110 V, what is the current through the coil?
(b) Given that the latent heat of fusion of ice is about 6.0 kJ mol−1, how long 
will it take for this heater to melt 1.0 kg of ice at 0 °C.

 2.4 Use the relation dW = −p dV to show that:
(a) The work done in an isothermal expansion of N moles of an ideal gas 
from initial volume Vi to the fi nal volume Vf is: Work = −NRT ln(Vf/Vi)
(b) For 1 mol of an ideal gas, calculate the work done in an isothermal 
expansion of 1 mol from Vi = 10.0 L to Vf = 20.0 L at temperature 
T = 350 K.
(c) Repeat the calculation of part (a) using the van der Waals equation in 
place of the ideal gas equation and show that

Work ln f

i i f

= − −
−







+ −



NRT

V Nb
V Nb

aN
V V

 2 1 1

 2.5 Given that for the gas Ar the heat capacity CV = (3R/2) = 12.47 J K−1 mol−1, 
calculate the velocity of sound in Ar at T = 298 K using the ideal-gas relation 
between Cp and CV. Do the same for N2, for which CV = 20.74 J K−1 mol−1.

 2.6 Calculate the sound velocities of He, N2 and CO2 using (2.3.17) and the values 
of g in Table 2.2 and compare them with the experimentally measured veloci-
ties shown in the same table.

 2.7 The human ear can detect an energy intensity of about 2 × 10−12 W m−2. Con-
sider a light source whose output is 100 W. At what distance is its intensity 
equal to 2 × 10−12  W m−2?

 2.8 A monatomic ideal gas is initially at T = 300 K, V = 2.0 L and p = 1.0 bar. If 
it is expanded adiabatically to V = 4.0 L, what will its fi nal T be?

 2.9 We have seen (Equation (2.3.5)) that, for any system

C C p
U
V

V
T

p V
T p

− = + ∂
∂













∂
∂







For the van der Waals gas the energy Uvw = Uideal − a(N/V)2V, in which Uideal 
= CVNT + U0 (Equation (2.2.15)). Use these two expressions and the van der 
Waals equation to obtain an explicit expression for the difference between 
Cp and CV.

2.10 For nitrogen at p = 1 atm, and T = 298 K, calculate the change in temperature 
when it undergoes an adiabatic compression to a pressure of 1.5 atm. g = 
1.404 for nitrogen.
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2.11 Using Equation (2.4.11) and Table 2.3, calculate the change in enthalpy of 
1.0 mol of CO2(g) when it is heated from 350.0 K to 450.0 K at p = 1 bar.

2.12 Using the Standard Thermodynamic Properties table at the back of the book, 
which contains heats of formation of compounds at T = 298.15 K, calculate 
the standard heats of reaction for the following reactions:
(a) H2(g) + F2(g) → 2HF(g)
(b) C7H16(l) + 11O2(g) → 7CO2(g) + 8H2O(l)
(c) 2NH3(g) + 6NO(g) → 3H2O2(l) + 4N2(g)

2.13 Gasoline used as motor fuel consists of a mixture of the hydrocarbons heptane 
(C7H16), octane (C8H18) and nonane (C9H20). Using the bond energies in Table 
2.4, estimate the enthalpy of combustion of 1 g of each of these fl uids. (In a 
combustion reaction, an organic compound reacts with O2(g) to produce 
CO2(g) and H2O(g).)

2.14 Calculate the amount of energy released in the combustion of 1 g of glucose 
and compare it with the mechanical energy needed to lift 100 kg through 1 m. 
(Combustion of glucose: C12H22O11 + 12O2 → 11H2O + 12CO2.)

2.15 Consider the reaction CH4(g) + 2O2(g) → CO2(g) + 2H2O(l). Assume that 
initially there are 3.0 mol CH4 and 2.0 mol O2 and that the extent of reaction 
x = 0. When the extent of reaction x = 0.25 mol, what are the amounts of the 
reactants and the products? How much heat is released at this point? What 
is the value of x when all the O2 has reacted?

2.16 The sun radiates energy approximately at a rate of 3.9 × 1026 J s−1. What will 
be the change in its mass in 1 million years if it radiates at this rate?

2.17 Calculate the energy released in the reaction

21H + 2n → 4He

 given the following masses: mass of 1H = 1.0078 amu, mass of n = 1.0087 amu, 
mass of 4He = 4.0026 amu. (1 amu = 1.6605 × 10−27 kg.)

2.18 O2 is fl owing into a nozzle with a velocity vi = 50.0 m s−1 at T = 300.0 K. The 
temperature of the gas fl owing out of the nozzle is 270.0 K. (a) Assume the ideal 
gas law for the fl owing gas and calculate the velocity of the gas fl owing out of 
the nozzle. (b) If the inlet diameter is 5.0 cm, what is the outlet’s diameter?

2.19 A steam turbine has the following specifi cations: inlet diameter 5.0 cm; steam 
infl ow is at p = 4.0 MPa, at T = 450.0 °C at a velocity of vi = 150 m s−1. The 
outlet pipe has a diameter of 25.0 cm and the steam fl ows out at p = 0.08 MPa, 
T = 93.0 °C. (a) Assuming steady-state conditions, calculate the output power 



using the data given below from steam tables. (b) Show that the change in 
kinetic energy between the infl ow and the outfl ow is negligible compared with 
the change in the specifi c enthalpy.

  Data from steam tables:

 at p = 4.0 MPa, T = 450.0 °C, the specifi c volume 1/r = 0.080 m3 kg−1 and 
 h/r = 3330.1 kJ kg−1.

 at p = 0.08 MPa, T = 93.0 °C, the specifi c volume 1/r = 2.087 m3 kg−1 and 
 h/r = 2665.4 kJ kg−1.

2.20 The amount of solar energy driving the water cycle is approximately 12.5 × 
1020 kJ year−1. Estimate the amount of water, in moles and liters, evaporated 
per day in the water cycle.
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3  THE SECOND LAW OF 
THERMODYNAMICS AND 
THE ARROW OF TIME

3.1 The Birth of the Second Law

James Watt (1736–1819), the most famous of Joseph Black’s pupils, obtained a 
patent for his modifi cations of Thomas Newcomen’s steam engine in the year 1769. 

James Watt (1736–1819) (Reproduced with permission from the Edgar Fahs Smith Collec-
tion, University of Pennsylvania Library)

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd
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Soon, this invention brought unimagined power and speed to everything: mining of 
coal, transportation, agriculture and industry. This revolutionary generation of 
motion from heat that began in the British Isles quickly crossed the English Channel 
and spread throughout Europe.

Nicolas Léonard Sadi Carnot (1796–1832), a brilliant French military engineer, 
lived in this rapidly industrializing Europe. ‘Every one knows’, he wrote in his 
memoirs, ‘that heat can produce motion. That it possesses vast motive-power no 
one can doubt, in these days when the steam-engine is everywhere so well known’ 
[1, p. 3]. The name Carnot is well known in France. Sadi Carnot’s father, Lazare 
Carnot (1753–1823), held many high positions during and after the French Revolu-
tion and was known for his contributions to mechanics and mathematics. Lazare 
Carnot had a strong infl uence on his son Sadi. Both had their scientifi c roots in 
engineering, and both had a deep interest in general principles in the tradition of 

Sadi Carnot (1796–1832) (Reproduced with permission from the Edgar Fahs Smith Collec-
tion, University of Pennsylvania Library)



THE BIRTH OF THE SECOND LAW 99

the French Encyclopedists. It was his interest in general principles that led Sadi 
Carnot to his abstract analysis of heat engines. Carnot pondered over the principles 
that governed the working of the steam engine and identifi ed the fl ow of heat as the 
fundamental process required for the generation of ‘motive power’ – ‘work’ in 
today’s terminology. He analyzed the fundamental processes that underlie heat 
engines, engines that performed mechanical work through the fl ow of heat, and 
realized that there was a fundamental limit to the amount of work generated from 
the fl ow of a given amount of heat. Carnot’s great insight was that this limit was 
independent of the machine and the manner in which work was obtained: it depended 
only on the temperatures that caused the fl ow of heat. As explained in the following 
sections, further development of this principle resulted in the formulation of the 
second law of thermodynamics.

Carnot described his general analysis of heat engines in his only scientifi c publi-
cation ‘Réfl exions sur la puissance motrice du feu, et sur les machines propres a dével-
opper cette puissance’ (‘Refl ections on the motive force of fi re and on the machines 
fi tted to develop that power’) [1]. Six hundred copies of this work were published in 
1824, at Carnot’s own expense. At that time, Carnot was a well-known name in the 
French scientifi c community due to the fame of Sadi’s father, Lazare Carnot. Still, 
Sadi Carnot’s book did not attract much attention at the time of its publication. 
Eight years after the publication of his ‘Refl exions’, Sadi Carnot died of cholera. A 
year later, Émile Clapeyron (1799–1864) was to come across Carnot’s book and 
realize its fundamental importance and make it known to the scientifi c 
community.

Carnot’s analysis proceeded as follows. First, Carnot observed ‘Wherever there 
exists a difference of temperature, motive force can be produced’ [1, p. 9]. Every 
heat engine that produced work from the fl ow of heat operated between two heat 
reservoirs of unequal temperatures. In the processes of transferring heat from a hot 
to a cold reservoir, the engine performed mechanical work (see Figure 3.1). Carnot 
then specifi ed the following condition for the production of maximum work [1, 
p. 13]:

The necessary condition of the maximum (work) is, that in the bodies employed to realize the 
motive power of heat there should not occur any change of temperature which may not be due 
to a change of volume. Reciprocally, every time that this condition is fulfi lled the maximum 
will be attained. This principle should never be lost sight of in the construction of a heat 
engine; it is its fundamental basis. If it cannot be strictly observed, it should at least be 
departed from as little as possible.

Thus, for maximum work generation, all changes in volume – such as the expansion 
of a gas (steam) that pushes a piston – should occur with minimal temperature gra-
dients so that changes in temperature are almost all due to volume expansion and 
not due to fl ow of heat caused by temperature gradients. This is achieved in heat 
engines that absorb and discard heat during very slow changes in volume, keeping 
their internal temperature as uniform as possible.

Furthermore, in the limit of infi nitely slow transfer of heat during changes of 
volume, with infi nitesimal temperature difference between the source of heat (the 



100 THE SECOND LAW OF THERMODYNAMICS AND THE ARROW OF TIME
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Figure 3.1 The upper fi gure shows a schematic of a steam 
engine. The lower fi gure shows the essential process that 
governs heat engines, engines that convert heat to work. It 
illustrates the fundamental observation made by Sadi 
Carnot: ‘Wherever there exists a difference of temperature, 
motive force can be produced’ [1, p. 9]. The heat engine 
absorbs heat Q1 from a hot reservoir (heat source), converts 
part of it to work W, and discards heat Q2 to a cold reservoir 
(heat sink). The effi ciency h is given by W = hQ1. (According 
to the caloric theory of heat that Carnot used, Q1 = Q2, but 
an analysis consistent with the First Law gives W = Q1 
− Q2)

‘heat reservoir’) and the engine, the operation of such an engine is a reversible pro-
cesses, which means that the series of states the engine goes through can be retraced 
in the exact opposite order. A reversible engine can perform mechanical work W by 
transferring heat form a hot to a cold reservoir or it can do the exact reverse of 
transferring the same amount of heat from a cold reservoir to a hot reservoir by 
using the same amount of work W.

The next idea Carnot introduced is that of a cycle: during its operation, the heat 
engine went through a cycle of states so that, after producing work from the fl ow 
of heat, it returned to its initial state, ready to go through the cycle once again. A 
modern version of Carnot’s reversible cycle will be discussed later in this section.
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Carnot argued that the reversible cyclic heat engine must produce the maximum 
work (‘motive force’), but he did so using the caloric theory of heat, according to 
which heat was an indestructible substance. If any engine could produce a greater 
amount of work than that produced by a reversible cyclic heat engine, then it was 
possible to produce work endlessly by the following means. Begin by moving heat 
from the hot reservoir to a cold reservoir using the more effi cient engine. Then move 
the same amount of heat back to the hot reservoir using the reversible engine. 
Because the forward process does more work than is needed to perform the reverse 
process, there is a net gain in work. In this cycle of operations, a certain amount of 
heat was simply moved from the hot to the cold reservoir and back to the hot res-
ervoir, with a net gain of work. By repeating this cycle, an unlimited amount of 
work can be obtained simply by moving a certain amount of heat back and forth 
between a hot and a cold reservoir. This, Carnot asserted, was impossible:

This would be not only perpetual motion, but an unlimited creation of motive power without 
consumption either of caloric or of any other agent whatever. Such a creation is entirely 
contrary to ideas now accepted, to laws of mechanics and of sound physics. It is inadmissible 
[1, p. 12].

Hence, reversible cyclic engines must produce the maximum amount of work. A corol-
lary of this conclusion is that all reversible cyclic engines must produce the same 
amount of work regardless of their construction. Furthermore, and most impor-
tantly, since all reversible engines produce the same amount of work from a given 
amount of heat, the amount of work generated by a reversible heat engine is inde-
pendent of the material properties of the engine: it can depend only on the tempera-
tures of the hot and cold reservoirs. This brings us to the most important of Sadi 
Carnot’s conclusions [1, p. 20]:

The motive power of heat is independent of the agents employed to realize it; its quantity is 
fi xed solely by the temperatures of the bodies between which is effected, fi nally, the transfer 
of caloric.

Carnot did not derive a mathematical expression for the maximum effi ciency 
attained by a reversible heat engine in terms of the temperatures between which it 
operated. This was done later by others who realized the importance of his conclu-
sion. Carnot did, however, fi nd a way of calculating the maximum work that can 
be generated. For example, he concluded that ‘1000 units of heat passing from a 
body maintained at the temperature of 1 degree to another body maintained at zero 
would produce, in acting upon the air, 1.395 units of motive power’ [1, p. 42].

Though Sadi Carnot used the caloric theory of heat to reach his conclusions, his 
later scientifi c notes reveal his realization that the caloric theory was not supported 
by experiments. In fact, Carnot understood that heat is converted to mechanical 
work and even estimated the conversion factor to be approximately 3.7 J cal−1 (the 
more accurate value being 4.18 J cal−1) [1–3]. Unfortunately, Sadi Carnot’s brother, 
Hippolyte Carnot, who was in possession of Sadi’s scientifi c notes after his death 
in 1832, did not make them known to the scientifi c community until 1878 [3]. That 
was the year in which Joule published his last paper. By then, the equivalence 
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between heat and work and the law of conservation of energy were well known 
through the work of Joule, Helmholtz, von Mayer and others. (1878 was also the 
year in which Gibbs published his famous work On the Equilibrium of Heterogeneous 
Substances.)

Sadi Carnot’s brilliant insight went unnoticed until Émile Clapeyron (1799–1864) 
came across Carnot’s book in 1833. Realizing its importance, he reproduced the 
main ideas in an article that was published in the Journal de l’Ecole Polytechnique 
in 1834. Clapeyron represented Carnot’s example of a reversible engine in terms 
of a p–V diagram (which is used today) and described it with mathematical detail. 
Clapeyron’s article was later read by Lord Kelvin and others who realized the fun-
damental nature of Carnot’s conclusions and investigated its consequences. These 
developments led to the formulation of the Second Law of thermodynamics as we 
know it today.

To obtain the effi ciency of a reversible heat engine, we shall not follow Carnot’s 
original reasoning because it considered heat as an indestructible substance. Instead, 
we shall modify it by incorporating the First Law. For the heat engine represented 
in Figure 3.1, the law of conservation of energy gives W = Q1 − Q2. This means, a 
fraction h of the heat Q1 absorbed from the hot reservoir is converted into work W, 
i.e. h = W/Q1. The fraction h is called the effi ciency of the heat engine. Since W = 
(Q1 − Q2) in accordance with the fi rst law, h = (Q1 − Q2)/Q1 = (1 − Q2/Q1). Carnot’s 
discovery that the reversible engine produces maximum work amounts to the state-
ment that its effi ciency is maximum. This effi ciency is independent of the properties 
of the engine and is a function only of the temperatures of the hot and the cold 
reservoirs:

 η = − = −1 12

1
1 2

Q
Q

f t t( , )  (3.1.1)

in which f(t1, t2) is a function only of the temperatures t1 and t2 of the hot and cold 
reservoirs. The scale of the temperatures t1 and t2 (Celsius or other) is not specifi ed 
here. Equation (3.1.1) is Carnot’s theorem. In fact, as described below, Carnot’s 
observation enables us to defi ne an absolute scale of temperature that is independent 
of the material property used to measure it.

EFFICEIENCY OF A REVERSIBLE ENGINE

Now we turn to the task of obtaining the effi ciency of reversible heat engines. Since 
the effi ciency of a reversible heat engine is the maximum, all of them must have the 
same effi ciency. Hence, obtaining the effi ciency of one reversible engine will suffi ce. 
The following derivation also makes it explicit that the effi ciency of Carnot’s engine 
is only a function of temperature.

Carnot’s reversible engine consists of an ideal gas that operates in a cycle between 
hot and cold reservoirs, at temperatures q1 and q2 respectively. Until their identity 
is established below, we shall use q for the temperature that appears in the ideal gas 
equation and T for the absolute temperature (which, as we shall see in the next 
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section, is defi ned by the effi ciency of a reversible cycle). Thus, the ideal gas equation 
is written as pV = NRq, in which q is the temperature measured by noting the change 
of some quantity such as volume or pressure. (Note that measuring temperature by 
volume expansion is purely empirical; each unit of temperature is simply correlated 
with a certain change in volume.) In the following, the work done by the gas will be 
a positive quantity and the work done on the gas will be a negative quantity, so that 
the net work obtained in a cycle is positive for a net heat transfer from the hot to 
the cold reservoir. The reversible cycle we consider consists of the following four 
steps (Figure 3.2).
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Figure 3.2 The Carnot cycle. The upper part shows the 
four steps of the Carnot cycle, during which the engine 
absorbs heat from the hot reservoir, produces work and 
returns heat to the cold reservoir. The lower part shows the 
representation of this process in a p–V diagram used by 
Clapeyron in his exposition of Carnot’s work
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Step 1

The gas has an initial volume of VA and it is in contact with the hot reservoir at 
temperature q1. At a constant temperature q1 due to its contact with the reservoir, 
the gas undergoes an infi nitely slow reversible expansion (as Carnot specifi ed it) to 
the state B, of volume VB. The work done by the gas during this expansion is

 W p V
NR

V
V NR

V
VV

V

V

V
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B

A

d d
A

B

A
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= = = 
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θ θ1
1 ln  (3.1.2)

During this isothermal processes, heat is absorbed from the reservoir. Since the 
internal energy of an ideal gas depends only on the temperature (see (1.3.8) and 
(2.2.15)), there is no change in the energy of the gas; the heat absorbed equals the 
work done. Hence, the heat absorbed:

 Q WAB AB=  (3.1.3)

Step 2

In the second step, the gas is thermally insulated from the reservoir and the environ-
ment and made to undergo an adiabatic expansion from state B to a state C, result-
ing in a decrease of temperature from q1 to q2. During this adiabatic process, work 
is done by the gas. Noting that on the adiabat BC we have pV g = pBVg

B= pCVg
C, we 

calculate the amount of work done by the gas in this adiabatic expansion:
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Using pV = NRq, the above equation can be further simplifi ed to

 W
NR

BC = −
−

( )θ θ
γ

1 2

1
 (3.1.4)

in which q1 and q2 are the initial and fi nal temperatures during the adiabatic 
expansion.

Step 3

In the third step, the gas is in contact with the reservoir of temperature q2 and it 
undergoes an isothermal compression to the point D, at which the volume VD is 
such that an adiabatic compression can return it to the initial state A. (VD can be 
specifi ed by fi nding the point of intersection of the adiabat through the point A and 
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the isotherm at temperature q2.) During this isothermal process, the work done on 
the gas is transferred as heat QCD to the reservoir (since the energy of the ideal gas 
depends only on its temperature):

 W p V
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Step 4

In the fi nal step, an adiabatic compression takes the gas from the state D to its initial 
state A. Since this process is similar to step 2, we can write

 W
NR

DA = −
−

( )θ θ
γ

2 1

1
 (3.1.6)

The total work done in this reversible Carnot cycle in which heat QAB was absorbed 
from the reservoir at a temperature of q1 and heat QCD was transferred to the reser-
voir at temperature q2 is

 W W W W W Q Q
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The effi ciency h = W/QAB can now be written using (3.1.2), (3.1.3) and (3.1.7):

 η θ
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= = −W
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NR V V
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1
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 (3.1.8)

For the two isothermal processes, we have pAVA = pBVB and pCVC = pDVD; and for 
the two adiabatic processes, we have pBV g

B = pCV g
C and pAV g

A = pDV g
D. Using these 

relations, it can easily be seen that (VC/VD) = (VB/VA). Using this relation in (3.1.8), 
we arrive at a simple expression for the effi ciency:

 η θ
θ

= = −W
QAB

  1 2

1

 (3.1.9)

In this expression for the effi ciency, q is the temperature defi ned by one particular 
property (such as volume at a constant pressure) and we assume that it is the tem-
perature in the ideal gas equation. The temperature t measured by any other empiri-
cal means, such as measuring the volume of mercury, is related to q; that is, q can 
be expressed as a function of t, i.e. q(t). Thus, the temperature t measured by 
one means corresponds to q = q(t), measured by another means. In terms of any 
other temperature t, the effi ciency may take a more complex form. In terms of the 
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temperature q that obeys the ideal gas equation, however, the effi ciency of the revers-
ible heat engine takes a particularly simple form (3.1.9).

3.2 The Absolute Scale of Temperature

The fact that the effi ciency of a reversible heat engine is independent of the physical 
and chemical nature of the engine has an important consequence which was noted 
by Lord Kelvin (William Thomson (1824–1907)). Following Carnot’s work, Lord 
Kelvin introduced the absolute scale of temperature. The effi ciency of a reversible 
heat engine is a function only of the temperatures of the hot and cold reservoirs, 
independent of the material properties of the engine. Furthermore, the effi ciency 

William Thomson/Lord Kelvin (1824–1907) (Reproduced with permission from the Edgar 
Fahs Smith Collection, University of Pennsylvania Library)



cannot exceed unity, in accordance with the First Law. These two facts can be used 
to defi ne an absolute scale of temperature that is independent of any material 
properties.

First, by considering two successive Carnot engines, one operating between t1 and 
t′ and the other operating between t′ and t2, we can see that the function f(t2, t1) in 
Equation (3.1.1) is a ratio of a functions of t1 and t2: if Q′ is the heat exchanged at 
temperature t′, then we can write

 f t t
Q
Q

Q
Q

Q
Q

f t t f t t( , ) ( , ) ( , )2 1
2

1

2

1
2 1= =

′
′ = ′ ′  (3.2.1)

This relation, along with f(t, t) = 1, implies that we can write the function f(t2, t1) as 
the ratio f(t2)/f(t1). Hence, the effi ciency of a reversible Carnot engine can be written 
as

 η = − = −1 12
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f t
f t
( )
( )

 (3.2.2)

One can now defi ne a temperature T ≡ f(t) based solely on the effi ciencies of revers-
ible heat engines. In terms of this temperature scale, the effi ciency of a reversible 
engine is given by

 η = − = −1 12

1

2

1

Q
Q

T
T

 (3.2.3)

in which T1 and T2 are the absolute temperatures of the cold and hot reservoirs 
respectively. An effi ciency of unity defi nes the absolute zero of this scale. Carnot’s 
theorem is the statement that reversible engines have the maximum effi ciency given 
by (3.2.3).

Comparing expression (3.2.3) with (3.1.9), we see that the ideal gas temperature 
coincides with the absolute temperature and, hence, we can use the same symbol, 
i.e. T, for both.*

In summary, for an idealized, reversible heat engine that absorbs heat Q1 from a 
hot reservoir at absolute temperature T1 and discards heat Q2 to a cold reservoir at 
absolute temperature T2, we have from (3.2.3)

 Q
T

Q
T

1

1

2

2

=  (3.2.4)

* The empirical temperature t of a gas thermometer is defi ned through the increase in volume at constant 
pressure (see (1.3.9)): V = V0(1 + at). Gay-Lussac found that a ≈ (1/273) °C−1. From this equation it 
follows that dV/V = adt/(1 + at). On the other hand, from the ideal gas equation pV = NRT, we have, 
at constant p, dV/V = dT/T. This enables us to relate the absolute temperature T to the empirical tem-
perature t by T = (1 + at)/a.
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All real heat engines that go through a cycle in fi nite time must involve irreversible 
processes such as fl ow of heat due to a temperature gradient. They are less effi cient. 
Their effi ciency h′ is less than the effi ciency of a reversible heat engine, i.e. h′ = 1 − 
(Q2/Q1) < 1 − (T2/T1). This implies T2/T1 < Q2/Q1 whenever irreversible processes are 
involved. Therefore, while the equality (3.2.4) is valid for a reversible cycle, for the 
operation of an irreversible cycle that we encounter in reality we have the 
inequality

 Q
T

Q
T

1

1

2

2

<  (3.2.5)

As we shall see below, irreversibility in Nature, or a sense of an ‘arrow of time’, is 
manifest in this inequality.

A spectacular example of a ‘heat engine’ in Nature is the hurricane. In a hurricane, 
heat is converted to kinetic energy of the hurricane wind. As summarized in Box 
3.1, and described in more detail in Appendix 3.1, by using Carnot’s theorem one 
can obtain an upper bound to the velocity of the hurricane wind.

3.3 The Second Law and the Concept of Entropy

The far-reaching import of the concepts originating in Carnot’s ‘Refl exions on the 
motive force of fi re’ was realized in the generalizations made by Rudolf Clausius 
(1822–1888), who introduced the concept of entropy, a new physical quantity as 
fundamental and universal as energy.

Clausius began by generalizing expression (3.2.4) that follows from Carnot’s 
theorem to an arbitrary cycle. This was done by considering composites of Carnot 
cycles in which the corresponding isotherms differ by infi nitesimal amount ∆T, 
as shown in Figure 3.3 (a). Let Q1 be the heat absorbed during the transformation 
from A to A′, at temperature T1 and let Q1′ be the heat absorbed during the 
transformation A′B at temperature (T1 + ∆T). Similarly we defi ne Q2′ and Q2 for the 
transformations CC′ and C′D occurring at temperatures T2 + ∆T and T2 respectively. 
Then the reversible cycle AA′BCC′DA can be thought of as a sum of the two revers-
ible cycles AA′C′DA and A′BCC′A′ because the adiabatic work A′C′ in one cycle 
cancels that of the second cycle, C′A. For the reversible cycle AA′BCC′D, we can 
therefore write
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 (3.3.1)

The above composition of cycles can be extended to an arbitrary closed path (as 
shown in Figure 3.3b) by considering it as a combination of a large number of 
infi nitesimal Carnot cycles. With the notation dQ > 0 if heat is absorbed by the 



Box 3.1 The Hurricane as a Heat Engine

The mechanism of a hurricane is essentially that of a heat engine as shown in the fi gure 
below in the cycle ABCD. The maximum intensity of a hurricane, i.e. the maximum 
hurricane wind speed, can be predicted using Carnot’s theorem for the effi ciency of a 
heat engine.
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In a hurricane, as the wind spirals inwards towards the eye at low pressure, enthalpy 
(heat) is absorbed at the warm ocean–air interface in an essentially isothermal pro-
cesses: water vaporizes and mixes with the air, carrying with it the enthalpy of vapor-
ization (segment AB). When this moist air reaches the hurricane’s eyewall, it rises 
rapidly to about 15 km along the eyewall. Since the pressure decreases with altitude, it 
expands adiabatically and cools (segment BC). As the rising moist air’s temperature 
drops, the water vapor in it condenses as rain, releasing the enthalpy of vaporization 
(latent heat), part of which is radiated into outer space. In a real hurricane, the air at 
the higher altitude fl ows out into the weather system. Theoretically, in order to close 
the Carnot cycle, it could be assumed that the enthalpy of vaporization is lost in an 
isothermal process (segment CD). The last step (segment DA) of the cycle is an adia-
batic compression of dry air. During the cycle, part of the enthalpy absorbed from the 
ocean is converted into mechanical energy of the hurricane wind.

The ‘hurricane heat engine’ operates between the ocean surface temperature T1 
(about 300 K) and the lower temperature T2 (about 200 K) at the higher altitude, close 
to the upper boundary of the troposphere (tropopause). The conversion of the heat of 
vaporization to mechanical energy of the hurricane wind can now be analyzed. In a 
time dt, if dQ1 is the heat absorbed at the ocean surface, dQ2 is the heat radiated at the 
higher altitude and dW is the amount of heat converted to mechanical energy of the 
hurricane wind, then, according to Carnot’s theorem:
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Rudolf Clausius (1822–1888) (Reproduced with permission from the Edgar Fahs Smith 
Collection, University of Pennsylvania Library)

Appendix 3.1 shows that the use of this expression in an analysis of the energetics of 
a hurricane leads to the following estimate for the maximum hurricane wind speed 
|vmax|:

v
T T

T
C
C

h hh
max ( )2 1 2

2

≈ −



 −

D

*

Here, Ch and CD are constants, h* is the specifi c enthalpy (enthalpy per unit mass) of 
the air saturated with moisture close to the ocean surface and h is the specifi c enthalpy 
of dry wind above the ocean surface (see fi gure above). All the terms on the right-hand 
side are experimentally measured or theoretically estimated. The ratio Ch/CD ≈ 1. Kerry 
Emanual, the originator of the above theory, has demonstrated that the above expres-
sion for vmax

 leads to remarkably good estimates of the hurricane wind speeds [4]. More 
details can be found in Appendix 3.1 and in the cited articles.
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Figure 3.3 Clausius’s generaliza-
tion of Carnot cycle. (a) Two Carnot 
cycles can be combined to obtain a 
larger cycle. (b) Any closed path can 
be thought of as a combination of a 
large number of infi nitesimal Carnot 
cycles

system and dQ < 0 if it is discarded, the generalization of (3.3.1) of an arbitrary 
closed path gives

 
dQ
T�∫ = 0  (3.3.2)

This equation has an important consequence: it means that the integral of the quan-
tity dQ/T along a path representing a reversible process from a state A to a state B 
depends only on the states A and B and is independent of the path, as described in 
Figure 3.4. Thus, Clausius saw that one can defi ne a function S that depends only 
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p
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Figure 3.4 That any function, such as Q/T in 
(3.3.2), whose integral over any closed path is 
zero can be used to defi ne a function of state 
can be seen as follows. Since the total integral 
for a closed path from A to B along 1 and 
from B to A along 2 is zero, it follows that 
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the integral of dQ/T from point A to point B is 
independent of the path; it depends only on the 
points A and B. Hence, if the initial reference 
state is fi xed, the integral, which is a function 
only of the fi nal state, is a state function

on the initial and fi nal states of a reversible process. If SA and SB are the values of 
this function in the states A and B, then we can write
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B d
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d− = =∫  (3.3.3)

By defi ning a reference state ‘O’, the new function of state S could be defi ned for 
any state X as the integral of dQ/T for a reversible process transforming the state O 
to the state X.

Clausius introduced this new quantity S in 1865 stating ‘I propose to call the 
magnitude S the entropy of the body, from the Greek word tpoph, transformation.’ 
[5, p. 357]. The usefulness of the above defi nition depends on the assumption that 
any two states can be connected by a reversible transformation.



If the temperature remains fi xed, then it follows from (3.3.3) that, for a reversible 
fl ow of heat Q, the change in entropy is Q/T. In terms of entropy, Carnot’s theorem 
(3.2.3) is equivalent to the statement that the sum of the entropy changes in a revers-
ible cycle is zero:
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0− =  (3.3.4)

In a reversible process, since the temperatures of the system and the reservoirs are 
the same when heat is exchanged, the change of entropy of the reservoir in any part 
of the cyclic process is the negative of the entropy change of the system.

In a less effi cient irreversible cycle, a smaller fraction of Q1 (the heat absorbed 
form the hot reservoir) is converted into work. This means that the amount of heat 
delivered to the cold reservoir by an irreversible cycle Qirr

2  is greater than Q2. There-
fore, We have
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 (3.3.5)

Since the cyclic engine returns to its initial state whether it is reversible or irrevers-
ible, there is no change in its entropy. On the other hand, since the heats transferred 
to the reservoirs and to the irreversible engine have opposite sign, the total change 
of entropy of the reservoirs is
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 (3.3.6)

if the reservoir temperatures can be assumed to be the same as the temperatures at 
which the engine operates. In fact, for heat to fl ow at a nonzero rate, the reservoir 
temperatures T1′ and T2′ must be such that T1′ > T1 and T2′ < T2. In this case, the 
increase in entropy is even larger than (3.3.6).

Generalizing the above result, for a system that goes through an arbitrary cycle, 
with the equalities holding for a reversible processes, we have

 
d

system
Q

T�∫ ≤ 0 ( )  (3.3.7)

For the ‘exterior’ with which the system exchanges heat, since dQ has the opposite 
sign, we then have

 
d

exterior
Q

T�∫ ≥ 0 ( )  (3.3.8)

At the end of the cycle, be it reversible or irreversible, there is no change in the sys-
tem’s entropy because it has returned to its original state. For irreversible cycles this 
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means that the system expels more heat to the exterior. This is generally a conver-
sion of mechanical energy into heat through irreversible processes. Consequently, 
the entropy of the exterior increases. Thus, the entropy changes may be summarized 
as follows:

reversible cycle d
d

d
d

S
Q

T
S

Q
T

= = =∫ ∫� � 0  (3.3.9)

irreversible cycle d
d

d
d

S
Q

T
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Q
T

> = <∫ ∫� �0 0,  (3.3.10)

As we shall see in the following section, this statement can be made more precise by 
expressing the entropy change dS as a sum of two parts:

 d d de iS S S= +  (3.3.11)

Here, deS is the change of the system’s entropy due to exchange of energy and matter 
and diS is the change in entropy due to irreversible processes within the system. For 
a closed system that does not exchange matter, deS = dQ/T. The quantity deS could 
be positive or negative, but diS can only be equal to or greater than zero. In a cyclic 
process that returns the system to its initial state, since the net change in entropy 
must be zero, we have

 d d dS S Se i� ��∫ ∫∫= + =  0  (3.3.12)

Since diS ≥ 0, we must have di�∫ ≥S 0 . For a closed system, from (3.3.12) we imme-
diately obtain the previous result (3.3.10):
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d
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This means that, for the system to return to its initial state, the entropy di�∫ S gener-
ated by the irreversible processes within the system has to be discarded through the 
expulsion of heat to the exterior. There is no real system in nature that can go 
through a cycle of operations and return to its initial state without increasing the 
entropy of the exterior, or more generally the ‘universe’. Every process in Nature 
increases the entropy, thus establishing a distinction between the past and future. 
The Second Law establishes an arrow of time: the increase of entropy distinguishes 
the future from the past.

STATEMENTS OF THE SECOND LAW

The limitation to the convertibility of heat to work that Carnot discovered is one 
manifestation of a fundamental limitation in all natural processes: it is the Second 
Law of thermodynamics. The second law can be formulated in many equivalent 



ways. For example, as a statement about a macroscopic impossibility, without any 
reference to the microscopic nature of matter:

It is impossible to construct an engine which will work in a complete cycle, and convert all 
the heat it absorbs from a reservoir into mechanical work.

A statement perfectly comprehensible in macroscopic, operational terms. A cyclic 
engine that converts all heat to work is shown in Figure 3.5. Since the reservoir or 
the ‘exterior’ only loses heat, inequality (3.3.8) is clearly violated. Such an engine is 
sometimes called a perpetual motion machine of the second kind and the Second Law 
is the statement that such a machine is impossible. The equivalence between this 
statement and Carnot’s theorem can be seen easily and it is left as an exercise for 
the reader.

Another way of stating the Second Law is due to Rudolf Clausius (1822–1888):

Heat cannot by itself pass from a colder to a hotter body.

If heat could pass spontaneously from a colder body to a hotter body, then a per-
petual motion machine of the second kind can be realized by simply making the 
heat Q2 expelled by a cyclic heat engine to the colder reservoir pass by itself to the 
hotter reservoir. The result would be the complete conversion of the heat (Q1 − Q2) 
to work.

As we have seen above, any real system that goes through a cycle of operations 
and returns to its initial state does so only by increasing the entropy of its exterior 
with which it is interacting. This also means that in no part of the cycle, the sum of 
entropy changes of the system and its exterior can be negative because if it were so, 
we could complete the rest of the cycle through a reversible transformation, which 
does not contribute to the change of entropy. The net result is a decrease of entropy 
in a cyclic process. Thus, the Second Law may also be stated as

The sum of the entropy changes of a system and its exterior can never decrease.

T

Heat 
reservoir 

Heat Q

Work W = Q

Perpetual motion 
machine of the 
second kind 

Figure 3.5 A perpetual motion machine of the second kind 
absorbs heat Q and converts all of it to work W. Such a 
machine, though consistent with the First Law, is impossible 
according to the Second Law. The existence of such a 
machine would violate the inequalities (3.3.7) and (3.3.8)
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Thus, the universe as a whole can never return to its initial state. Remarkably, Car-
not’s analysis of heat engines has led to the formulation of a cosmological principle. 
The two laws of thermodynamics are best summarized by Rudolf Clausius thus:

The energy of the universe is a constant.
The entropy of the universe approaches a maximum.

3.4 Entropy, Reversible and Irreversible Processes

The usefulness of the concept of entropy and the second law depends on our ability 
to defi ne entropy for a physical system in a calculable way. Using (3.3.3), if the 
entropy So of a reference or standard state is defi ned, then the entropy of an arbitrary 
state SX can be obtained through a reversible process that transforms the state O to 
the state X (see Figure 3.6):

 S S
Q

T
X o

O

X d= + ∫  (3.4.1)

(In practice dQ is measured with the knowledge of the heat capacity using dQ = C 
dT.) In a real system, the transformation from the state O to the state X occurs in 
a fi nite time and it involves irreversible processes along the path I. In this process, 
the entropy of the system, and hence the universe, increases. In classical thermody-
namics it is assumed that every irreversible transformation that a system undergoes 
can also be achieved through a reversible transformation for which (3.4.1) is valid. In 
other words, it is assumed that every irreversible transformation that results in a 
certain change in the entropy of the system can be exactly reproduced through a 
reversible process in which the entropy change is solely due to the exchange of heat. 
Since the change in entropy of the system depends only on the initial and fi nal states, 
the change in entropy calculated using a reversible path will be equal to the entropy 
change produced by the irreversible processes. However, it must be noted that a 
reversible transformation from an initial state O to the fi nal state X (Figure 3.6) 
may give the right value for the change in entropy of the system, but it leaves the 
entropy of the universe unchanged; in a reversible process, the change in entropy of 
the system is compensated by the opposite change in the entropy of the exterior 
leaving the entropy of the universe unchanged. On the other hand, the naturally 
occurring irreversible transformation from O to X increases the entropy of the uni-
verse. (Some authors restrict the above assumption to transformations between 
equilibrium states; this restriction excludes chemical reactions, in which the trans-
formations are often from nonequilibrium state to an equilibrium state (see Chapters 
4 and 7).)

A process is reversible only in the limit of infi nite slowness: as perfect reversibility 
is approached, the speed of the process approaches zero. As Max Planck notes in 
his treatise [6, p. 86], ‘Whether reversible processes exist in nature or not, is not a 
priori evident or demonstrable’. But, irreversibility, if it exists, has to be universal 
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Figure 3.6 Reversible and irreversible processes: (a) The 
system reaches the state X from the standard state O 
through a path I involving irreversible processes. It is 
assumed that the same transformation can be achieved 
through a reversible transformation R. (b) An example 
of an irreversible process is the spontaneous expansion 
of a gas into a vacuum, as shown in the upper part. The 
same change can be achieved reversibly through an iso-
thermal expansion of a gas that occurs infi nitely slowly 
so that the heat absorbed from the reservoir equals the 
work done on the piston. In the latter case, the change 
in entropy can be calculated using dS = dQ/T
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because a spontaneous decrease of entropy in one system could be utilized to 
decrease in entropy of any other system through appropriate interaction; a sponta-
neous decrease of entropy of one system implies a spontaneous decrease of entropy 
of all systems. Hence, either all systems are irreversible, or none are as Max Planck 
emphasized [6].

The notion of an idealized reversible path provides a convenient way for calculat-
ing entropy changes. But it is also lacking in providing the real connection between 
physical processes and entropy. Addressing this issue in his 1943 monograph The 
Nature of Thermodynamics, P.W. Bridgman wrote [7, p. 133]:

It is almost always emphasized that thermodynamics is concerned with reversible processes 
and equilibrium states and that it can have nothing to do with irreversible processes or 
systems out of equilibrium in which changes are progressing at a fi nite rate. The reason for 
the importance of equilibrium states is obvious enough when one refl ects that temperature 
itself is defi ned in terms of equilibrium states. But the admission of general impotence in the 
presence of irreversible processes appears on refl ection to be a surprising thing. Physics does 
not usually adopt such an attitude of defeatism.

Today, in most texts on thermodynamics, an irreversible transformation is usually 
identifi ed by the Clausius inequality:

 d
d

S
Q

T
≥  (3.4.2)

which we saw in the last section. But the fact that Clausius considered irreversible 
processes as an integral part of formulating the Second Law is generally not men-
tioned. In his ninth memoir, Clausius included irreversible processes explicitly into 
the formalism of entropy and replaced the inequality (3.4.2) by an equality [8, 
p. 363, eq. (71)]:

 N S S
Q

T
= − − ∫O

d
 (3.4.3)

in which S is the entropy of the fi nal state and SO is the entropy of the initial state. 
He identifi ed the change in entropy due to exchange of heat with the exterior by the 
term dQ/T (which is compensated by equal gain or loss of heat by the exterior). 
Clausius wrote: ‘The magnitude N thus determines the uncompensated transforma-
tion’ (‘uncompensirte Verwandlung’) [8, p. 363]. It is the entropy produced by irre-
versible processes within the system. While dQ can be positive or negative, the 
Clausius inequality (3.4.2) implies that the change in entropy due to irreversible 
processes can only be positive:

 N S S
Q

T
= − − >∫O

d
0  (3.4.4)

Clausius also stated the Second Law as: ‘Uncompensated transformations can only 
be positive’ [8, p. 247].



Perhaps Clausius hoped to, but did not, provide a means of computing the 
entropy N associated with irreversible processes. Nineteenth-century thermodynam-
ics remained in the restricted domain of idealized reversible transformation and 
without a theory that related entropy explicitly to irreversible processes. Some 
expressed the view that entropy is a physical quantity that is spatially distributed 
and transported, e.g. [9], but still no theory relating irreversible processes to entropy 
was formulated in the nineteenth century.

Noticing the importance of relating entropy to irreversible processes, Pierre 
Duhem (1861–1916) began to develop a formalism. In his extensive and diffi cult 
two-volume work titled Energétique [10], Duhem explicitly obtained expressions for 
the entropy produced in processes involving heat conductivity and viscosity [11]. 
Some of these ideas of calculating the ‘uncompensated heat’ also appeared in the 
work of the Polish researcher L. Natanson [12] and the Viennese school led by 
G. Jaumann [13–15], where the notions of entropy fl ow and entropy production 
were developed.

Formulation of a theory of entropy along these lines continued during the twen-
tieth century, and today we do have a theory in which the entropy change can be 
calculated in terms of the variables that characterize the irreversible processes. It is 
a theory applicable to all systems in which the temperature is well defi ned at every 
location. For example, the modern theory relates the rate of change of entropy to 
the rate of heat conduction or the rates of chemical reaction. To obtain the change 
in entropy, it is not necessary to use infi nitely slow reversible processes.

With reference to Figure 3.6, in the classical formulation of entropy it is often 
stated that, along the irreversible path I, the entropy may not be a function of the 
total energy and the total volume and hence it is not defi ned. However, for a large 
class of systems, the notion of local equilibrium makes entropy a well-defi ned quan-
tity, even if it is not a function of the total energy and volume. We shall discuss the 
foundations of this and other approaches in Chapter 11. For such systems, entropy, 
which represents irreversibility in nature, can be related directly to irreversible 
processes.

In his pioneering work on the thermodynamics of chemical processes, Théophile 
De Donder (1872–1957) [16–18] incorporated the ‘uncompensated transformation’ 
or ‘uncompensated heat’ of Clausius into the formalism of the Second Law through 
the concept of affi nity (which is presented in Chapter 4). Unifying all these develop-
ments, Ilya Prigogine (1917–2003) formulated the ‘modern approach’ incorporating 
irreversibility into the formalism of the second law by providing general expressions 
for the computation of entropy produced by irreversible processes [19–21], thus 
giving the ‘uncompensated heat’ of Clausius a sound theoretical basis. Thus, ther-
modynamics evolved into a theory of irreversible processes in contrast to classical 
thermodynamics, which is a theory of equilibrium states. We shall follow this more 
general approach in which, along with thermodynamic states, irreversible processes 
appear explicitly in the formalism.

The basis of the modern approach is the notion of local equilibrium. For a very 
large class of systems that are not in thermodynamic equilibrium, thermodynamic 
quantities such as temperature, concentration, pressure, internal energy remain 
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well-defi ned concepts locally, i.e. one could meaningfully formulate a thermody-
namic description of a system in which intensive variables such as temperature and 
pressure are well defi ned in each elemental volume, and extensive variables such as 
entropy and internal energy are replaced by their corresponding densities. Thermo-
dynamic variables can thus be functions of position and time. This is the assumption 
of local equilibrium. There are, of course, systems in which this assumption is not a 
good approximation, but such systems are exceptional. In most hydrodynamic and 
chemical systems, local equilibrium is an excellent approximation. Modern com-
puter simulations of molecular dynamics have shown that if initially the system is 
in such a state that temperature is not well defi ned, then in a very short time (few 
molecular collisions) the system relaxes to a state in which temperature is a well-
defi ned quantity [22].

Ilya Prigogine began the modern formalism by expressing the changes in entropy 
as a sum of two parts [19]:

 d d de iS S S= +  (3.4.5)

in which deS is the entropy change due exchange of matter and energy with 
the exterior and diS is the entropy change due to ‘uncompensated transformation’, 
the entropy produced by the irreversible processes in the interior of the system 
(Figure 3.7).

Our task now is to obtain explicit expressions for deS and diS in terms of experi-
mentally measurable quantities. Irreversible processes can in general be thought of 
as thermodynamic forces and thermodynamic fl ows. The thermodynamic fl ows are a 

diS

deS

Figure 3.7 Entropy changes 
in a system consist of two 
parts: diS due to irreversible 
processes and deS due to 
exchange of energy and 
matter. According to the 
second law, the change diS 
can only be positive. The 
entropy change deS can be 
positive or negative



Thot Tcold

Matter flow = dN/dt

Heat flow = dQ/dt

High conc. Low conc. 

Figure 3.8 Flow of heat and diffu-
sion of matter are examples of irre-
versible processes

consequence of the thermodynamic forces. For example, temperature gradient is the 
thermodynamic force that causes an irreversible fl ow of heat; similarly, a concentra-
tion gradient is the thermodynamic force that causes the fl ow of matter (Figure 3.8). 
In general, the irreversible change diS, is associated with a fl ow dX of a quantity, 
such as heat or matter, that has occurred in a time dt. For the fl ow of heat, dX = 
dQ, the amount of heat that fl owed in time dt; for the case of matter fl ow, dX = dN, 
moles of the substance that fl owed in time dt. In each case, the change in entropy 
can be written in the form

 d diS F X=  (3.4.6)

in which F is the thermodynamic force. The thermodynamic forces are expressed as 
functions of thermodynamic variables such as temperature and concentrations. In 
the following section we shall see that, for the fl ow of heat shown in Figure 3.8, the 
thermodynamic force takes the form F = (1/Tcold − 1/Thot). For the fl ow of matter, 
the corresponding thermodynamic force is expressed in terms of affi nity, which, as 
noted above, is a concept developed in Chapter 4. All irreversible processes can be 
described in terms of thermodynamic forces and thermodynamic fl ows. In general, 
the irreversible increase in entropy diS is the sum of all the increases due to irrevers-
ible fl ows dXk. We then have the general expression

 d d or
d
d

d
d

i
iS F X
S
t

F
X
t

k k
k

k
k

k

= ≥ = ≥∑ ∑0 0  (3.4.7)

Equation (3.4.7) is modern statement the Second Law of thermodynamics. The rate of 
entropy production due to each irreversible process is a product of the corresponding 
thermodynamic force Fk and the fl ow Jk = dXk/dt and it can only be positive.
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The entropy exchange with the exterior deS is expressed in terms of the fl ow of 
heat and matter: For isolated systems, since there is no exchange of energy or 
matter:

 d and de iS S= ≥0 0  (3.4.8)

For closed systems, which exchange energy but not matter:

 d
d d d

and de iS
Q

T
U p V

T
S= = + ≥ 0  (3.4.9)

In this expression, dQ is the amount of heat exchanged by the system in a time dt. 
(By defi ning dQ in this way, we avoid the ‘imperfect differentials’ used in classical 
thermodynamics.)

For open systems, which exchange both matter and energy:

 d
d d

d and de e matter iS
U p V

T
S S= + + ≥( ) 0  (3.4.10)

deSmatter is the exchange of entropy due to matter fl ow. This term can be written in 
terms of chemical potential, a concept that will be developed Chapter 4. (When there 
is a fl ow of matter, as discussed in Section 2.7, dU + p dV ≠ dQ, because the internal 
and kinetic energies of the matter fl owing through the system must be included.)

Whether we consider isolated, closed or open systems, diS ≥ 0. It is the statement 
of the Second Law in its most general form. There is another important aspect to 
this statement: it is valid for all subsystems, not just for the entire system. For 
example, if we assume that the entire system is divided into two subsystems, we not 
only have

 d d di i iS S S= + ≥1 2 0  (3.4.11)

in which diS1 and diS2 are the entropy productions in each of the subsystems, but 
we also have

 d di iS S1 20 0≥ ≥  (3.4.12)

We cannot have, for example:

 d d but d d di i i i iS S S S S1 2 1 20 0 0> < = + ≥,  (3.4.13)

This statement is stronger and more general than the classical statement that the 
entropy of an isolated system can only increase.

In summary, for closed systems, the First and the Second Laws can be stated as

 d d dU Q W= +  (3.4.14)



 d d d in which d d d /i e i eS S S S S Q T= + ≥ =0,  (3.4.15)

If a transformation of the state is assumed to take place through a reversible process, 
diS = 0 and the entropy change is solely due to fl ow of heat. We then obtain the 
equation

 d d d d dU T S W T S p V= + = −  (3.4.16)

which is found in texts that confi ne the formulation of thermodynamics to idealized 
reversible processes. For open systems, the changes in energy and entropy have 
additional contributions due to the fl ow of matter. In this case, though the defi nition 
of heat and work need careful consideration, there is no fundamental diffi culty in 
obtaining dU and deS.

Finally, we must note that the above formulation enables us to calculate only the 
changes of entropy. It does not give us a way to obtain the absolute value of entropy. 
In this formalism, entropy can be known only up to an additive constant. However, 
in 1906, Walther Nernst (1864–1941) formulated a law which stated that the entropy 
of all systems approaches zero as the temperature approaches zero [23]:

 S T→ →0 0as  (3.4.17)

Walther Nernst (1864–1941) (Reproduced with permission from the Edgar Fahs Smith 
Collection, University of Pennsylvania Library)
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This law is often referred to as the Third Law of thermodynamics or the Nernst heat 
theorem. Its validity has been well verifi ed by experiment.

The Third Law enables us to give the absolute value for the entropy. The physical 
basis of this law lies in the behavior of matter at low temperature that can only be 
explained by quantum theory. It is remarkable that the theory of relativity gave us 
means to defi ne absolute values of energy and quantum theory enables us to defi ne 
absolute values of entropy.

The concept of entropy has its foundation in macroscopic processes. No mention 
has been made about its meaning at a molecular level. In order to explain what 
entropy is at a molecular level, Ludwig Boltzmann (1844–1906) introduced the sta-
tistical interpretation of entropy. Box 3.2 gives an introduction to this topic; a more 
detailed discussion of this topic is in Chapter 17.

Box 3.2 Statistical Interpretation of Entropy

As we have seen in this chapter, the foundation of the concept of entropy as a state 
function is entirely macroscopic. The validity of the Second Law is rooted in the reality 
of irreversible processes. In stark contrast to the irreversibility of processes we see all 
around us, the laws of both classical and quantum mechanics possess no such irrevers-
ibility. Classical and quantum laws of motion are time symmetric: if a system can 
evolve from a state A to a state B then its time reversed evolution, from B to A, is also 
admissible. The laws of mechanics make no distinction between evolution into the 
future and evolution into the past. For example, the spontaneous fl ow of gas molecules 
from a location at higher concentration to a location at lower concentration and its 
reverse (which violates the Second Law) are both in accord with the laws of mechanics. 
Processes that are ruled impossible by the Second Law of thermodynamics do not 
violate the laws of mechanics. Yet all irreversible macroscopic processes, such as the 
fl ow of heat, are the consequence of motion of atoms and molecules that are governed 
by the laws of mechanics; the fl ow of heat is a consequence of molecular collisions that 
transfer energy. How can irreversible macroscopic processes emerge from reversible 
motion of molecules? What is the relation between entropy and the microscopic con-
stituents of matter? The energy of a macroscopic system is the sum of the energies of 
its microscopic constituents. What about entropy? Addressing these questions, Ludwig 
Boltzmann (1844–1906) proposed an extraordinary relation; entropy is a logarithmic 
measure of the number of microscopic states that correspond to the macroscopic 
state:

S = kB ln W

in which W is the number of microstates corresponding to the macrostate whose 
entropy is S. (We shall discuss this relation in detail in Chapter 17.) The constant kB 
is now called the Boltzmann constant;* kB = 1.381 × 10−23 J K−1. The gas constant R = 
kBNA, in which NA is the Avogadro number. The following example will illustrate the 
meaning of W. Consider the macrostate of a box containing a gas with N1 molecules 
in one half and N2 in the other (see fi gure below). Each molecule can be in one half or 
the other. The total number of ways in which the (N1 + N2) molecules can be distributed 
between the two halves such that N1 molecules are in one and N2 molecules in the other 



is equal to W. The number of distinct ‘microstates’ with N1 molecules in one half and 
N2 in the other is

W
N N
N N

= +( )!
! !

1 2

1 2

N1 N2

According to Boltzmann, macrostates with larger W are more probable. The irrevers-
ible increase of entropy then corresponds to evolution to states of higher probability 
in the future. Equilibrium states are those for which W is a maximum. In the above 
example, it can be shown that W reaches a maximum when N1 = N2.

* Ter Harr notes that it was Max Planck who introduced kB in the above form; Planck also determined its 
numerical value (D. ter Haar, The Old Quantum Theory. 1967, Pergamon Press: London; 12.)

3.5 Examples of Entropy Changes due to Irreversible Processes

To illustrate how entropy changes are related to irreversible processes, we shall 
consider some simple examples. The examples we consider are ‘discrete systems’ in 
which the system consists of two parts that are not mutually in equilibrium. An 
example of a continuous system (whose description generally requires vector 
calculus) is presented in Appendix 3.2.

Heat Conduction

Consider an isolated system which we assume (for simplicity) consists of two parts, 
each part having a well-defi ned temperature, i.e. each part is locally in equilibrium. 
Let the temperatures of the two parts be T1 and T2 (as shown in Figure 3.9), with T1 
being greater than T2. Let dQ be the amount of heat fl ow from the hotter part to the 
colder part in a time dt. Since this isolated system does not exchange entropy with 
the exterior, deS = 0. Also, since the volume of each part is a constant, dW = 0. The 
energy change in each part is due solely to the fl ow of heat: dUi = dQi, i = 1, 2. In 
accordance with the First Law, the heat gained by one part is equal to the heat lost 
by the other. Therefore, −dQ1 = dQ2 = dQ. Both parts are locally in equilibrium with 
a well-defi ned temperature and entropy. The total change in entropy diS of the system 
is the sum of the changes of entropy in each part due to the fl ow of heat:
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dQ/dt

T1 T2

Fig. 3.9 Entropy production due 
to heat fl ow. The irreversible fl ow 
of heat between parts of unequal 
temperature results in an increase in 
entropy. The rate at which entropy 
is produced, diS/dt, is given by 
(3.5.3)

 d
d d

diS
Q
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Q

T T T
Q= − + = −
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 (3.5.1)

Since the heat fl ows irreversibly from the hotter to the colder part, dQ is positive if 
T1 > T2. Hence, diS > 0. In expression (3.5.1), dQ and (1/T1 − 1/T2) respectively cor-
respond to dX and F in (3.4.6). In terms of the rate of fl ow of heat dQ/dt, the rate 
of entropy production can be written as
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 (3.5.2)

Now the rate of fl ow of heat or the heat current JQ ≡ dQ/dt is given by the laws of 
heat conduction. For example, according to the Fourier law of heat conduction, JQ 
= a(T1 − T2), in which a is the coeffi cient of heat fl ow (it can be expressed in terms 
of the coeffi cient of heat conductivity and the area of cross section). Note that the 
‘thermodynamic fl ow’ JQ is driven by the ‘thermodynamic force’ F = (1/T2 − 1/T1). 
For the rate of entropy production we have from (3.5.2):
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 (3.5.3)

Owing to the fl ow of heat, the two temperatures eventually become equal and the 
entropy production ceases. This is the state of equilibrium. Entropy production must 
vanish in the state of equilibrium, which implies that the force F and the correspond-
ing fl ux JQ both vanish. In fact, we can deduce the properties of the equilibrium 
state by stipulating that all entropy production must vanish in that state.

From (3.5.3) we see that the entropy production rate diS/dt is a quadratic function 
of the deviation ∆ ≡ (T1 − T2). In the state of equilibrium, the entropy production 
rate takes its minimum value equal to zero. This is indicated graphically in Figure 
3.10a.



SdiS/dt

∆ ∆
(a)             (b) 

Figure 3.10 Two equivalent properties that characterize 
the state of equilibrium. (a) The entropy production rate 
diS/dt as a function of the difference in temperatures ∆ ≡ (T1 
− T2) of the two parts of the system shown in Figure 3.6. At 
equilibrium, the entropy production rate is zero. (b) At 
equilibrium the entropy reaches its maximum value. Both 
properties can be used to identify a system in equilibrium

A nonequilibrium state in which T1 ≠ T2 evolves to the equilibrium state in which 
T1 = T2 = T through continuous increase of entropy. Therefore, the entropy of the 
equilibrium state must be larger than the entropy of any nonequilibrium state. In 
Chapter 15, we will see explicitly that for a small deviation ∆ = (T1 − T2) from the 
state of equilibrium the corresponding change ∆S is a quadratic function of ∆ attain-
ing a maximum at ∆ = 0 (see Fig. 3.10b).

This example illustrates the general assertion that the state of equilibrium can be 
characterized either by the principle of minimum (equal to zero) rate of entropy 
production, or the principle of maximum entropy.

IRREVERSIBLE EXPANSION OF A GAS

In a reversible expansion of a gas, the pressure of the gas and that on the piston are 
assumed to be the same. If we consider an isothermal expansion of a gas which is 
constant temperature T by virtue of its contact with a heat reservoir, the change in 
entropy of the gas deS = dQ/T, in which dQ is the heat fl ow from the reservoir to 
the gas that is necessary to maintain the temperature constant. This is an ideal situ-
ation. In any real expansion of a gas that takes place in a fi nite time, the pressure 
of the gas is greater than that on the piston. If pgas is the pressure of the gas and 
ppiston that the pressure on the piston, the difference (pgas − ppiston) is the force per unit 
area that moves the piston. The irreversible increase in entropy in this case is 
given by

 d di
gas pistonS

p p
T

V=
−

> 0  (3.5.4)

In this case, the term (pgas − ppiston)/T corresponds to the ‘thermodynamic force’ and 
dV/dt the corresponding “fl ow” ’. The term (pgas − ppiston) dV may be identifi ed as the 
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‘uncompensated heat’ of Clausius. Since the change in the volume and (pgas − ppiston) 
have the same sign, diS is always positive. In this case, dS = deS + diS = dQ/T + (pgas 
− ppiston) dV/T. In the case of an ideal gas, since the energy is only a function of T, 
the initial and fi nal energies of the gas remain the same; the heat absorbed is equal 
to the work done in moving the piston ppiston dV. For a given change in volume, the 
maximum work is obtained for a reversible process in which pgas = ppiston.

3.6 Entropy Changes Associated with Phase Transformations

In this section we will consider a simple example of entropy exchange deS. Changes 
in the phase of a system, from a solid to a liquid or a liquid to vapor (as shown in 
Figure 1.3), provide a convenient situation because, at the melting or boiling point, 
the temperature remains constant even when heat is being exchanged. Hence, in the 
expression for the entropy change associated with the heat exchange, deS = dQ/T, 
the temperature T remains constant. The total entropy change ∆S due to the exchange 
of heat ∆Q is now easy to determine. In a solid-to-liquid transition, for example, if 
the melting temperature is Tm, we have

 ∆ ∆∆

S
dQ
T

Q
T

Q

= =∫
m m0

 (3.6.1)

As was discovered by Joseph Black (see Section 1.5), the heat absorbed, ‘the latent 
heat’, converts the solid to a liquid at the fi xed temperature. Generally, this change 
happens at a fi xed pressure and, hence, we may equate ∆Q to ∆H, the enthalpy 
change associated with melting. The enthalpy associated with the conversion of 
1 mol of the solid to liquid is called the molar enthalpy of fusion ∆Hfus. The corre-
sponding change in entropy, the molar entropy of fusion ∆Sfus, can now be written 
as

 ∆ ∆
S

H
T

fus
fus

m

=  (3.6.2)

Water, for example, has a heat of fusion of 6.008 kJ mol−1 and a melting temperature 
of 273.15 K at a pressure of 1.0 atm. When 1 mol of ice turns to water, the entropy 
change ∆Sfus = 21.99 J K−1 mol−1.

Similarly, if the conversion of a liquid to vapor occurs at a constant pressure at 
its boiling point Tb, then the molar entropy of vaporization ∆Svap and the molar 
enthalpy of vaporization ∆Hvap are related by

 ∆
∆

S
H
T

vap
vap

b

=  (3.6.3)

The heat of vaporization of water is 40.65 kJ mol−1. Since the boiling point is 373.15 K 
at a pressure of 1.0 atm, from the above equation it follows that the molar entropy 



change ∆Svap = 108.96 J K−1 mol−1, about fi ve times the entropy change associated 
with the melting of ice. Since entropy increases with volume, the large increase in 
volume from about 18 mL (volume of 1 mol of water) to about 30 L (volume of 1 mol 
of steam at p = 1 atm) is partly responsible for this larger change. The molar enthal-
pies of fusion and vaporization of some compounds are given in Table 3.1.

3.7 Entropy of an Ideal Gas

In this section we shall obtain the entropy of an ideal gas. Being a state function, 
entropy of an ideal gas can be expressed as a function of its volume, temperature 
and the amount in moles. For a closed system in which the changes of entropy are 
only due to fl ow of heat, if we assume that the changes in volume V and temperature 
T take place so as to make diS = 0, then we have seen that (see eqn. (3.4.16)) dU = 
TdS + dW. If dW = −pdV, and if we express dU as function of V and T we 
obtain:

 T S
U
V

V
U
T

T p V
T V

d d d d= ∂
∂





 + ∂

∂




 +  (3.7.1)

For an ideal gas, (∂U/∂V)T = 0, because the energy U is only a function of T – as 
was demonstrated in the experiments of Joule and Gay-Lussac and others (see 
Section 1.3, Equation (1.3.6)). Also, by defi nition (∂U/∂T)V = NCmV in which CmV is 
the molar heat capacity at constant volume, which is found to be a constant. Hence 
(3.7.1) may be written as

 d d
d

mS
p
T

V NC
T

T
V= +  (3.7.2)

Table 3.1 Enthalpies of fusion of and vaporization at p = 101.325  kPa = 1.0  atm and the 
corresponding transition temperatures

Substance Tm/K ∆Hfus/kJ  mol−1 Tb/K ∆Hvap/kJ  mol−1

H2O 273.15 6.01 373.15 40.65
CH3OH 175.5 3.18 337.7 35.21
C2H5OH 159.0 5.02 351.4 38.56
CH4 90.69 0.94 111.7  8.19
CCl4 250.15 3.28 349.9 29.82
NH3 195.4 5.66 239.8 23.33
CO2

(sublimes)
Tsub = 194.65 ∆Hsub = 25.13

CS2 161.6 4.40 319.1 26.74
N2 63.15 0.71  77.35  5.57
O2 54.36 0.44  90.19  6.82

Source: D. R. Lide (ed.) CRC Handbook of Chemistry and Physics, 75th edition. 1994, CRC Press: Ann 
Arbor.
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Using the ideal gas law, pV = NRT, (3.7.2) can be integrated to obtain

 S V T N S V T N NR V V NC T TmV, , , ,( ) = ( ) + ( ) + ( )0 0 0 0 0ln ln  (3.7.3)

in which S0 in the entropy of the initial state (V0, T0). Since U = CmVNT + U0 for an 
ideal gas, entropy can be written as a function of V, N and U. As described in Box 
3.3, entropy is an extensive function. In expression (3.7.3), the extensivity of S as a 
function of V and N is not explicit because S0(V0, T0, N) contains terms that make 
S extensive. The requirement that entropy is extensive, i.e. lS(V, T, N) = S(lV, T, 
lN), can be used to show (Exercise 3.10) that the entropy of an ideal gas has the 
form

 S V T N N s R V N C TV( , , ) [ ln( ) ln( )]= + +0 / m  (3.7.4)

in which s0 is a constant. In this form, the extensivity of S is explicit and it is easy 
to verify that lS(U, T, N) = S(lU, T, lN).

3.8 Remarks about the Second Law and Irreversible Processes

As was emphasized by Planck [24], the statement of the Second Law and the concept 
of entropy can be made entirely macroscopic. It is perhaps why Einstein was con-
vinced that thermodynamics, ‘within the framework of applicability of its basic 
concepts, it will never be overthrown’. Many modern expositions present the Second 
Law and entropy starting with their microscopic defi nitions based on probability 
that belie their independence from microscopic theories of matter.

The Second Law is universal. In fact, its universality gives us a powerful means 
to understand the thermodynamic aspects of real systems through the usage of ideal 
systems. A classic example is Planck’s analysis of radiation in thermodynamic equi-
librium with matter (the ‘black-body radiation’) in which Planck considered ideal-
ized simple harmonic oscillators interacting with radiation. Planck considered simple 
harmonic oscillators not because they are good approximations of molecules, but 
because the properties of radiation in thermal equilibrium with matter are universal, 
regardless of the particular nature of matter that it is interacting with. The conclu-
sions one arrives at using idealized oscillators and the laws of thermodynamics must 
also be valid for all other forms of matter, however complex.

In the modern context, the formulation summarized in Figure 3.7 is fundamental 
for understanding thermodynamic aspects of self-organization, evolution of order 
and life that we see in Nature. When a system is isolated, deS = 0. In this case, the 
entropy of the system will continue to increase due to irreversible processes and 
reach the maximum possible value, the state of thermodynamic equilibrium. In the 
state of equilibrium, all irreversible processes cease. When a system begins to 
exchange entropy with the exterior, then, in general, it is driven away from equilib-
rium and the entropy-producing irreversible processes begin to operate. The exchange 
of entropy is due to exchange of heat and matter. The entropy fl owing out of the 



Box 3.3 Extensivity of Energy and Entropy

At a fi xed pressure and temperature, if the amount of substance N is changed by a 
factor l, the volume V also changes by the same factor. In many cases, the system’s 
entropy S and energy U also change by the same factor l. This property is called 
extensivity. Entropy is an extensive function of U, V and N: S = S(U, V, N). That 
entropy is an extensive function can be expressed mathematically as

lS(U, V, N) = S(lU, lV, lN)

Similarly, energy is a function of S, V and N: U = U(S, V, N) and

lU(S, V, N) = U(lS, lV, lN)

Physically, extensivity implies that the combining of l identical systems results in a 
larger system whose entropy is l times the entropy of each of the systems. It means 
the processes of combining l identical systems is reversible with no entropy or energy 
change. Here is an example. Initially, two identical compartmentalized subsystems 
contain an ideal gas, both at the same p and T (see fi gure below). The process of remov-
ing the wall between the two subsystems and creating a system that is twice as large 
requires neither work nor heat. Hence, the energy of the larger system is the sum of 
the energies of the subsystems.

2U  2V  2N
2S

U V N
S

U V N
S

Also, since the wall does not contribute to entropy, the process is reversible with no 
entropy change: deS = diS = 0. Therefore, we deduce that the initial entropy, which is 
the sum of the entropies of the two identical systems, equals the entropy of the fi nal 
larger system. In this sense the entropy and energy of most systems can be assumed to 
be extensive functions.

On the other hand, entropy and energy are not extensive functions as expressed in the 
equations above when the process of combining identical systems to create a larger 
system involves a change in energy and entropy. Such is the case for very small systems, 
whose surface energy and entropy cannot be ignored as they can be for larger systems. 
When two small drops of liquid are brought into contact, for example, they spontane-
ously coalesce to form a larger drop (see fi gure above). Because the surface of the larger 
drop is not equal to the sum of the surfaces of the two initial drops, the energy of the 
larger drop does not equal the sum of energies of the two smaller drops. As we shall 
see in later chapters, diS > 0 in this process. Note also that it requires work to break 
the bigger drop into two smaller drops. Hence, neither entropy nor energy obeys the 
above equations. However, there is no fundamental diffi culty in taking the energy and 
entropy of the surface into account and formulating the thermodynamics of small 
systems.
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system is always larger than the entropy fl owing into the system, the difference 
arising due to entropy produced by irreversible processes within the system. As we 
shall see in the following chapters, systems that exchange entropy with their exterior 
do not simply increase the entropy of the exterior, but may undergo dramatic spon-
taneous transformations to ‘self-organization’. The irreversible processes that produce 
entropy create these organized states. Such self-organized states range from convec-
tion patterns in fl uids to life. Irreversible processes are the driving force that creates 
this order.

Appendix 3.1 The Hurricane as a Heat Engine

The mechanism of a hurricane is essentially that of a heat engine, as shown in Figure 
A3.1 in the cycle ABCD. The maximum intensity of a hurricane, i.e. the maximum 
hurricane wind speed (Table A3.1), can be predicted using Carnot’s theorem for the 
effi ciency of a heat engine.

In a hurricane, as the wind spirals inwards towards the eye at low pressure, 
enthalpy (heat) is absorbed at the warm ocean–air interface in an essentially isother-
mal processes: water vaporizes and mixes with the air, carrying with it the enthalpy 
of vaporization (segment AB). When this moist air reaches the hurricane’s eyewall, 
it rises rapidly about 15 km along the eyewall. Since the pressure decreases with 
altitude, it expands adiabatically and cools (segment BC). As the rising moist air’s 
temperature drops, the water vapor in it condenses as rain, releasing the enthalpy 
of vaporization (latent heat) a part of which is radiated into outer space. In a real 
hurricane, the air at the higher altitude fl ows out into the weather system. Theoreti-
cally, in order to close the Carnot cycle, it could be assumed that the enthalpy of 

Figure A3.1 The hurricane operates as a heat engine, converting 
part of the heat absorbed at the ocean surface to mechanical 
energy of the hurricane wind
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Table A3.1 The Saffi r–Simpson hurricane intensity scale

Category Min. central pressure (kPa) Max. sustained wind speed

m  s−1 mph

1 >98.0 33–42 74–95
2 97.9–96.5 43–49  96–110
3 96.4–94.5 50–58 111–130
4 94.4–92.0 59–69 131–155
5 <92.0 >70 >156

vaporization is lost in an isothermal process (segment CD). The last step (segment 
DA) of the cycle is an adiabatic compression of dry air. During the cycle, a part of 
the enthalpy absorbed from the ocean is converted into mechanical energy of the 
hurricane wind.

The ‘hurricane heat engine’ operates between the ocean surface temperature T1 
(about 300 K) and the lower temperature T2 (about 200 K) at the higher altitude, 
close to the upper boundary of the troposphere (tropopause). Let us look at the 
relationship between the heat absorbed at the ocean surface and the mechanical 
energy of the hurricane wind. In a time dt, if dQ1 is the heat absorbed at the ocean 
surface, dQ2 is the heat radiated at the higher altitude and dW is the amount of heat 
converted to mechanical energy of the hurricane wind, then, according to the First 
Law:
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Furthermore, according to Carnot’s theorem:
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In a hurricane, the mechanical energy in the wind is converted to heat due to wind 
friction, almost all of it at the ocean surface. This heat in turn contributes to dQ1/dt, 
the rate at which heat is absorbed at the ocean surface. When the hurricane is in a 
steady state, i.e. when all the fl ows are constant, all the mechanical energy entering 
the system as wind motion is converted to heat at the ocean surface: the rate of heat 
generation due to wind friction is equal to dW/dt. Thus, the rate at which heat enters 
the Carnot cycle, dQ1/dt, consists of two parts:
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Q
t

Q
t

W
t

1 10= +  (A3.1.3)

dQ10/dt is the rate at which heat enters the system in the absence of heating due to 
wind friction. Using (A.3.1.3) in Equation (A3.1.2), it is easy to see that

APPENDIX 3.1 THE HURRICANE AS A HEAT ENGINE 133



134 THE SECOND LAW OF THERMODYNAMICS AND THE ARROW OF TIME

 
d
d

d
d

W
t

T T
T

Q
t

≤ −





1 2

2

10  (A3.1.4)

A detailed study of the physics of the hurricane wind shows that the rate of heat 
generation per unit area of the ocean surface (i.e. vertically integrated heating) is 
equal to CDr|v|3, in which CD is a constant, r is the air density and v is the wind 
velocity. The total amount of heat generated is obtained by integrating over the 
circular surface of radius R (from the center of the eye to the outer edge of the hur-
ricane), which is the area of contact between the hurricane wind and the ocean. At 
steady state, since this integral equals dW/dt, we have
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The term dQ10/dt is the rate at which enthalpy enters the infl owing dry air (segment 
AB). This energy is essentially the enthalpy of vaporization. It is proportional to 
the difference between specifi c enthalpies (enthalpies per unit mass) of the air satu-
rated with moisture very close to the ocean surface h* and the enthalpy of the 
infl owing dry air h (see Figure A3.1); it is also proportional to the wind velocity at 
the ocean surface. Thus, the enthalpy entering the system per unit area is Chr(h* − h) 
|v|. The total amount of enthalpy dQ10/dt entering the hurricane system in this 
process equals the integral of this expression over the circular surface of radius R:
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in which Ch is constant. Combining (A3.1.4), (A3.1.5) and (A3.1.6) we obtain
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If we assume that the dominant contribution to this integral comes from the region 
where the velocity is maximum, we can write
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Thus, we arrive at the result
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Bister and Emanuel [25] have shown that the above result can be obtained through 
a more rigorous calculation. All the terms on the right-hand side are experimentally 



measured or theoretically estimated. Comparison of theory and experimental data 
suggests that the ratio Ch/CD is in the range 0.75–1.5 [26]. Kerry Emanuel, the origi-
nator of the above theory, has demonstrated that (A3.1.7) leads to remarkably good 
estimates of the hurricane wind speeds [4, 27].

When the system is in a steady state, the heat converted into mechanical energy 
of the hurricane wind balances the conversion of the wind energy back to heat. 
Under these conditions, if expression (A3.1.3) is used in (A3.1.1) we obtain dQ10/dt 
= dQ2/dt, which implies heat of vaporization absorbed by the hurricane wind at the 
ocean surface is released at higher altitude where the water condenses. This heat is 
ultimately radiated out of Earth’s atmosphere. Thus, the vaporization and conden-
sation of water vapor is a mechanism that transports heat from the oceans to higher 
altitudes where it is radiated into outer space. If this mechanism did not exist, the 
heat would be transported entirely through air currents, currents that would be very 
intense.

Appendix 3.2 Entropy Production in Continuous Systems

We consider a nonequilibrium situation in which a heat-conducting material is in 
contact with a hot reservoir on one side and a cold reservoir on the other (see Figure 
A3.2). We further assume that the conductor is insulated in such a way that it 
exchanges heat only with the heat reservoirs. After going through an initial transient 
change in temperature, such a system will settle into a steady state in which there is 
a uniform temperature gradient and a steady fl ow of heat. We will calculate the rate 
of entropy production at this steady state.

As each elemental quantity of heat dQ fl ows through the system the entropy 
increases. At steady state, there is a steady fl ow of heat JQ which is the amount of 
heat fl owing per unit area per second (J m−2 s−1). Since only one space direction is 
involved in this problem, we shall ignore the vectorial aspect of JQ. For simplicity, 
we shall assume that the conductor has an area of cross-section equal to unity. In 
this case the rate of fl ow of heat dQ/dt = JQ. For continuous systems, the entropy 
production due to fl ow of heat given by (3.5.2) should be replaced by the entropy 
production due to fl ow of heat through each infi nitesimal segment of the heat con-
ductor of width dx. The corresponding entropy production per unit volume at the 

dQ

dx

Hot 

T1

Hot 

T2

JQ

Figure A3.2 The continuous fl ow of heat is 
associated with entropy production
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point x is denoted by s(x). The quantity (1/T1 − 1/T2) is now replaced by the change 
of the quantity 1/T over the length dx, namely (∂/∂x)(1/T)dx. Combining all these 
terms, we can now write the entropy production for fl ow of heat across a segment 
dx:

 σ( )x x J
x T

xQd d= ∂
∂







1
 (A3.2.1)

According to the Fourier law of heat conduction, JQ = −k (∂T/∂x) in which k is the 
heat conductivity.

Substituting this expression into (A3.2.1) we can obtain
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The above expression gives the entropy production at each location x, i.e. the local 
entropy production. It is the entropy produced per unit time due to fl ow of heat 
through the segment of width dx at the location x. As required by the Second Law, 
it is positive. At steady state, the temperature of the segment is constant. Hence, the 
entropy of the segment itself is not increasing; the entropy increase is due to the fl ow 
of heat down a temperature difference dT across the segment.

To obtain the total rate of entropy production due to the fl ow of heat from one 
end of the conductor to the other, we integrate the expression (A3.2.1) over the 
length l of the conductor. It is easy to see that the result can be written as
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When the system has reached steady state, since JQ is constant, we can integrate this 
expression to obtain
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Examples

Example 3.1 Draw the S versus T diagram for the Carnot cycle.
Solution During the reversible adiabatic changes the change in entropy is zero. 
Hence, the S–T graph is as shown:

T

S
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Example 3.2 A heat pump is used to maintain the inside temperature of a house 
at 20.0 °C when the outside temperature is 3.0 °C. What is the minimum amount of 
work necessary to transfer 100.0 J of heat to the inside of the house.

20˚C
3˚C

Heat
pump

QQ

W

1 2

Solution The ideal heat pump is the Carnot’s engine running in reverse, i.e. it uses 
work to pump heat from a lower temperature to a higher temperature. For an ideal 
pump, Q1/T1 = Q2/T2. Thus, if Q1 = 100.0 J and T2 = 293.0 K, we have T1 = 
276.0 K:

 Q2 = 276.0 K(100.0 J/293.0 K) = 94.0 J

Thus, the heat pump absorbs 94.0 J from the outside and delivers 100.0 J to the 
inside. Form the fi rst law it follows that the work W = Q1 − Q2 necessary is 100.0 J 
− 94.0 J = 6.0 J.

Example 3.3 The heat capacity of a solid is Cp = 125.48 J K−1. What is the change 
in its entropy if it is heated from 273.0 K to 373.0 K?
Solution This is simple case of heat transfer. deS = dQ/T. Hence:
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Example 3.4 A container with N moles of ideal gas with an initial volume Vi is in 
contact with a heat reservoir at T0 K. The gas expands isothermally to a volume 
Vf. Calculate: (a) the amount of heat absorbed by the gas in this expansion; (b) the 
increase in the entropy of the gas.

W
Vi VfT0

Q

Solution The energy of an ideal gas depends only on its temperature. Hence, the 
heat absorbed Q must equal the work done W by the gas. The work done by the 
gas is
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Since the process occurs isothermally, the change in entropy is
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Note that the change in entropy can also be calculated using (3.7.4).

Exercises

3.1 Show the equivalence between a perpetual motion machine of the second 
kind and Carnot’s theorem.

3.2 A refrigerator operating reversibly extracts 45.0 kJ of heat from a thermal 
reservoir and delivers 67.0 kJ as heat to a reservoir at 300 K. Calculate the 
temperature of the reservoir from which heat was removed.

3.3 What is the maximum work that can be obtained from 1000.0 J of heat sup-
plied to a steam engine with a high-temperature reservoir at 120.0 °C if the 
condenser is at 25.0 °C?

3.4 Using the data shown in Figure 2.9, estimate the amount of entropy radiated 
by the earth per hour.

3.5 The heat of combustion of gasoline is approximately 47 kJ g−1. If a gasoline 
engine operated between 1500 K and 750 K, what is the maximum height that 
5.0 g of gasoline can lift an aircraft that weighs 400 kg?

3.6 The heat capacity Cp of a substance is given by

 Cp = a + bT

 where a = 20.35 J K−1 and b = 0.2 J K−2. Calculate the change in entropy in 
increasing the temperature of this substance from 298.15 K to 304.0 K.

3.7 When 0.5 J of heat passes between two large bodies in contact at temperatures 
70 °C and 25 °C, what is the change of entropy? If this occurs in 0.23 s, what 
is the rate of change of entropy diS/dt?
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3.8 What is the entropy of 1.00 L of N2(g) at T = 350.0K and p = 20.25 atm given 
that the standard (p = 1.00 bar, T = 298.15 K) molar entropy S0

m = 191.6 J 
K−1 mol−1? (Calculate the molar amount of N2 using the ideal gas equation.)

3.9 Which of the following are not extensive functions:

S1 = (N/V)[S0 + CV ln T + R ln V ]

S2 = N[S0 + CV ln T + R ln(V/N)]

 S3 = N2[S0 + CV ln T + R ln(V/N)]

3.10 Apply the condition S(lV, T, lN) = lS(V, T, N) to

 S(V, T, N) = S0(V0, T0, N) + NR ln(V/V0) + NCmV ln(T/T0),

 differentiate it with respect to l, set l = 1, solve the resulting differential 
equation for S0 and show that

 S(V, T, N) = N[s0 + R ln(V/N) + CmV ln(T)]

3.11 (i) Find out how much solar energy reaches the surface of the Earth per 
square meter per second. (This is called the ‘solar constant’.)

 (ii) The present cost of electricity in the USA is in the range $0.12–0.18/kWh 
(1 kWhour = 103 × 3600 J). Assume that the effi ciency of commercial solar 
cells is only about 10%, that they can last 30 years and that they can produce 
power for 5 h/day on average. How much should 1 m2 of solar cells cost so 
that the total energy it can produce amounts to about $0.15/kWh. (Make 
reasonable assumptions for any other quantity that is not specifi ed.)



4  ENTROPY IN THE REALM OF 
CHEMICAL REACTIONS

4.1  Chemical Potential and Affi nity: The Thermodynamic Force for 
Chemical Reactions
Nineteenth-century chemists did not pay much attention to the developments in 
thermodynamics, while experiments done by chemists – such as Gay-Lussac’s on 
the expansion of a gas into vacuum – were taken up and discussed by the physicists 
for their thermodynamic implications. The interconversion of heat into other forms 
of energy was a matter of great interest mostly to the physicists. Among the chem-
ists, the concept of heat as an indestructible caloric, a view supported by Lavoisier, 
largely prevailed [1]. As we noted in Chapter 2, the work of the Russian chemist 
Germain Hess on heats of reaction was an exception.

Motion is explained by the Newtonian concept of force, but what is the ‘driving 
force’ that was responsible for chemical change? Why do chemical reactions occur at 
all, and why do they stop at certain points? Chemists called the ‘force’ that caused 
chemical reactions affi nity, but it lacked a clear physical meaning and defi nition. For 
the chemists who sought quantitative laws, defi ning of affi nity, as precisely as
Newton’s defi ned mechanical force, was a fundamental problem. In fact, this centu-
ries-old concept had different interpretations at different times. ‘It was through the 
work of the thermochemists and the application of the principles of thermodynamics 
as developed by the physicists’, notes the chemistry historian Henry M. Leicester 
‘that a quantitative evaluation of affi nity forces was fi nally obtained’ [1 (p. 203)]. The 
thermodynamic formulation of affi nity as we know it today is due to Théophile De 
Donder (1872–1957), the founder of the Belgian school of thermodynamics.

De Donder’s formulation of chemical affi nity [2, 3] was founded on the concept 
chemical potential, one of the most fundamental and far-reaching concepts in ther-
modynamics that was introduced by Josiah Willard Gibbs (1839–1903). There were 
earlier attempts: in the nineteenth century, the French chemist Marcellin Berthelot 
(1827–1907) and the Danish Chemist Julius Thompsen (1826–1909) attempted to 
quantify affi nity using heats of reaction. After determining the heats of reactions 
for a large number of compounds, in 1875 Berthelot proposed a ‘principle of 
maximum work’ according to which ‘all chemical changes occurring without inter-
vention of outside energy tend toward the production of bodies or of a system of 
bodies which liberate more heat’ [1 (p. 205)]. But this suggestion met with criticism 
from Hermann Helmholtz and Walther Nernst (1864–1941), who noted that the 
principle could not apply to spontaneous endothermic chemical change that absorbed 
heat. The controversy continued until the concept of a chemical potential

Introduction to Modern Thermodynamics Dilip Kondepudi
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formulated by Gibbs (who was a professor at Yale University) became known in 
Europe. Later, it became clear that it was not the heat of reaction that characterized 
the evolution to the state of equilibrium, but another thermodynamic quantity called 
‘free energy’. As we shall describe in detail, De Donder gave a precise defi nition of 
affi nity using the concept of chemical potential and, through his defi nition of affi n-
ity, obtained a relation between the rate of entropy change and chemical reaction 
rate. In De Donder’s formulation, the Second Law implies that chemical reactions 
drive the system to a state of thermodynamic equilibrium in which the affi nities of 
the reactions equal zero.

J Willard Gibbs (1839–1903) (Reproduced with permission from the Edgar Fahs Smith 
Collection, University of Pennsylvania Library)
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CHEMICAL POTENTIAL

Josiah Willard Gibbs introduced the idea of chemical potential in his famous work 
titled On the Equilibrium of Heterogeneous Substances, published in 1875 and 1878 
[4–6]. Gibbs published his work in the Transactions of the Connecticut Academy of 
Sciences, a journal that was not widely read. This fundamental work of Gibbs 
remained in relative obscurity until it was translated into German by Wilhelm 
Ostwald (1853–1932) in 1892 and into French by Henri Le Châtelier (1850–1936) in 
1899 [1]. Much of the present-day presentation of classical equilibrium thermody-
namics can be traced back to this important work of Gibbs.

Gibbs considered a heterogeneous system (Figure 4.1) that consisted of several 
homogeneous parts, each part containing various substances s1, s2,  .  .  .  , sn of masses 
m1, m2,  .  .  .  , mn. His initial consideration did not include chemical reactions between 
these substances, but was restricted to their exchange between different homoge-
neous parts of a system. Arguing that the change in energy dU of a homogeneous 
part must be proportional to changes in the masses of the substances, dm1, dm2,  .  .  .  , 
dmn, Gibbs introduced the equation

 d d d d d dU T S p V m m mn n= − + + + +µ µ µ1 1 2 2 . . .  (4.1.1)

for each homogeneous part. The coeffi cients mk are called the chemical potentials. 
The heterogeneous systems considered included different phases of a substance that 
exchanged matter. The considerations of Gibbs, however, were restricted to trans-
formations between states in equilibrium. This restriction is understandable from 
the viewpoint of the classical defi nition of entropy, which required the system to be 
in equilibrium and the transformations between equilibrium states to be reversible 
so that dQ = T dS. In the original formulation of Gibbs, the changes in the masses 
dmk in Equation (4.1.1) were due to exchange of the substances between the homo-

III 

II 

I

dmk

Figure 4.1 A heterogeneous system 
considered by Gibbs in which sub-
stances were exchanged between the 
parts I, II and III. The change in 
energy dU of any part when matter 
was exchanged reversibly is given 
by (4.1.1)
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geneous parts, a situation encountered when various phases of a substance exchange 
matter and reach equilibrium.

It is more convenient to describe chemical reactions by the change in the molar 
amounts of the reactants rather than the change in their masses, because chemical 
reaction rates and the laws of diffusion are most easily formulated in terms of molar 
amounts. Therefore, we shall rewrite Equation (4.1.1) in terms of the molar amounts 
Nk of the constituent substances:

 dU = TdS − pdV + m1dN1 + m2dN2 +  .  .  .  + mndNn

i.e.

 d d d dU T S p V Nk k

n

= − + ∑ m
1

 (4.1.2)

The above equation implies that U is a function of S, V and Nk, and that coeffi cients 
of dS, dV and dNk are the corresponding derivatives:
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(4.1.3)

CHEMICAL REACTIONS

Though Gibbs did not consider irreversible chemical reactions, Equation (4.1.1) he 
introduced contained all that was needed, which included all that was needed for a 
theory of irreversibility and entropy production in chemical processes. By making 
the important distinction between the entropy change deS due to reversible exchange 
of matter and energy with the exterior, and irreversible increase of entropy diS due 
to chemical reactions, De Donder formulated the thermodynamics of irreversible 
chemical transformations [2, 3]. Using the concept of chemical potential, De Donder 
took the ‘uncompensated heat’ of Clausius in the context of chemical reactions and 
gave it a clear expression.

Let us look at Equation (4.1.2) from the point of view of reversible entropy fl ow 
deS and irreversible entropy production diS that was introduced in the previous 
chapter. To make a distinction between irreversible chemical reactions and revers-
ible exchange with the exterior, we express the change in the molar amounts dNk as 
a sum of two parts:

 d d di eN N Nk k k= +  (4.1.4)

in which diNk is the change due to irreversible chemical reactions and deNk is the 
change due to exchange of matter with the exterior. In Equation (4.1.2), Gibbs 



considered reversible exchange of heat and matter. Because this corresponds to deS, 
we may write (see Equation (3.4.10))

 d
d d

d

e

e

S
U p V

T

N

T

k k

n

= + −
∑ µ

1   (4.1.5)

De Donder recognized that, in a closed system, if the change of molar amounts dNk 
were due to irreversible chemical reactions, then the resulting entropy production 
diS can be written as

 d
d

i

i

S
N

T

k k

n

= −
∑µ

1   (4.1.6)

This is the ‘uncompensated heat’ of Clausius in the realm of chemical reactions. The 
validity of this equation lies in the fact that chemical reactions occur in such a way 
that diS is always positive in accordance with the Second Law. For the total change 
in entropy dS we have
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1927 Solvay Conference (Reproduced courtesy of the Solvay Institute, Brussels, Belgium)
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 d d de iS S S= +  (4.1.7)

in which

 d
d d

de eS
U p V

T T
Nk k

n

= + − ∑1

1

µ  (4.1.8)

and

 d di iS
T

Nk k

n

= − >∑1
0

1

µ  (4.1.9)

For a closed system, which by defi nition does not exchange matter, deNk = 0. Since 
the rates of chemical reaction specify dNk/dt, the rate of entropy production can be 
written as

 d
d

d
d

iS
t T

N
t

k
k

n

= − >∑1
0

1

µ  (4.1.10)

If we sum (4.1.8) and (4.1.9) we recover (4.1.2):

 d d d dU T S p V Nk k

n

= − + ∑µ
1

 (4.1.11)

Further development of this theory relates chemical potential to measurable system 
variables such as p, T and Nk. The pioneering work of De Donder established a clear 
connection between entropy production and irreversible chemical reactions: the rate 
of entropy production diS/dt is related directly to the rates of chemical reactions 
that specify dNk/dt. In a closed system, if initially the system is not in chemical 
equilibrium, then chemical reactions will take place that will irreversibly drive the 
system towards equilibrium. And, according to the Second Law of thermodynamics, 
this will happen in such a way that (4.1.10) is satisfi ed.

AFFINITY

De Donder also defi ned the affi nity of a chemical reaction, which enables us to write 
expression (4.1.10) in an elegant form, as the product of a thermodynamic force and 
a thermodynamic fl ow. The concept of affi nity can be understood through the fol-
lowing simple example.

In a closed system, consider a chemical reaction of the form

 X Y 2Z+ �   (4.1.12)



In this case the changes in the molar amounts dNX, dNY and dNZ of the components 
X, Y and Z are related by the reaction stoichiometry. We can express this relation 
as

 
d d d

dX Y ZN N N
−

=
−

= ≡
1 1 2

x  (4.1.13)

in which dx is the change in the extent of reaction x, which was introduced in Section 
2.5. Using (4.1.11), the total entropy change and the entropy change due to irrevers-
ible chemical reactions can now be written as

 d
d d

dX Y ZS
U p V

T T
= + + + −1

2( )µ µ µ ξ  (4.1.14)

 d di
X Y ZS

T
= + − >µ µ µ ξ2

0  (4.1.15)

For a chemical reaction X + Y �  2Z, De Donder defi ned a new state variable called 
affi nity as [1 (p. 203), 2]

 A ≡ + −µ µ µX Y Z2  (4.1.16)

This affi nity is the driving force for chemical reactions. A nonzero affi nity implies 
that the system is not in thermodynamic equilibrium and that chemical reactions 
will continue to take place driving the system towards equilibrium. In terms of affi n-
ity A, the rate of increase of entropy is written as

 
d
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d
d

iS
t

A
T t

= 



 >ξ

0  (4.1.17)

As in the case of entropy production due to heat conduction, the entropy production 
due to a chemical reaction is a product of a thermodynamic force A/T and a
thermodynamic fl ow dx/dt. The fl ow in this case is the conversion of reactants to 
products (or vice versa) which is caused by the force A/T. We shall refer to the 
thermodynamic fl ow dx/dt as the velocity of reaction or rate of conversion.

Though a nonzero affi nity means that there is a driving force for chemical reac-
tions, the velocity dx/dt at which these chemical reactions will occur is not specifi ed 
by the value of affi nity A. The velocities of chemical reactions are usually known 
through empirical means; there is no general relationship between the affi nity and 
the velocity of a reaction.

At equilibrium, the thermodynamic fl ows and, hence, the entropy production 
must vanish. This implies that in the state of equilibrium the affi nity of a chemical 
reaction A = 0. Thus, we arrive at the conclusion that, at thermodynamic equilib-
rium, the chemical potentials of the compounds X, Y and Z will reach values such 
that
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 A ≡ + − =µ µ µX Y Z2 0  (4.1.18)

In Chapter 9, which is devoted to the thermodynamics of chemical processes, we 
will see how chemical potentials can be expressed in terms of experimentally measur-
able quantities such as concentrations and temperature. Equations such as (4.1.18) 
are specifi c predictions regarding the states of chemical equilibrium. These predic-
tions have been amply verifi ed by experiment, and today they are routinely used in 
chemistry.

For a general chemical reaction of the form

 a a a a b b b bn n m m1 1 2 2 3 3 1 1 2 2 3 3A A A A B B B B+ + + + + + + +. . . . . .�  (4.1.19)

the changes in the molar amounts of the reactants Ak and the products Bk are related 
in such a way that a change dX in one of the species (reactants or products) com-
pletely determines the corresponding changes in all the other species. Consequently, 
there is only one independent variable, which can be defi ned as
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The affi nity A of the reaction (4.1.19) is defi ned as

 A a bk
k

n

k
k

m

k k≡ −
= =

∑ ∑µ µA B
1 1

 (4.1.21)

in which mAk
 is the chemical potential of the reacting species Ak, etc. If several simul-

taneous reactions occur in a closed system, then an affi nity Ak and a degree of 
advancement xk can be defi ned for each reaction and the change of entropy is written 
as

diS

X Y 2Z+

–2dNX = –2dNY = dNZ

Figure 4.2 The changes in entropy 
diS due to irreversible chemical 
reactions is formulated using the 
concept of affi nity. For the above 
reaction, the affi nity A ≡ mX + mY − 
2mZ, in which m is the chemical 
potential
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For the rate of entropy production we have the expression
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At thermodynamic equilibrium, the affi nity A and the velocity dx/dt of each reaction 
are zero. We will consider explicit examples of entropy production due to chemical 
reactions in Chapter 9.

In summary, when chemical reactions are included, the entropy is a function of 
the energy U, volume V, and the molar amounts Nk, S = S(U, V, Nk). For a closed 
system, following equation (4.1.22), it can be written as a function of U, V, and the 
extent of reaction xk: S = S(U, V, xk).

We conclude this section with a historical remark. In Chapter 5 we will introduce 
a quantity called the Gibbs free energy. The Gibbs free energy of 1 mol of X can 
also be interpreted as the chemical potential of X. The conversion of a compound 
X to a compound Z causes a decrease in the Gibbs free energy of X and an increase 
in the Gibbs free energy of Z. Thus, the affi nity of a reaction, X + Y �  2Z, defi ned 
as A ≡ (mX + mY − 2mZ), can be interpreted as the negative of the change in Gibbs 
free energy when 1 mol of X and 1 mol of Y react to produce 2 mol of Z. This change 
in the Gibbs free energy, called the ‘Gibbs free energy of reaction’, is related to 
affi nity A by a simple negative sign, but there is a fundamental conceptual difference 
between the two: affi nity is a concept that relates irreversible chemical reactions to 
entropy, whereas Gibbs free energy is primarily used in connection with equilibrium 
states and reversible processes. Nevertheless, in many texts the Gibbs free energy is 
used in the place of affi nity and no mention is made about the relation between 
entropy and reaction rates (for comments on this point, see Gerhartl [7]). Leicester, 
in his well-known book The Historical Background of Chemistry [1 (p. 206)], traces 
the origin of this usage to the textbook [8] by Gilbert Newton Lewis (1875–1946) 
and Merle Randall (1888–1950):

The infl uential textbook of G.N. Lewis (1875–1946) and Merle Randall (1888–1950) which 
presents these ideas has led to the replacement of the term ‘affi nity’ by the term ‘free energy’ 
in much of the English-speaking world. The older term has never been entirely replaced in 
thermodynamics literature, since after 1922 the Belgian school under Theéophile De Donder 
(1872–1957) has made the concept of affi nity still more precise.

De Donder’s affi nity has an entirely different conceptual basis: it relates entropy to 
irreversible chemical processes that occur in Nature. It is clearly a more general view 
of entropy, one that does not restrict the idea of entropy to infi nitely slow (‘quasi-
static’) reversible processes and equilibrium states.
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4.2 General Properties of Affi nity

The affi nity of a reaction is a state function, completely defi ned by the chemical 
potentials. In the following chapters we will see how the chemical potential of a 
substance can be expressed in terms of state variables such as pressure, temperature 
and concentration. Thus, affi nity can be expressed as a function of p, T and Nk or 
it can also be expressed as a function of V, T and Nk. For a closed system, since all 
the changes in Nk can only be due to chemical reactions, it can be expressed in terms 
of V, T, xk and the initial values of the molar amounts Nk0. There are some general 
properties of affi nities that follow from the fact that chemical reactions can be 
interdependent when a substance is a reactant in more than one reaction.

AFFINITY AND DIRECTION OF REACTION

The sign of affi nity can be used to predict the direction of reaction. Consider the 
reaction X + Y �  2Z. The affi nity is given by A = mX + mY − 2mZ. The sign of the 
velocity of reaction dx/dt indicates the direction of reaction, i.e. whether the net 
conversion is from X + Y to 2Z or from 2Z to X + Y. From the defi nition of x it 
follows that if dx/dt > 0 then the reaction ‘proceeds to the right’: X + Y → 2Z; if 
dx/dt < 0 then the reaction ‘proceeds to the left’: X + Y ← 2Z. The Second Law 
requires that A(dx/dt) ≥ 0. Thus, we arrive at the following relation between the sign 
of A and the direction of the reaction:

• if A > 0, the reaction proceeds to the right;
• if A < 0, the reaction proceeds to the left.

ADDITIVITY OF AFFINITIES

A chemical reaction can be the net result of two or more successive chemical reac-
tions. For instance:

 2C(s) O (g) 2CO(g)2+ � A1  (4.2.1)

 2CO(g) O (g) CO (g)2 2+ � 2 2A  (4.2.2)

 2[C(s) O (g) CO (g)]2 2+ � 2 3A  (4.2.3)

which shows that reaction (4.2.3) is the net result or ‘sum’ of the other two. By defi -
nition the affi nities of the above three reactions are:

 A1 2 22= + −m m mC O CO  (4.2.4)

 A2 2 22 2= + −m m mCO O CO  (4.2.5)

 A3 2 2= + −µ µ µC O CO  (4.2.6)



From these defi nitions it is easy to see that

 A A A1 2 32+ =  (4.2.7)

Clearly this result can be generalized to many reactions. We thus have the general 
result: the sum of affi nities of a sequence of reactions equals the affi nity of the net 
reaction.

The rate of entropy production for the above reactions (4.2.1) and (4.2.2) is the 
sum of the rates at which entropy is produced in the two reactions:
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 (4.2.8)

in which x1 and x2 are the corresponding extents of reactions. Note that for the net 
reaction (4.2.3), because the net conversion from (C + O2) to CO2 goes through the 
intermediate CO, −dNC ≠ dNCO2

; the loss of carbon is due to its conversion to CO 
and CO2, not just CO2. As a consequence, the corresponding extent of reaction ‘dx3’ 
is not well defi ned and we cannot write −dNC = dNCO2

 ≠ dx3. Therefore, the rate of 
total entropy production cannot be written as ‘(A3/T)(dx3/dt)’ in general. However, 
if the reaction velocities dx1/dt and dx2/dt are equal, then the total rate of entropy 
production (4.2.8) may be written as
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in which dx3/dt ≡ 2(dx1/dt), the reaction velocity of (4.2.3). The condition dx1/dt = 
dx2/dt means the rate of production of the intermediate CO in reaction (4.2.1) is 
balanced by the consumption of CO in reaction (4.2.2), i.e. NCO, the amount of CO, 
remains constant. When the production of a substance X is exactly balanced by its 
consumption, it is said to be in a steady state (which can be expressed mathematically 
as dNX/dt = 0). In many chemical reactions, the intermediate reactants are often in 
a steady state or nearly so. In a series of reactions in which intermediate compounds 
are produced and consumed, if all the intermediates are in a steady state, then it is 
possible to defi ne an extent of reaction for the net reaction and write the rate of 
entropy production in terms of the affi nity and the velocity of the net reaction.

COUPLING BETWEEN AFFINITIES

In reactions coupled to each other through common reactants, it may appear as if 
one reaction with positive entropy production is compensating the negative entropy 
production of the other in such a way that the total entropy production is positive, 
in accord with the Second Law. Consider the following example:

 X Y Z W 4+ + >� A 0  (4.2.10)
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for which, as indicated, the corresponding affi nity A4 is assumed to be positive. We 
then expect the reaction to proceed to the right so that dx4/dt > 0. It is possible to 
drive the reaction (4.2.10) effectively to the left, making dx4/dt < 0, by ‘coupling’ it 
to another reaction:

 T D , (d /d ) 05 5 5� A A t> >0 ξ  (4.2.11)

The two reactions (4.2.10) and (4.2.11) could be coupled so that their total entropy 
production A4(dx4/dt) + A5(dx5/dt) > 0 but A4(dx4/dt) < 0. An example of a mecha-
nism that makes such reaction reversal possible is (Figure 4.3)

 Z T Z* D 0, (d /d ) 06 6 6+ + > >� A A tx  (4.2.12)

 Z* W X Y 0, (d /d ) 07 7 7+ + > >� A A tx  (4.2.13)

 Z W T X Y D 0, (d /d ) 0+ + + + > >� A A tx  (4.2.14)

Once again, as indicated, the affi nities and velocities of reactions (4.2.11)–(4.2.13) 
are assumed positive. The net reaction Z + W + T �  X + Y + D is an effective 

Z*

diS/dt > 0 

diS/dt < 0 

µZ + µT

Z + T → Z* + D 
Z* + W → X + Y 

Z + W → X + Y 
T → D diS/dt > 0 diS/dt > 0 

µZ* + µD

µZ* + µW

µX + µY µZ + µW

µT

µD

µX + µY

Z + W + T → X + Y + D 

Figure 4.3 Entropy production in coupled reactions. The left and right 
panels show different ways of representing the same net reaction Z + W + T 
→ X + Y + D resulting from two reaction steps. The left panel shows a reac-
tion scheme and the corresponding chemical potentials in which entropy 
production of both reaction steps are positive. The right panel shows a rein-
terpretation of the same net reaction when the intermediate Z that couples the 
two reactions is in a steady state. In this case, the entropy production of one 
reaction is positive and the other is negative, but their sum, the total entropy 
production, remains positive.



reversal of X + Y �  Z + W accompanied by T �  D. This way of interpreting the 
net reaction can be expressed in terms of the affi nities by noting that

 A A A A A= + = − +6 7 4 5  (4.2.15)

For the net reaction Z + W + T �  X + Y + D, as discussed above, the correspond-
ing velocity of reaction dx/dt can be defi ned only when the intermediate Z* is in a 
steady state, i.e. dx6/dt = dx7/dt = dx/dt. Under these steady-state conditions, we will 
now show that the rate of entropy production can be written as if it is due to two 
coupled reactions Z + W �  X + Y and T �  D, each proceeding with velocity 
dx/dt.

The total rate of entropy production due to the two coupled reactions (4.2.12) 
and (4.2.13) is
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 (4.2.16)

Now, if dx6/dt = dx7/dt = dx/dt, expression (4.2.16) can be rewritten in terms of the 
affi nities A4 and A5 of reactions (4.2.10) and (4.2.11) using the equality (4.2.15):
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 (4.2.17)

In this expression, the affi nities A4 and A5 are positive and, since we have assumed 
the net reaction (4.2.14) proceeds to the right, dx/dt > 0. Thus, the fi rst term on the 
right-hand side of (4.2.17) is negative but the second term is positive. It can easily 
be seen that the steady-state condition dx6/dt = dx7/dt = dx/dt also implies that 
−dx4/dt = dx5/dt = dx/dt, which enables us to rewrite (4.2.17) as
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 (4.2.18)

Such coupled reactions are common in biological systems.

4.3 Entropy Production Due to Diffusion

The concepts of chemical potential and affi nity not only describe chemical reactions, 
but also fl ow of matter from one region of space to another. With the concept of 
chemical potential, we are now in a position to obtain an expression for the entropy 
change due to diffusion, an example of an irreversible process we saw in Chapter 3 
(see Figure 3.8). The concept of chemical potential turns out to have wide reach. 
Other irreversible processes that can be described using a chemical potential will be 
discussed in Chapter 10. Here, we shall see how it can be used to describe 
diffusion.
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When chemical potentials of a substance in adjacent parts of a system are unequal, 
diffusion of that substance takes place until the chemical potentials in the two parts 
equalize. The process is similar to fl ow of heat due to a difference in temperature. 
Diffusion is another irreversible process for which we can obtain the rate of increase 
in entropy in terms of chemical potentials.

DISCRETE SYSTEMS

For simplicity, let us consider a system consisting of two parts of equal temperature 
T, one with chemical potential m1 and molar amount N1 and the other with chemical 
potential m2 and molar amount N2,

 as shown in Figure 4.4. The fl ow of particles 
from one part to another can also be associated with an ‘extent of reaction’, though 
no real chemical reaction is taking place here:

 − = =d d dN N1 2 ξ  (4.3.1)

Following Equation (4.1.14), the entropy change for this process can be written as

 d
d d

diS
U p V

T
= + − −µ µ ξ2 1

Τ
 (4.3.2)

 = + +d d
d

U p V
T

A
T

ξ  (4.3.3)

in which the corresponding affi nity A = m1 − m2. If dU = dV = 0, then the transport 
of particles results in the change of entropy given by

 d diS
T

= − >µ µ ξ2 1 0  (4.3.4)

N1 µ1 N2 µ2

dN

Figure 4.4 The irreversible process 
of diffusion can be described ther-
modynamically using chemical 
potential. The variation of chemical 
potential with location corresponds 
to an affi nity that drives a fl ow of 
matter. The corresponding entropy 
production is given by (4.3.4)



The positivity of this quantity required by the Second Law implies that particle 
transport is from a region of high chemical potential to a region of low chemical 
potential. This is, of course, the process of diffusion of particles from a region of 
higher concentration to a region of lower concentration in many cases, but it must 
be emphasized that the driving force for diffusion is the gradient of chemical potential, 
not the gradient of concentration as is often stated (see Appendix 4.1).

4.4 General Properties of Entropy

Entropy, as formulated in this and the previous chapter, encompasses all aspects of 
transformations of matter: changes in energy, volume and composition. Thus, every 
system in Nature, be it a gas, an aqueous solution, a living cell or a neutron star, is 
associated with certain entropy. We shall obtain explicit expressions for entropies 
of various systems in the following chapters and study how entropy production is 
related to irreversible processes. At this stage, however, we shall note some general 
properties of entropy as a function of state.

The entropy of a system is a function of its total energy U, volume V, and molar 
amounts Nk of its constituents:

 S S U V N N Ns= ( , , , , . . . )1 2  (4.4.1)

As a function of variables U, V and Nk, the differential dS can be written as
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Furthermore, from the general relation d d d dU T S p V Nk k
n= − + ∑ µ
1

 (cf. (4.1.2)), 
it follows that

 d d d dS
T

U
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Nk
k

k

= + − ∑1 µ
 (4.4.3)

(Here we have combined the change in Nk due to chemical reactions and the change 
due to exchange with the exterior). Comparing (4.4.2) and (4.4.3) we immediately 
see that
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 (4.4.4)

If the change in molar amounts Nk is only due to a chemical reaction, then the 
entropy can also be expressed as a function of U, V and x (see Example 4.1). Then 
one can show that
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 ∂
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=S A
TU Vξ ,

 (4.4.5)

In addition, for any function of many variables, the ‘cross-derivatives’ must be 
equal, i.e. we must have equalities of the type

 ∂
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= ∂
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2 2S
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U V

   (4.4.6)

Relations (4.4.4) then imply that

 ∂
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= ∂
∂V T U

p
T

1
   (4.4.7)

Many such relations can be similarly derived because entropy is function of 
state.

For homogeneous systems, we have seen in Chapter 3 (Box 3.3) that entropy is 
an extensive variable. Mathematically, this means that entropy S is a homogeneous 
function of the variables U, V and Nk, i.e. it has the following property:

 S U V N N N S U V N N Nx x xs x x xs( , , , , . . . , ) ( , , , , . . . , )λ λ λ λ λ λ1 2 1 2=  (4.4.8)

Differentiating (4.4.8) with respect to l and setting l = 1, we obtain the well-known 
Euler’s theorem for homogeneous functions:
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Using relations (4.4.4) we can write this relation as
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 (4.4.10)

In (4.4.9) and (4.4.10), we have expressed entropy as a function of U, V and Nk. 
Since U can be expressed as function of T, V and Nk, entropy can also be expressed 
as function of T, V and Nk : S = S(T, V, Nk). (The temperature and volume depen-
dence of the energy U and enthalpy H of each component is obtained by using the 
empirical values of the heat capacity as described in Chapter 2.) Since T, V and Nk 
are directly measurable state variables, it is often more convenient to express ther-
modynamic quantities such as entropy and energy as functions of these state 
variables.

As a function of T, V and Nk, the derivatives of entropy can be obtained by 
expressing dU in (4.4.3) as a function of V, T and Nk:



 
T S U p V N

U
T

T
U
V

V
U
N

k k
k

V N T N kk k

d d d d

d d

= + −

= ∂
∂







+ ∂
∂







+ ∂
∂

∑µ

, ,







+ −
≠

∑ ∑
V T N

k
k

k k
kj k

N p V N
, ,

d d dµ

i.e.

d d dS
T

U
V

p V
T

U
T

T
TT N V N

k

k k

= ∂
∂







+





+ ∂
∂







− 





1 1

, ,

µ
dd dN

T
U
N

Nk
k k V T N

k
k j k

∑ ∑+ ∂
∂





 ≠

1

, , 
 (4.4.11)

In Equation (4.4.11), since the coeffi cient of dV must equal (∂S/∂V)T,Nk
, etc., we can 

make the following identifi cation:

 ∂
∂







= ∂
∂







+S
V T

U
V

p
TT N T Nk k, ,

  
1  (4.4.12)

 ∂
∂







= ∂
∂







=S
T T

U
T

C
TV N V N

V

k k, ,

1  (4.4.13)

 ∂
∂





 = − + ∂

∂






≠ ≠

S
N T T

U
Nk V T N

k

k V T Nj k j k, , , ,

µ 1  (4.4.14)

Similar relations can be derived for U as a function of T, V and Nk.
The above relations are valid for homogeneous systems with uniform temperature 

and pressure. These relations can be extended to inhomogeneous systems as long as 
one can associate a well-defi ned temperature to every location. The thermodynamics 
of an inhomogeneous system can be formulated in terms of entropy density s(T(x), 
nk(x)), which is a function of the temperature and the molar densities nk(x) (mol m−3) 
at the point x. If u(x) is the energy density, then following (4.4.4) we have the 
relations
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in which the positional dependence of the variables is explicitly shown.
An empirically more convenient way is to express both entropy and energy densi-

ties as functions of the local temperature T(x) and molar density nk(x), both of which 
can be directly measured:

 u u T n s s T nk k= =( ( ), ( )) ( ( ), ( ))x x x x  (4.4.16)

The total entropy and energy of the system are obtained by integrating the corre-
sponding densities over the volume of the system:
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 S s T n V U u T n Vk
V

k
V

= =∫ ∫( ( ), ( )) ( ( ), ( ))x x x xd d  (4.4.17)

Since the system as a whole is not in thermodynamic equilibrium, the total entropy 
S in general is not a function of the total energy U and the total volume V. Never-
theless, a thermodynamic description is still possible as long as the temperature is 
well defi ned at each location x.

Appendix 4.1 Thermodynamics Description of Diffusion

Expression (4.3.4) can generalized to describe a continuous system in which m and 
T are functions of the position vector r, and S is replaced by entropy density s (the 
entropy per unit volume):

 d dis
T

( )
( )
( )

( )r
r
r

r= −∇





⋅m x  (A4.1.1)

in which the direction of the fl ow of particles (dN/unit area) is indicated by the vector 
dx. From (A4.1.1), the rate of entropy production per unit volume due to diffusion 
can be written in terms of the particle current JN ≡ dx/dt as

 d
d
is

t T
N

( ) ( )
( )

r r
r

J= −∇





⋅m  (A.4.1.2)

The particle current JN is a response to the gradient ∇(m(r)/T(r)). As we saw in 
Section 3.4, the entropy production due to each irreversible process in general has 
the above form of a product of a current or ‘fl ow’ JN and a ‘force’, such as the gra-
dient ∇(m(r)/T(r)).
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Examples

Example 4.1 If the change in molar amounts is entirely due to one reaction, show 
that entropy is a function of V, U and x and that

 ∂
∂







=S A
TU Vξ ,

 

Solution Entropy is a function of U, V and Nk: S(U, V, Nk). As shown in Section 
4.4 (see Equation (4.4.3), for change in entropy dS we have

 d d d dS
T

U
p
T

V
T

Nk
k

k

= + − ∑1 µ

If x is the extent of reaction of the single reaction which causes changes in Nk, 
then

 d dN k sk k= =ν ξ 1 2, , . . . ,  

in which nk is the stoichiometric coeffi cient of the s species that participate in the 
reaction. nk is negative for the reactants and positive for the products. For the species 
that do not participate in the reaction nk = 0. The change in entropy dS can now be 
written as

 d d d dS
T
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p
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T
k k

k

s

= + −
=

∑1

1

µ ν ξ

Now, the affi nity of the reaction A k
s

k k= − =Σ 1m n  (note that nk is negative for the 
reactants and positive for the products). Hence: 

 d d d dS
T

U
p
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V A= + +1 ξ  

This shows that S is a function of U, V and x and that
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=S A
TU Vξ ,

 

If N10 is the molar amount of the reactant k at time t = 0, etc., and if we assume
x = 0 at t = 0, then the molar amounts at any time t are N10 + nkx(t), N20 + n2x(t),  .  .  .  , 
Ns0 + nsx(t), with all the other molar amounts being constant. Thus, S = S(U, V, 
N10 + n1x(t), N20 + n2x(t),  .  .  .  , Ns0 + nsx(t)). Thus, for a given initial molar amounts 
Nk0, the entropy of a closed system with a chemical reaction is a function of U, V 
and x.
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Exercises

4.1 In a living cell, which is an open system that exchanges energy and matter with 
the exterior, the entropy can decrease, i.e. dS < 0. Explain how this is possible 
in terms of deS and diS. How is the Second Law valid in this case?

4.2 In SI units, what are the units of entropy, chemical potential and affi nity?

4.3 Consider a reaction A → 2B in the gas phase (i.e. A and B are gases) occurring 
in a fi xed volume V at a fi xed temperature T. In the ideal gas approximation, 
at any time t, if NA and NB are molar amounts:

(i) Write an expression for the total entropy.
(ii) Assume that at time t = 0, NA(0) = NA0, NB(0) = 0 and the extent of reac-
tion x(0) = 0. At any time t, express the concentrations NA(t) and NB(t) in terms 
of x(t).
(iii) At any time t, write the total entropy as a function of T, V and x(t) (and 
NA0 which is a constant).

4.4 Consider the series of reactions:

 X Y 2Z+ �  (1)

 2[ ]Z + +W S T�  (2)

 Net reaction: X Y W S T+ + +2 2 2�  (3)

Determine the conditions under which the rate of entropy production can be 
written in terms of the net reaction, i.e. diS/dt = (A3/T)(dx3/dt) in which A3 and 
x3 are the affi nity and the extent of reaction of the net reaction (3).

4.5 For the reaction scheme

 Z + T �  Z* + D A6 > 0, A6(dx6/dt) > 0

 Z* + W �  X + Y A7 > 0, A7(dx7/dt) > 0

(a) Express dNk/dt for each of the reactants and products, Z, T, Z*, D, etc. 
in terms of the extents of reaction velocities dx6/dt and dx7/dt.
(b) For the steady state of Z*, i.e. dNZ*/dt = 0, show that dx6/dt = dx7/dt and 
that
(c) the total entropy production diS/dt can be written as

 d
d
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d

d
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iS
t

A
T t

A
T t

= + ≥4 4 5 5 0
ξ ξ  

in which quantities with subscripts 4 and 5 refer to the affi nities and extents of reac-
tion of the reactions X + Y �  Z + W and T �  D respectively.



4.6 (a) Using the fact that S is a function of U, V and Nk, derive the relation

 
∂

∂




 + ∂

∂




 =

V T N
p
T

k

U N k V Uk

µ
, ,

0

(b) For an ideal gas, show that

 ∂
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(c) For an ideal gas, show that (∂S/∂V)T,N = nR in which n is molar density 
(moles per unit volume).
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5  EXTREMUM PRINCIPLES AND 
GENERAL THERMODYNAMIC 
RELATIONS

Extremum Principles in Nature

For centuries we have been motivated by the belief that the laws of Nature are 
simple, and have been rewarded amply in our search for such laws. The laws of 
mechanics, gravitation, electromagnetism and thermodynamics can all be stated 
simply and expressed precisely with a few equations. The current search for a theory 
that unifi es all the known fundamental forces between elementary particles is very 
much motivated by such a belief. In addition to simplicity, Nature also seems to 
‘optimize’ or ‘economize’: natural phenomena occur in such a way that some physi-
cal quantity is minimized or maximized – or to use one word for both, ‘extremized’. 
The French mathematician Pierre Fermat (1601–1665) noticed that the change of 
direction of rays of light as they propagate through different media can all be pre-
cisely described using one simple principle: light travels from one point to another 
along a path that minimizes the time of travel. Later it was discovered that all the equa-
tions of motion in mechanics can be obtained by invoking the principle of least action, 
which states that if a body is at a point x1 at a time t1 and at a point x2 at time t2, then 
the motion occurs so as to minimize a quantity called the action. (An engaging exposi-
tion of these topics can be found in Feynman’s Lectures on Physics [1]).

Equilibrium thermodynamics, too, has its extremum principles. In this chapter 
we will see that the approach to equilibrium under different conditions is such that 
a thermodynamic potential is extremized. Following this, in preparation for the 
applications of thermodynamics in the subsequent chapters, we will obtain general 
thermodynamic relations that are valid for all systems.

5.1 Extremum Principles Associated with the Second Law

We have already seen that all isolated systems evolve to the state of equilibrium in 
which the entropy reaches its maximum value or, equivalently, the rate of entropy 
production is zero. This is the basic extremum principle of equilibrium thermody-
namics. But we do not always deal with isolated systems. In many practical situa-
tions, the physical or chemical system under consideration is subject to constant 
pressure or temperature or both. In these situations, the positivity of entropy change 
due to irreversible processes, i.e. diS > 0, implies the evolution of certain thermody-
namic functions to their minimum values. Under each constraint, such as constant 
pressure, constant temperature or both, the evolution of the system to the state of 

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd



164 EXTREMUM PRINCIPLES AND GENERAL THERMODYNAMIC RELATIONS

equilibrium corresponds to the extremization of a thermodynamic quantity. These 
quantities are the Gibbs energy, the Helmholtz energy, and enthalpy (which was 
introduced in Chapter 2), which, as we shall see in this chapter, are functions of 
state. They are also called thermodynamic potentials, in analogy with the potentials 
associated with forces in mechanics, whose minima are also points of stable mechan-
ical equilibrium. The systems we consider are either isolated or closed.

MAXIMUM ENTROPY

As we have seen in Chapter 4, owing to irreversible processes the entropy of an iso-
lated system continues to increase (diS > 0) until it reaches the maximum possible 
value. The state thus reached is the state of equilibrium. Therefore, it may be stated 
that, when U and V are constant, every system evolves to a state of maximum 
entropy.

An equivalent statement is that, when U and V are constant, every system evolves 
to a state in which the rate of entropy production diS/dt vanishes. The later state-
ment refers to irreversible processes, whereas the former refers to the state. When 
processes are extremely slow, as may be the case for some chemical transformations, 
the system could be considered to be in ‘equilibrium’ with respect to all the irrevers-
ible processes whose rates have decreased to zero.

MINIMUM ENERGY

The Second Law also implies that, at constant S and V, every system evolves to a 
state of minimum energy. This can be seen as follows. We have seen that, for closed 
systems, dU = dQ − p dV = T deS − p dV. Because the total entropy change dS = 
deS + diS we may write dU = T dS − p dV − T diS. Since S and V are constant, 
dS = dV = 0. Therefore, we have

 d d 0iU T S= − ≤  (5.1.1)

Thus, in systems whose entropy maintained at a fi xed value, driven by irreversible 
processes, the energy evolves to the minimum possible value.

To keep the entropy constant, the entropy diS produced by irreversible processes 
has to be removed from the system. If a system is maintained at a constant T, V 
and Nk, the entropy remains constant. The decrease in energy dU = −T diS is gener-
ally due to irreversible conversion of mechanical energy to heat that is removed from 
the system to keep the entropy (temperature) constant. A simple example is the 
falling of an object to the bottom of a fl uid (Figure 5.1). Here, dU = −T diS is the 
heat produced as a result of fl uid friction or viscosity. If this heat is removed rapidly 
so as to keep the temperature constant, the system will evolve to a state of minimum 
energy. Note that, during the approach to equilibrium, dU = −T diS < 0 for every 
time interval dt. This represents a continuous conversion of mechanical energy 
(kinetic energy plus potential energy) into heat; at no time does the conversion occur 
in the opposite direction.
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MINIMUM HELMHOLTZ ENERGY

In closed systems maintained at constant T and V, a thermodynamic quantity called 
the Helmholtz energy or Helmholtz free energy evolves to its minimum value. The 
term ‘free energy’ has been in use because the Helmholtz energy is the energy that 
is ‘free’, available to do work in an idealized reversible process (see Example 5.1). 
Helmholtz energy, denoted by F, is defi ned as

 F U TS≡ −  (5.1.2)

At constant T we have

 dF = dU − T dS = dU − T deS − T diS 
= dQ − p dV − T deS − T diS

If V is also kept constant, then dV = 0; and for closed systems, T deS = dQ. Thus, 
at constant T and V, we obtain the inequality

 d d 0iF T S= − ≤  (5.1.3)

as a direct consequence of the Second Law. This tells us that a system whose tem-
perature and volume are maintained constant evolves such that the Helmholtz 
energy is minimized.

An example of the minimization of F is a reaction, such as 2H2(g) + O2(g) � 
2H2O(l), that takes place at a fi xed value of T and V (see Figure 5.2a). To keep T 

diS > 0 

T and V constant 

Figure 5.1 A simple illustration of 
the principle of minimum energy. In 
this example, if T and V are con-
stant, then the entropy S is constant. 
At constant S and V the system 
evolves to a state of minimum 
energy
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constant, the heat generated by the reaction has to be removed. In this case, follow-
ing De Donder’s identifi cation of the entropy production in an irreversible chemical 
reaction (4.1.6), we have TdiS = −ΣkmkdiNk = −dF ≥ 0.

Another example is the natural evolution of shape of a bubble (Figure 5.2b) 
enclosed in a box of fi xed V and T. In the absence of gravity (or if the bubble is 
small enough that the gravitational energy is insignifi cant compared with other 
energies of the system), regardless of its initial shape, a bubble fi nally assumes the 
shape of a sphere of minimal size. The bubble’s size decreases irreversibly until the 
excess pressure inside the bubble balances the contracting force of the surface. 
During this process, the Helmholtz energy decreases with decreasing surface area. 
As the area of the bubble decreases irreversibly, the surface energy is transformed 
into heat which escapes to the surroundings (thus T is maintained constant). The 
entropy production in this irreversible processes is given by T diS= = −dF. Generally, 
Helmholtz energy increases with an increase in surface area (but not always) because 
molecules at the surface have higher energy than those below the surface. This excess 
surface energy g is usually small, of the order of 10−2 J m−2. For water, g = 7.275 × 
10−2 J m−2. The thermodynamic drive to minimize the surface energy results in a 
‘surface tension’ (force per unit length) whose numerical value equals g. We will 
consider surface energy in more detail at the end of the chapter.

The minimization of Helmholtz energy is a very useful principle. Many interesting 
features, such as phase transitions and the formation of complex patterns in 
equilibrium systems [2], can be understood using this principle.

That Helmholtz free energy is a state function follows from its defi nition 
(5.1.2). We can show that F is function of T, V and Nk and obtain its derivatives 

2 2 22H (g) O (g) 2H O(g)+

id d 0F T S= − ≤

T and V constant 

(a)       (b)

Figure 5.2 Examples of minimization of Helmholtz free 
energy F. (a) If V and T are kept at a fi xed value, then a 
chemical reaction will progress to a state of minimum F (but 
S is not a constant). In this case the irreversible production 
of entropy TdiS = −ΣkmkdNk = −dF ≥ 0. (b) Similarly, the 
contraction of a bubble enclosed in a box of fi xed V and T 
is an example. The contracting force on the bubble’s surface 
decreases the bubble’s radius until it reaches a point at 
which the excess pressure in the bubble balances the con-
tracting force of the surface. In this case we can identify 
dF = −T diS ≤ 0 and determine the excess pressure in the 
bubble at equilibrium (see Section 5.6)
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with respect to these variables. From (5.1.2) it follows that dF = dU − TdS − SdT. 
For the change of entropy due to exchange of energy and matter we have TdeS = 
dU + pdV − ΣkmkdeNk. For the change of entropy due to irreversible chemical 
reaction we have TdiS = −ΣkmkdiNk. For the total change in entropy, we have 
TdS = TdeS + TdiS. Substituting these expressions for dS in the expression for dF 
we obtain
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Since dNk = deNk + diNk we may write Equation (5.1.4) as

 d d d dF p V S T Nk k
k

= − − + ∑ µ  (5.1.5)

This shows that F is a function of V, T and Nk. It also leads to the following identi-
fi cation of the derivatives of F(V, T, Nk) with respect to V, T and Nk:†
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It is straightforward to include surface or other contributions to the energy (see 
(2.2.10)–(2.2.11)) into the expression for F and obtain similar derivatives.

If the changes in Nk are only due to a chemical reaction, then F is a function of 
T, V and the extent of reaction x. Then it can easily be shown that (Exercise 5.2)

 
∂
∂







= −F
A

T Vξ ,

 (5.1.7)

MINIMUM GIBBS ENERGY

If both the pressure and temperature of a closed system are maintained constant, 
then the quantity that is minimized at equilibrium is the Gibbs energy, also called 
Gibbs free energy. We shall denote this quantity by G. As in the case of Helmholtz 
free energy, the term ‘free energy’ is used to note the fact G is the maximum energy 
available for doing work (through an idealized reversible process). Gibbs energy is 
defi ned as the state function

 G U pV TS H TS≡ + − = −  (5.1.8)

† In this and the following chapters, for derivatives with respect to Nk, we assume the subscript Ni≠k is 
understood and drop its explicit use.
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where we have used the defi nition of enthalpy H = U + pV. Just as F evolves to a 
minimum when T and V are maintained constant, G evolves to a minimum when the 
pressure p and temperature T are maintained constant. When p and T are constant, 
dp = dT = 0 and we can relate dG to diS as follows:
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 (5.1.9)

where we have used the fact that T deS = dQ for closed systems and dp = dT = 0.
The Gibbs energy is mostly used to describe chemical processes because the usual 

laboratory situation corresponds to constant p and T. The irreversible evolution of 
G to its minimum value can be related to the affi nities Ak of the reactions and the 
reaction velocities dxk/dt (in which the index k identifi es different reactions) using 
(4.1.23)
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or

 d dG Ak
k

k= − ≤∑ ξ 0  (5.1.11)

in which the equality on the right-hand side holds at equilibrium. Equation (5.1.11) 
shows that, at constant p and T, G is a function of the state variables dxk, the extent 
of reaction for reaction k. It also follows that
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k
k p Tξ ,

 (5.1.12)

In view of this relation, calling the affi nity the ‘Gibbs free energy of reaction’, as 
is commonly done in many texts, is inappropriate. As shown in Figure 5.3b, at 
constant p and T, the extents of reactions dxk will evolve to a value that minimizes 
G(xk, p, T).

Note that G evolves to its minimum value monotonically in accordance with 
the Second Law. Thus, x cannot reach its equilibrium value, as a pendulum 
does, in an oscillatory manner. For this reason, an oscillatory approach to equilib-
rium in a chemical reaction is impossible. This does not mean that concentration 
oscillations in chemical systems are not possible (as it was once widely thought). 
As we will see in later chapters, in systems that are far from equilibrium, concentra-
tion oscillations can occur.

We showed above that F is function of V, T and Nk. In a similar manner, it is 
straightforward to show that (Excercise 5.3)
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 d d d dG V p S T Nk k
k

= − + ∑ µ  (5.1.13)

This expression shows that G is function of p, T and Nk and that
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One very useful property of the Gibbs free energy is its relation to the chemical 
potential. From a homogeneous system we have shown that (Equation (4.4.10)) 
U = TS − pV + ΣkmkNk. Substituting this into the defi nition of G (Equation (5.1.8)) 
we obtain

 G Nk k
k

= ∑µ  (5.1.15)

For a pure compound, G = mN. Therefore, one might think of the chemical potential 
m as the Gibbs energy per mole of a pure compound. For a multicomponent system, 
dividing (5.1.15) by N, the total molar amount, we see that the molar Gibbs 
energy

2 2 22H (g) O (g) 2H O(g)+

id d 0G T S= − ≤

T and p constant 

Gmin 

G

ξeq 

,p T

G
A

ξ
 ∂− =  ∂ 

ξ

Figure 5.3 Minimization of the Gibbs 
energy G. (a) Under conditions of constant 
p and temperature T, irreversible chemical 
reactions will drive the system to a state of 
minimum G. (b) The extent of reaction x 
evolves to xeq, which minimizes G
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 G
G
N

xk k
k

m ≡ = ∑ µ  (5.1.16)

in which xk are the mole fractions. Since G must an extensive function, we see that 
G(p, T, Nk) = G(p, T, xkN) = NGm(p, T, xk) that is Gm is a function of p, T and the 
mole fractions xk. From (5.1.16) it then follows that in a multicomponent system the 
chemical potential is a function of p, T and the mole fractions xk: mk = mk(p, T, xk). 
(When we apply these general concepts to particular systems, we will obtain explicit 
expressions for Gibbs energies and chemical potentials. For example, in Chapter 8 
we will see that for mixtures of compounds that interact very weakly with each other, 
what are called ideal mixtures, the chemical potential of a component can be written 
in the form mk(p, T, xk) = mk* (p, T) + RT lnxk, in which mk*(p, T) is the chemical 
potential of the pure compound.)

Furthermore, as shown in Example 5.3, at constant p, and T, we have the differ-
ential relation

 ( ) ,d dmG xp T k k
k

= ∑µ  (5.1.17)

In this relation the dxk are not all independent because Σkxk = 1 for mole fractions 
xk.

MINIMUM ENTHALPY

In Chapter 2 we introduced the enthalpy

 H U pV≡ +  (5.1.18)

Like the Helmholtz energy F and the Gibb energy G, the enthalpy is also associated 
with an extremum principle: at fi xed entropy S and pressure p, the enthalpy H evolves 
to its minimum value. This can be seen as before by relating the enthalpy change dH 
to diS. Since we assume that p is constant, we have

 d d pd dH U V Q= + =  (5.1.19)

For a closed system, dQ = T deS = T(dS − diS). Hence, dH = T dS − T diS. But 
because the total entropy S is fi xed, dS = 0. Therefore, we have the relation

 d Td 0iH S= − ≤  (5.1.20)

in accordance with the Second Law. When irreversible chemical reactions take 
place, we normally do not encounter situations in which the total entropy remains 
constant. For illustrative purposes, however, it is possible to give an example.

Consider the reaction
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 H2(g) + Cl2(g) �  2HCl(g)

In this reaction, the total number of molecules does not change. As we have seen in 
Section 3.7, the entropy of an ideal gas S(V, T, N) = N[s0 + Rln(V/N) + CVln(T)]. 
Although there is a considerable difference in the heat capacity of molecules with 
different numbers of atoms, the difference in the heat capacity of two diatomic 
molecules is relatively small. The difference in the term s0 is also small for two 
diatomic molecules. If we ignore these small difference in the entropy between the 
three species of diatomic molecules, then the entropy, which depends on the Nk, V 
and T, will essentially remain constant if T and V are maintained constant. At the 
same time, since the number of molecules does not change, the pressure p remains 
constant (assuming ideal gas behavior). Since this reaction is exothermic, the removal 
of heat produced by the reaction is necessary to keep T constant. Under these condi-
tions, both p and S remain constant as the reaction proceeds and the enthalpy 
reaches its minimum possible value when the system reaches the state of equilibrium. 
For an arbitrary chemical reaction, V and T have to be adjusted simultaneously so 
as to keep p and S constant, which is not a simple task.

Just as we derived dF = −pdV − SdT + ΣkmkdNk, it can easily be shown that (Exer-
cise 5.4):

 d d d dH T S V p Nk k
k

= + + ∑  µ  (5.1.21)

This equation shows that H can be expressed as a function of S, p and Nk. The 
derivatives of H with respect to these variables are
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Once again, if the change in Nk is only due to a chemical reaction, then H is a func-
tion of p, S and x, and we have
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 (5.1.23)

EXTREMUM PRINCIPLES AND STABILITY OF EQUILIBRIUM STATE

In thermodynamics, the existence of extremum principles have an important conse-
quence for the behavior of microscopic fl uctuations. Since all macroscopic systems 
are made of a very large number of molecules which are in constant random motion, 
thermodynamic quantities, such as temperature, pressure and concentration, 
undergo small fl uctuations. Why don’t these fl uctuations slowly drive the thermo-
dynamic variables from one value to another, just as small random fl uctuations in 
the positions of an object slowly move the object from one location to another 
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(a phenomenon called Brownian motion)? The temperature or concentration of a 
system in thermodynamic equilibrium fl uctuates about a fi xed value but does not 
drift randomly. This is because the state of equilibrium is stable. As we have seen, 
irreversible processes drive the system to the equilibrium state in which one of the 
potentials is extremized. Thus, whenever a fl uctuation drives the system away from 
the state of equilibrium, irreversible processes restore the state of equilibrium. The 
tendency of the system to reach and remain at an extremum value of a thermody-
namic potential keeps the system stable. In this way the stability of the equilibrium 
state is related to the existence of thermodynamic potentials.

The state of a system is not always stable. There are situations in which fl uctua-
tions can drive a system from one state to another. In this case the initial state is 
said to be thermodynamically unstable. Some homogeneous mixtures become unsta-
ble when the temperature is decreased; driven by fl uctuations, they then evolve to a 
state in which the components separate into two distinct phases, a phenomenon 
called ‘phase separation’. We shall discuss thermodynamic stability more extensively 
in Chapters 14, 15 and 16.

In addition, when a system is far from thermodynamic equilibrium, the state to 
which the system will evolve is, in general, not governed by an extremum principle; 
there is not an identifi able thermodynamic potential that is minimized due to the 
Second Law. Furthermore, the irreversible processes that assure the stability of the 
equilibrium state may do just the contrary and make the system unstable. The con-
sequent instability under far-from-equilibrium systems drives the system to states 
with a high level of organization, such as concentration oscillations and spontaneous 
formation of spatial patterns. We shall discuss elementary aspects of far-from-
equilibrium instability and the consequent ‘self-organization’ in Chapter 11.

LEGENDRE TRANSFORMATIONS

The relations between the thermodynamic functions F(T, V, Nk), G(T, p, Nk) and 
H(S, p, Nk) and the total energy U(S, V, Nk), expressed as a function of S, V and 
Nk (which follows from Equation (4.1.2) introduced by Gibbs), are a particular 
instances of a general class of relations called Legendre transformations. In a Leg-
endre transformation, a function U(S, V, Nk) is transformed to a function in which 
one or more of the independent variables S, V, and Nk are replaced by the corre-
sponding partial derivatives of U. Thus, F(T, V, Nk) is a Legendre transform of U 
in which S is replaced by the corresponding derivative (∂U/∂S)V,Nk = T. Similarly, 
G(T, p, Nk) is a Legendre transform of U in which S and V are replaced by their 
corresponding derivatives (∂U/∂S)V,Nk

 = T and (∂U/∂V)V,Nk
 = −p. We thus have the 

general table of Legendre transforms shown in Table 5.1.
Legendre transforms show us the general mathematical structure of thermody-

namics. Clearly, not only are there more Legendre transforms that can be defi ned 
of U(S, V, Nk), but also of S(U, V, Nk), and indeed they are used in some situations. 
A detailed presentation of the Legendre transforms in thermodynamics can be found 
in the text by Herbert Callen [3]. (Legendre transforms also appear in classical 
mechanics: the Hamiltonian is a Legendre transform of the Lagrangian).



5.2 General Thermodynamic Relations

As Einstein noted (see Introduction in Chapter 1), it is remarkable that the two laws 
of thermodynamics are simple to state, but they relate many different phenomena 
and have a wide range of applicability. Thermodynamics gives us many general 
relations between state variables which are valid for any system in equilibrium. In 
this section, we shall present a few important general relations. We will apply these 
to particular systems in later chapters. As we shall see in Chapter 11, some of these 
relations can also be extended to nonequilibrium systems that are locally in 
equilibrium.

THE GIBBS–DUHEM EQUATION

One of the important general relations is the Gibbs–Duhem equation (named after 
Pierre Duhem (1861–1916) and Josiah Willard Gibbs (1839–1903)). It shows that 
the intensive variables T, p and mk are not all independent. The Gibbs-Duhem equa-
tion is obtained from the fundamental relation (4.1.2), through which Gibbs intro-
duced the chemical potential

 d d d dU T S p V Nk k
k

= − + ∑µ  (5.2.1)

and relation (4.4.10) which can be rewritten as

 U TS pV Nk k
k

= − + ∑µ  (5.2.2)

The latter follows from the assumption that entropy is an extensive function of U, 
V and Nk and the use of Euler’s theorem. The differential of (5.2.2) is

 d d d d d d dU T S S T V p p V N Nk k k k
k

= + − − + +∑ ( )µ µ  (5.2.3)

This relation can be consistent with (5.2.1) only if

Table 5.1 Legendre transforms in thermodynamics
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 S T V p Nk k
k

d d d− + =∑ µ 0  (5.2.4)

This equation is called the Gibbs–Duhem equation. It shows that changes in the 
intensive variables T, p and mk cannot all be independent. We shall see in Chapter 
7 that the Gibbs–Duhem equation can be used to understand the equilibrium 
between phases and the variation of boiling point with pressure as described by the 
Clausius–Clapeyron equation.

At constant T and p, from (5.2.4) it follows that ΣkNk(dmk)p,T = 0. Since the 
change in the chemical potential is (dmk)p,T = Σi(∂mk/∂Ni)dNi, we can write this 
expression as

 N
N

N
N

N Nk
k

ik i p T

i
k

i p T
k

ki
i

∂
∂





 = ∂

∂














 =∑ ∑∑µ µ

, , ,

d d 0  (5.2.5)

Since dNi are independent and arbitrary variations, (5.2.5) can be valid only if 
the coeffi cient of every dNi is equal to zero. Thus, we have Σk(∂mk/∂Ni)p,TNk = 0. 
Furthermore, since
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Equation (5.2.6) is an important general result that we will use in later chapters.

THE HELMHOLTZ EQUATION

The Helmholtz equation gives us a useful expression to understand how the total 
energy U changes with the volume V at constant T. We have seen that the entropy 
S is a state variable and that it can be expressed as a function of T, V and Nk. The 
Helmholtz equation follows from the fact that, for a function of many variables, 
the second ‘cross-derivatives’ must be equal, i.e.
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For closed systems in which no chemical reactions take place, the changes in entropy 
can be written as
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Since U can be expressed as a function of V and T, we have
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Using this expression in (5.2.8) we obtain
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The coeffi cients of dV and dT can now be identifi ed as the derivatives (∂S/∂V)T and 
(∂S/∂T)V respectively. As expressed in (5.2.7), since the second ‘cross-derivatives’ 
must be equal we have
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It is matter of simple calculation (Exercise 5.6) to show that (5.2.10) leads to the 
Helmholtz equation:
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This equation enables us to determine the variation of the energy with volume if the 
equation of state is known. In particular, it can be used to conclude that, for an 
ideal gas, the equation pV = NRT implies that, at constant T, the energy U is 
independent of the volume, i.e. (∂U/∂V)T = 0.

THE GIBBS–HELMHOLTZ EQUATION

The Gibbs–Helmholtz equation relates the temperature variation of the Gibbs 
energy G to the enthalpy H. It is useful for understanding how the state of chemical 
equilibrium responds to change in temperature; in addition, it provides us a way to 
determine enthalpies of chemical reactions using data on the variation of Gibbs 
energy changes with temperature. The Gibbs–Helmholtz equation is obtained as 
follows. By defi nition, G ≡ H − TS. First, we note that S = −(∂G/∂T)p,Nk

 and write
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 (5.2.12)

It is easy to show (Exercise 5.8) that this equation can be rewritten as
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 (5.2.13)

When considering a chemical reaction, this equation can be written in terms of the 
changes in G and H that accompany conversion of reactants to products. If the total 
Gibbs energy and the enthalpy of the reactants are Gr and Hr respectively and those 
of the products is Gp and Hp respectively, then the changes due to the reactions will 
be ∆G = Gp − Gr and ∆H = Hp − Hr. By applying Equation (5.2.13) to the reactants 
and the products and subtracting one equation from the other, we obtain
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 (5.2.14)

In Chapter 8 we will see that a quantity called the ‘standard ∆G’ of a reaction can 
be obtained by measuring the equilibrium concentrations of the reactants and prod-
ucts. If the equilibrium concentrations (and hence ∆G) are measured at various 
temperatures, then the data on the variation of ∆G with T can be used to obtain 
∆H, which is the enthalpy of reaction. Equations (5.2.13) and (5.2.14) are referred 
to as the Gibbs–Helmholtz equation.

5.3 Gibbs Energy of Formation and Chemical Potential

Other than heat conduction, every irreversible process – e.g. chemical reactions, 
diffusion, the infl uence of electric, magnetic and gravitational fi elds, ionic conduc-
tion, dielectric relaxation – can be described in terms of suitable chemical potentials. 
Chapter 10 is devoted to some of the processes described using the concept of a 
chemical potential. All these processes drive the system to the equilibrium state in 
which the corresponding affi nity vanishes. Because of its central role in the descrip-
tion of irreversible processes, we will derive a general expression for the chemical 
potential in this section.

As we already noted, m is the molar Gibbs energy of a pure compound. In general, 
the Gibbs energy and the chemical potential are related by
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This equation does not give us a means to relate the chemical potential directly to 
experimentally measurable quantities such as heat capacities. As we have seen in 



Chapter 2, enthalpy can be related to heat capacities; therefore, we seek an expres-
sion that relates chemical potential to enthalpy. To this end, we differentiate the 
Gibbs–Helmholtz equation (5.2.13) with respect to Nk and use (5.3.1) to obtain
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 (5.3.2)

in which Hmk is called the partial molar enthalpy of the compound k.
If the value of the chemical potential m(p0, T0) at a reference temperature T0 and 

pressure p0 is known, then by integrating Equation (5.3.2) we can obtain the chemi-
cal potential at any other temperature T if the partial molar enthalpy Hmk(p0, T) is 
known as a function of T:
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As was shown in Chapter 2 (see Equations (2.4.10) and (2.4.11)), the molar enthalpy 
of a pure compound Hmk(T) can be obtained using the tabulated values of Cmp(T), 
the molar heat capacity at constant pressure. For ideal mixtures, Hmk is the same as 
that of a pure compound. For nonideal mixtures, a detailed knowledge of the heat 
capacities of the mixture is needed to obtain Hmk. As noted earlier, the chemical 
potential of a component k is not only a function of its amount, mole fraction xk, 
but also a function of mole fractions of other components xj. The chemical potential 
of a component k depends on how it interacts with other components in the 
mixture.

For a pure compound, knowing m(p0, T) at a pressure p0 and temperature T, 
the value of m(p, T) at any other pressure p can be obtained using the expression 
dm = −Sm dT + Vm dp, which follows from Gibbs–Duhem equation (5.2.4), where 
the molar quantities Sm = S/N and Vm = V/N. Since T is fi xed, dT = 0, and we may 
integrate this expression with respect to p to obtain

 µ µ( , ) ( , ) ,p T p T V p T p
p

p

= + ′ ′∫0

0

m ( )d  (5.3.4)

Thus, if the value of the chemical potential m(p0, T0) is known at a reference pressure 
p0 and temperature T0, Equations (5.3.3) and (5.3.4) tell us that a knowledge of the 
molar volume Vm(p, T) (or density) and the molar enthalpy Hm(p, T) of a compound 
will enable us to calculate the chemical potential at any other pressure p and tem-
perature T. An alternative and convenient way of writing (5.3.4) is due to G.N. 
Lewis (1875–1946), who introduced the concept of activity ak of a compound k [4]. 
The activity is defi ned by the expression

 µ µ µk k k kp T p T RT a RT a( , ) ( , )  ln  ln= + = +0
0  (5.3.5)

in which m0
k = mk(p0, T). When we write the chemical potential in this form in 

terms of activity ak, it turns out that activity has a direct relation to experimentally 
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measurable quantities such as concentrations and pressure. As an illustration, let us 
apply (5.3.4) to the case of an ideal gas. Since Vm = RT/p, we have
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which shows that the activity a = (p/p0) in the ideal gas approximation. In Chapter 
6 we will obtain the expression for the activity of gases when the molecular size and 
molecular forces are taken into account, as in the van der Waals equation.

TABULATION OF THE GIBBS ENERGIES OF COMPOUNDS

The formalism presented above does not give us a way to compute the absolute 
values of Gibbs energies of compounds. Hence, the convention described in Box 5.1 

Box 5.1 Tabulation of Gibbs Free Energies of Compounds.

To compute the changes in Gibbs energy in a chemical reaction, the molar Gibbs energy 
m(p0, T) of a compound in its standard state (its state at pressure p0 = 1 bar) at tempera-
ture T, may be defi ned using the Gibbs energy of formation, ∆Gf[k, T], as follows:

∆Gf
0[k, T ] = 0 for all elements k, at all temperatures T

mk
0(T ) = mk(p0, T ) = ∆G 0

f [k, T] =  standard molar Gibbs energy of formation of com-
pound k at temperature T

=  Gibbs energy of formation of 1 mol of the compound 
from its constituent elements, all in their standard 
states, at temperature T.

Since chemical thermodynamics assumes that there is no interconversion between the 
elements, the Gibbs energy of formation of elements may be used to defi ne the ‘zero’ 
with respect to which the Gibbs energies of all other compounds are measured.

The molar Gibbs energy at any other p and T can be obtained using (5.3.3) and 
(5.3.4) as shown in the fi gure below.

p

µ(p0, T)µ(p0, T0)

µ(p, T)

Eqn (5.3.3)

Eqn (5.3.4)

T



is usually used for tabulating Gibbs energies. Computation of Gibbs energy changes 
in chemical reactions are based on this convention. Here, the molar Gibbs energy of 
formation of a compound k, denoted by ∆Gf

0[k], is defi ned. Since chemical thermo-
dynamics assumes that there is no interconversion between elements, the Gibbs 
energy of elements may be used to defi ne the ‘zero’ with respect to which the Gibbs 
energies of all other compounds are measured. The Gibbs energy of formation 
of H2O, written as ∆G f

0[H2O], for example, is the Gibbs energy change ∆G in the 
reaction

 H O H O l2 2 2
1
2

( )  ( )  ( )g g+ →

The molar Gibbs energies of formation of compounds ∆G 0
f [k] = m(p0, T0) are tabu-

lated generally for T0 = 298.15 K. We shall consider the use of ∆G 0
f  in more detail 

in Chapter 9 devoted to the thermodynamics of chemical reactions. From these 
values, the chemical potentials of compounds can be calculated as explained in 
Box 5.1. We conclude this section by noting that substitution of (5.3.3) into (5.3.4) 
gives us a general expression for the computation of the chemical potential:

 µ µ( , ) ( , )  ,   
( , )

p T
T
T

p T V p T p T
H p T

T
T

p

p

T

T

= + ′ ′ + − ′
′

′∫
0

0 0 0 2
0 0

m
m( )d d∫∫  (5.3.7)

Thus, once the reference chemical potential m(p0, T0) is defi ned using some conven-
tion, the chemical potential of a compound can be computed using the above 
formula if the molar volumes Vm and molar enthalpy Hm are known as functions of 
p and T. These quantities are experimentally measured and tabulated (e.g. NIST 
Chemistry Webbook at http://webbook.nist.gov/chemistry).

5.4 Maxwell Relations

The two laws of thermodynamics establish energy and entropy as functions of state, 
making them functions of many variables. As we have seen, U = U(S, V, Nk) and 
S = S(U, V, Nk) are functions of the indicated variables. James Clerk Maxwell 
(1831–1879) used the rich theory of multivariable functions to obtain a large number 
of relations between thermodynamic variables. The methods he employed are 
general, and the relations thus obtained are called the Maxwell relations.

In Appendix 1.1 we introduced the following result: if three variables x, y and z 
are such that each may be expressed as a function of the other two, x = x(y, z), 
y = y(x, z) and z = z(x, y), then the theory of multivariable functions gives us 
the following fundamental relations:

 
∂

∂ ∂
= ∂

∂ ∂

2 2x
y z

x
z y

 (5.4.1)
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Also, if we consider z = z(x, y) and w = w(x, y), two functions of x and y, then 
the partial derivative (∂z/∂x)w, in which the derivative is evaluated at constant w, 
is given by
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 + ∂
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 (5.4.4)

We have already seen how (5.4.1) can be used to derive the Helmholtz equation 
(5.2.11) in which entropy S was considered a function of T and V. In most cases, 
(5.4.1)–(5.4.4) are used to write thermodynamic derivatives in a form that can easily 
be related to experimentally measurable quantities. For example, using the fact that 
the Helmholtz energy F(V, T) is a function of V and T, (5.4.1) can be used to derive 
the relation: (∂S/∂V)T = (∂p/∂T)V in which the derivative on the right-hand-side is 
clearly more easily related to the experiment.

Some thermodynamic derivatives are directly related to properties of materials 
that can be measured experimentally. Other thermodynamic derivatives are expressed 
in terms of these quantities. The following are among the most commonly used 
physical properties in thermodynamics:

isothermal compressibility: κT

TV
V
p

≡ ∂
∂







–
1

 (5.4.5)

coeffi cient of volume expansion: α ≡ ∂
∂







1
V

V
T p

 (5.4.6)

Now the pressure coeffi cient (∂p/∂T)V, for example, can be expressed in terms of kT 
and a as follows. From (5.4.3), it follows that
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Now, using (5.4.2) and dividing the numerator and the denominator by V we 
obtain
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V
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κ
 (5.4.7)

GENERAL RELATION BETWEEN CmP AND CmV

As another example of the application of Maxwell’s relations, we will derive a 
general relation between Cmp and CmV in terms of a, kT, the molar volume Vm and 
T – all of which can be measured experimentally. We start with the relation we have 
already derived in Chapter 2, i.e. (2.3.5):

 C C p
U
V

V
T

p V
T p

m m
m

m

m− = + ∂
∂













∂
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  (5.4.8)

where we have used all molar quantities, as indicated by the subscript ‘m’. The fi rst 
step is to write the derivative (∂U/∂V)T in terms of the derivatives of involving p, V 
and T, so that we can relate it to a and kT. From the Helmholtz equation (5.2.11), 
it is easy to see that (∂U/∂V)T + p = T(∂p/∂T)V. Therefore, we can write (5.4.8) as

 C C T
p
T

Vp V
V

m m m− = ∂
∂





 α  (5.4.9)

in which we have used the defi nition (5.4.6) for a. Now, using the Maxwell relation 
(∂p/∂T)V = (a/kT) (see (5.4.7)) in (5.4.9) we obtain the general relation

 C C
T V

p V
T

m m
m− = α

κ

2

 (5.4.10)

5.5 Extensivity with Respect to N and Partial Molar Quantities

In multicomponent systems, thermodynamic functions such as volume V, Gibbs 
energy G, and all other thermodynamic functions that can be expressed as functions 
of p, T and Nk are extensive functions of Nk. This extensivity gives us general ther-
modynamic relations, some of which we will discuss in this section. Consider the 
volume of a system as a function of p, T and Nk: V = V(p, T, Nk). At constant p and 
T, if all the molar amounts were increased by a factor k, the volume V will also 
increase by the same factor. This is the property of extensivity. In mathematical 
terms, we have

 V p T N V p T Nk k( , , ) ( , , )λ λ=  (5.5.1)
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At constant p and T, using Euler’s theorem as was done in Section 4.4, we can arrive 
at the relation

 V
V
N

N
kk p T

k= ∂
∂





∑

,

 (5.5.2)

It is convenient to defi ne partial molar volumes as the derivatives:

 V
V
N

k
k p T

m ≡ ∂
∂







,

 (5.5.3)

Using this defi nition, Equation (5.5.2) can be written as

 V V Nk k
k

= ∑ m  (5.5.4)

Partial molar volumes are intensive quantities. As was done in the case of the 
Gibbs–Duhem relation, we can derive a relation between the Vmk by noting that at 
constant p and T:

 d d dmV
V
N

N V Np T
kk p T

k k k
k

( ) = ∂
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 =∑ ∑,

,

 (5.5.5)

in which we have explicitly noted that the change dV is at constant p and T. 
Comparing dV obtained from (5.5.4) and (5.5.5), we see that ΣkNk(dVmk)p,T = 0. 
Now (dVmk) = Σi(∂Vmk/∂Ni)dNi, so we obtain

 N
V
N

Nk
i

k

i
i

k
∑∑ ∂

∂




 =m d 0

In this equation, dNi are arbitrary variations in Ni; consequently, the above equation 
can be valid only when the coeffi cient of each dNi = 0, i.e. ΣkNk(∂Vmk/∂Ni) = 0. 
Finally, using the property (∂Vmk/∂Ni) = (∂2V/∂Ni∂Nk) = (∂Vmi/∂Nk) we arrive at the 
fi nal result:

 N
V
N

k
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k p Tk
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 =∑ m

,

0  (5.5.6)

Relations similar to (5.5.4) and (5.5.6) can be obtained for all other functions that 
are extensive in Nk. For Gibbs energy, which is an extensive quantity, the equation 
corresponding to (5.5.4) is

 G
G

N
N G N N

k p T
k

k
k k

k
k k

k

= ∂
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 = =∑ ∑ ∑

,
m µ  (5.5.7)



in which we recognize the partial molar Gibbs energy Gmk as the chemical potentials 
mk. The equation corresponding to (5.5.6) follows from the Gibbs–Duhem relation 
(5.2.4) when p and T are constant:
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k p Tk
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,

0  (5.5.8)

Similarly, for the Helmholtz energy F and the enthalpy H we can obtain the follow-
ing relations:

 F F N N
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in which the partial molar Helmholtz energy Fmk = (∂F/∂Nk)p,T and partial molar 
enthalpy Hmk = (∂H/∂Nk)p,T. Similar relations can be obtained for entropy S and the 
total internal energy U.

5.6 Surface Tension

In this section we shall consider some elementary thermodynamic relations involving 
interfaces [5]. Since molecules at an interface are in a different environment from 
molecules in the bulk, their energies and entropies are different. Molecules at a 
liquid–air interface, for example, have larger Helmholtz energy than those in the 
bulk. At constant V and T, since every system minimizes its Helmholtz energy, the 
interfacial area shrinks to its minimum possible value, thus increasing the pressure 
in the liquid (Figure 5.4).

The thermodynamics of such a system can be formulated as follows. Consider a 
system with two parts, separated by an interface of area Σ (Figure 5.4). For this 
system we have

 d d d d dU T S p V p V= − ′′ ′′ − ′ ′ + γ Σ  (5.6.1)

in which p′ and V′ are the pressure and the volume of one part and p″ and V″ are 
the pressure and the volume of the other, Σ is the interfacial area, and the coeffi cient 
g is called the surface tension. Since dF = dU − T dS − S dT, using (5.6.1) we can 
write dF as

 d d d d dF S T p V p V= − − ′′ ′′ − ′ ′ + γ Σ  (5.6.2)

From this it follows that
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F

T V VΣ , ,

γ  (5.6.3)

Thus, surface tension g is the change of F per unit extension of the interfacial area 
at constant T, V′ and V″. This energy is small, usually of the order of 10−2 J m−2.

The minimization of Helmholtz energy drives the interface to contract like an 
elastic sheet. The force per unit length that the interface exerts in its tendency to 
contract is also equal to g. This can be seen as follows. Since enlarging an interfacial 
area increases its Helmholtz energy, work needs to be done. As shown in the Figure 
5.5, this means a force f is needed to stretch the surface by an amount dx, i.e. the 
interface behaves like an elastic sheet. The work done, fdx, equals the increase in 
the surface energy, g dΣ = (gl dx), in which l is the width of the surface (Figure 5.5). 
Thus, f dx = gl dx, or the force per unit length f/l = g. For this reason, g is called the 
‘surface tension’.

p′ V ′
Σ           

p′′

V ′′

dF = –T diS < 0 

Figure 5.4 To minimize the interfacial Helmholtz energy, a liquid drop 
shrinks its surface area to the least possible value. As a result, the pressure 
p″ inside the drop is larger than the external pressure p′. The excess pressure 
(p″ − p′) = 2g /r

l
f dx = γ l dx

dx

Figure 5.5 Energy is required to enlarge a 
surface of a liquid. The force per unit length 
is g



EXCESS PRESSURE IN A LIQUID DROP

In the case of the liquid drop in air shown in Figure 5.4, the difference in the pres-
sures (p″ − p′) = ∆p is the excess pressure inside the liquid drop. An expression for 
the excess pressure ∆p in a spherical liquid drop can be obtained as follows. As 
shown in Section 5.1, if the total volume of a system and its temperature are con-
stant, then the irreversible approach to equilibrium is described by −T diS = dF ≤ 0. 
Now consider an irreversible contraction of the volume V″ of the liquid drop to its 
equilibrium value when the total volume V = V ′ + V″ and T are constant. Setting 
dT = 0 and dV′ = −dV″ in (5.6.2) we obtain

 − = = − ′′ − ′ ′′ +T
S
t

F
t

p p
V

t t
d
d

d
d

d
d

d
d

i ( ) γ Σ  (5.6.4)

For a spherical drop of radius r, dV″ = (4p/3)3r2 dr and dΣ = 4p2r dr; hence, the 
above equation can be written as

 − = = − ′′ − ′ +T
S
t

F
t

p p r r
r
t

d
d

d
d

d
d

i [ ( ) ]4 82p pγ  (5.6.5)

We see that this expression is a product of a ‘thermodynamic force’ −(p″ − p′)4pr2 
+ g8pr that causes the ‘fl ow rate’ dr/dt. At equilibrium, both must vanish. Hence, 
−(p″ − p′)4pr2 + g8pr = 0. This gives us the well known equation for the excess pres-
sure inside a liquid drop of radius r:

 ∆p p p
r

≡ ′′ − ′ =( )
2γ  (5.6.6)

This result is called the Laplace equation because it was fi rst derived by the French 
mathematician Pierre-Simon Laplace (1749–1827).

CAPILLARY RISE

Another consequence of surface tension is the phenomenon of ‘capillary rise’: in 
narrow tubes or capillaries, most liquids rise to a height h (Figure 5.6) that depends 
on the radius of the capillary. The smaller the radius, the higher the rise. The liquid 
rises because an increase in the area of the liquid–glass interface lowers the Helm-
holtz energy. The relation between the height h, the radius r and the surface tension 
can be derived as follows. As shown in Figure 5.6c, the force of surface tension of 
the liquid–air interface pulls the surface down while the force at the liquid–glass 
interface pulls the liquid up. Let the ‘contact angle’, i.e. the angle at which the liquid 
is in contact with the wall of the capillary, be q. When these two forces balance each 
other along the vertical direction, the force per unit length generated by the liquid–
glass interface must be g cos q. As the liquid moves up, the liquid–glass interface is 
increasing while the glass–air interface is decreasing; g cos q is the net force per unit 
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length due to these two factors. The force per unit length is equal to the interfacial 
energy per unit area; thus, as the liquid moves up, the decrease in the interfacial 
energy is g cos q per unit area. Hence, as the liquid moves up and increases the area 
of the glass–liquid interface, the decrease in Helmholtz energy is g cos q per unit area. 
On the other hand, as the liquid rises in the capillary, there is an increase in the 
potential energy of the liquid due to gravity. A liquid layer of thickens dh and density 
r has the mass (pr2 dh r) and its potential energy at a height h equal to (pr2 dh r)gh. 
For the entire liquid column, this expression has to be integrated from 0 to h. The 
change in the Helmholtz energy ∆F as the liquid rises is the sum of the potential 
energy and glass–liquid interfacial energy.

 ∆F h gh r h rh
gr h

rh
h

( )   ( cos ) ( cos )= − = −∫ ρπ π γ θ πρ π γ θ2

0

2 2

2
2

2d  (5.6.7)

The value of h that minimizes F is obtained by setting ∂(∆F(h)/∂h) = 0 and solving 
for h. This leads to the expression

 h
gr

= 2γ θ
ρ
cos  (5.6.8)

The same result can also be derived by balancing the forces of surface tension and 
the weight of the liquid column. As shown in Figure 5.6b, the liquid column of 
height h is held at the surface by the surface tension. The total force due to the 
surface tension of the liquid along the circumference is 2prg cos q. Since this force 
holds the weight of the liquid column, we have

h

θr

γ cos θ

θ 

γ

(a)               (b)    (c) 

Figure 5.6 Capillary rise due to surface tension. (a) The height h to which 
the liquid rises depends on the contact angle q the surface tension g and 
the radius r. (b) The contact angle q specifi es the direction in which the 
force due to the liquid–air interface acts. (c) The vertical component of 
the force due to the liquid–air interface balances the net force due to the 
liquid–glass and glass–air interfaces



 2 2p pr gh rγ θ ρcos =  (5.6.9)

from which (5.6.8) follows.
The contact angle q depends on the interface; see Table 5.2. For a glass–water 

interface the contact angle is nearly zero, as it is for many, though not all, organic 
liquids. For a glass–kerosene interface, q = 26°. The contact angle can be greater 
than 90°, as in the case of mercury–glass interface, for which q is about 140°, and 
for a paraffi n–water interface, for which it is about 107°. When q is greater than 
90°, the liquid surface in the capillary is lowered.
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Examples

Example 5.1 Show that the change in the value of the Helmholtz free energy F 
corresponds to the work done when T and Nk are constant, thus justifying the name 
‘free energy’ (available for doing work).

Table 5.2 Examples of surface tension and contact angles

g /10−2  J  m−2 or g /10−2  N  m−1 Interface Contact angle/°

Methanol 2.26 Glass–water   0
Benzene 2.89 Glass–many organic liquids†   0
Water 7.73 Glass–kerosene  26
Mercury 47.2 Glass–mercury 140
Soap solution 2.3 (approximate) Paraffi n–water 107
†  Not all organic liquids have a contact angle value of 0°, as is clear in the case of kerosene.
More extensive data may be found in D.R. Lide (ed.) CRC Handbook of Chemistry and Physics, 75th edition. 1994, CRC 
Press: Ann Arbor, MI.

T
dV

p

EXAMPLES 187



188 EXTREMUM PRINCIPLES AND GENERAL THERMODYNAMIC RELATIONS

Solution As a specifi c example, consider a gas in contact with a thermal reservoir 
at temperature T. By expanding this gas, work can be done. We can show that 
the change of F corresponds to the work done at constant T and Nk as follows. 
F = U − TS. From this it follows that (see (5.1.5))

 d d d dF p V S T Nk k
k

= − − + ∑µ

At constant T and Nk, dF = −p dV. Integrating both sides, we see that

 d dF F F p V
F

F

V

V

1

2

1

2

2 1∫ ∫= − = −

which shows that the change in F is equal to the work done by the gas. The same 
will be true for any other system.

Example 5.2 For a closed system with one chemical reaction, show that 
(∂F/∂x )T,V = −A.
Solution The change in F is given by (see (5.1.5))

 d d d dF p V S T Nk k
k

= − − + ∑µ

Since the system is closed, the changes in Nk are due to chemical reaction; hence, 
we have dNk = nk dx in which nk are the stoichiometric coeffi cients (which are 
negative for the reactants and positive for the products). Thus:

 d d d dF p V S T k k
k

= − − + ∑ν µ ξ

Since Σknkmk = −A we have

 dF = −pdV − S dT − Adx

When F is considered as a function of V, T and x, then
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and we see that (∂F/∂x)T,V = −A.

Example 5.3 Using the Gibbs–Duhem relation show that at constant p and T, 
(dGm)p,T = Σkmkdxk (which is (5.1.17)).
Solution The molar Gibbs free energy Gm = Σkmkxk in which xk is the mole fraction 
of component k. Hence:

 d d dmG x xk k
k

k k
k

= +∑ ∑µ µ



The Gibbs–Duhem relation is

 S T V p Nk k
k

d d d− + =∑ µ 0

Since p and T are constant, dT = dp = 0. Furthermore, xk = Nk/N in which N is 
the total number of moles. Dividing the Gibbs–Duhem equation by N and setting 
dp = dT = 0, we have Σkxkdmk = 0. Using this result in the expression for dGm above, 
for constant p and T we see that

 ( ) ,d dmG xp T k k
k

= ∑ µ

(Note that Σkxk = 1 and, hence, xk are not all independent. Hence, the above equa-
tion does not imply that (∂Gm/∂xk)p,T = mk.)

Exercises

5.1 Use the expression T diS = −gdA and T deS = dU + p dV in the general expres-
sions for the First and the Second Laws and obtain dU = T dS − p dV + gdA 
(assuming dNk = 0).

5.2 (a) In an isothermal expansion of a gas from a volume Vi to Vf, what is the 
change in the Helmholtz free energy F? (b) For a system undergoing chemical 
transformation at constant V and T, prove (5.1.7).

5.3 Use the relations dU = dQ − p dV, TdeS = dQ and TdiS = −ΣkmkdNk to 
derive

 d d d dG V p S T Nk k
k

= − + ∑ µ

 which is Equation (5.1.13).

5.4 Use the relations dU = dQ − p dV, T deS = dQ and TdiS = −ΣkmkdNk to 
derive

 d d d dH T S V p Nk k
k

= + + ∑  µ

 which is Equation (5.1.21).

5.5 For an ideal gas, in an isothermal process, show that the change in the Gibbs 
energy of a system is equal to the amount of work done by a system in an 
idealized reversible process.

5.6 Obtain the Helmholtz equation (5.2.11) from (5.2.10).
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5.7 (a) Use the Helmholtz equation (5.2.11) to show that, at constant T, the 
energy of an ideal gas is independent of volume.
(b) Use the Helmholtz equation (5.2.11) to calculate (∂U/∂V)T for N moles 
of a gas using the van der Waals equation.

5.8 Obtain (5.2.13) from (5.2.12).

5.9 Derive the following general equation, which is similar to the Gibbs–
Helmholtz equation:

 
∂

∂




 = −

T
F
T

U
T 2

5.10 Assume that ∆H changes little with temperature, integrate the Gibbs–
Helmholtz equation (5.2.14) and express ∆Gf at temperature Tf in terms of 
∆H, ∆Gi and the corresponding temperature Ti and ∆H.

5.11 Obtain an explicit expression for the Helmholtz energy of an ideal gas as a 
function T, V and N.

5.12 The variation of Gibbs energy of a substance with temperature is given by 
G = aT + b + c/T. Determine the entropy and enthalpy of this substance as 
a function of temperature.

5.13 Show that (5.4.10) reduces to Cmp − CmV = R for an ideal gas.

5.14 Consider a reaction X ∫ 2Y in which X and Y are ideal gases.
(a) Write the Gibbs energy of this system as a function of extent of reaction 
x so that x is the deviation from the equilibrium amounts of X and Y, i.e. 
NX = NXeq − x and NY = NYeq + 2x in which NXeq and NYeq are the equilibrium 
amounts of X and Y.
(b) Through explicit evaluation, show that (∂G/∂x)p,T = −A = (2mY − mX).

5.15 (a) By minimizing the free energy ∆F(h) given by (5.6.1) as a function of h, 
obtain the expression

 h
gr

= 2γ θ
ρ
cos

 for the height of capillary rise due to surface tension.
(b) Assume that the contact angle q between water and glass is nearly zero 
and calculate the height of water in a capillary of diameter 0.1 mm.



5.16 (a) Owing to surface tension, the pressure inside a bubble is higher than the 
outside pressure. Let this excess pressure be ∆p. By equating the work done 
∆p dV due to an infi nitesimal increase dr in the radius r to the increase in 
surface energy g dA, show that ∆p = 2g /r
(b) Calculate the excess pressures inside water bubbles of radius 1.0 mm and 
1.0 µm.

5.17 What is the minimum energy needed to covert 1.0 mL of water to droplets 
of diameter 1.0 µm?

5.18 When the surface energy is included we have seen that 

 dU = T dS − p dV + m dN + g dA

 in which g  is the surface tension and dA is the change in the surface area. 
For a small spherical liquid drop of a pure substance, show that the above 
expression can be written as dU = T dS − p dV + m′(r) dN in which m′(r) = m 
+ (2g /r)Vm, a size-dependent chemical potential.
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6  BASIC THERMODYNAMICS OF 
GASES, LIQUIDS AND SOLIDS

Introduction

The formalism and general thermodynamic relations that we have seen in the previ-
ous chapters have wide applicability. In this chapter we will see how thermodynamic 
quantities can be calculated for gases, liquids, solids and solutions using general 
methods.

6.1 Thermodynamics of Ideal Gases

Many thermodynamic quantities, such as total internal energy, entropy, chemical 
potential, etc., for an ideal gas have been derived in the preceding chapters as 
examples. In this section, we will bring all these results together and list the thermo-
dynamic properties of gases in the ideal gas approximation. In the following section, 
we will see how these quantities can be calculated for ‘real gases’ for which we take 
into account the size and intermolecular forces.

THE EQUATION OF STATE

Our starting point is the equation of state, the ideal gas law:

 pV NRT=  (6.1.1)

As we saw in Chapter 1, this approximation is valid for most gases when their densi-
ties are less than about 1 mol L−1. At this density and temperature of about 300 K, 
for example, the pressure of N2(g) obtained using the ideal gas equation is 24.76 atm, 
whereas that predicted using the more accurate van der Waals equation is 24.36 atm, 
a difference of only a few percent.

THE TOTAL INTERNAL ENERGY

Through thermodynamics, we can see that the ideal gas law (6.1.1) implies that the 
total internal energy U is independent of the volume at fi xed T, i.e. the energy of an 
ideal gas depends only on its temperature. One arrives at this conclusion using the 
Helmholtz equation (see (5.2.11)), which is valid for all thermodynamic systems:

 ∂
∂





 = ∂

∂












U
V

T
T

p
TT V

2  
(6.1.2)
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(We remind the reader that the Helmholtz equation is a consequence of the fact 
that entropy is a state function of V, T and Nk.) Since the ideal gas equation 
implies that the term p/T = NR/V is independent of T, it immediately follows from 
(6.1.2) that (∂U/∂V)T = 0. Thus, the total internal energy U(T, V, N) of N moles of 
an ideal gas is independent of the volume at a fi xed T. We can get a more explicit 
expression for U. Since CmV = (∂Um/∂T)V is found to be independent of T, we can 
write

 U NU N C T N U C TV

T

Videal m md= + = +∫0

0

0( )  (6.1.3)

(The constant U0 is not defi ned in classical thermodynamics, but, using the defi nition 
of energy that the theory of relativity gives us, we may set NU0 = MNc2, in which 
M is the molar mass, N is the molar amount of the substance and c is the velocity 
of light. In thermodynamic calculations of changes of energy, U0 does not appear 
explicitly.)

HEAT CAPACITIES AND ADIABATIC PROCESSES

We have seen earlier that there are two molar heat capacities: CmV and Cmp, the 
former at constant volume and the latter at constant pressure. We have also seen in 
Chapter 2 that the First Law gives us the following relation between molar heat 
capacities:

 C C Rp Vm m− =  (6.1.4)

For an adiabatic process, the First Law also gives us the relation

 TV pVγ γ− = =1 constant or constant  (6.1.5)

in which g = Cmp/CmV. In an adiabatic process, by defi nition deS = dQ/T = 0. If the 
process occurs such that diS ≈ 0, then the entropy of the system remains constant 
because dS = diS + deS.

ENTROPY AND THERMODYNAMIC POTENTIALS

We have already seen that the entropy S(V, T, N) of an ideal gas is (see (3.7.4))

 S N s C T R V NV= + +[ ln( ) ln( )]0 m /  (6.1.6)

From the equation of state (6.1.1) and the expressions for Uideal and S it is straight-
forward to obtain explicit expressions for the enthalpy H = U + pV, the Helmholtz 
energy F = U − TS and the Gibbs energy G = U − TS + pV of an ideal gas (Exercise 
6.1).
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CHEMICAL POTENTIAL

For the chemical potential of an ideal gas, we obtained the following expression in 
Section 5.3 (see (5.3.6)):

 µ µ( , ) ( , ) ln( )p T p T RT p p= +0 0/  (6.1.7)

For a mixture of ideal gases the total energy is the sum of the energies of each com-
ponent. The same is true for the entropy. The chemical potential of a component k 
can be expressed in terms of the partial pressures pk as

 µ µk k k kp T p T RT p p( , ) ( , ) ln( )= +0 0/  (6.1.8)

Alternatively, if xk is the mole fraction of the component k, since pk = xkp, the chemi-
cal potential can be written as

 µ µk k k kp T x p T RT x( , , ) ( , ) ln( )= +0  (6.1.9)

in which m 0
k(p,T) = mk(p0,T) + RT ln(p / p0) is the chemical potential of a pure ideal 

gas. This form of the chemical potential is generally used in the thermodynamics of 
multicomponent systems to defi ne an ‘ideal mixture’.

ENTROPY OF MIXING AND THE GIBBS PARADOX

Using the expression for the entropy of an ideal gas, we can calculate the increase 
in the entropy due to irreversible mixing of two gases. Consider two nonidentical 
gases in chambers of volume V separated by a wall (Figure 6.1). Let us assume that 
the two chambers contain the same amount, N moles, of the two gases. The total 
initial entropy of the system is the sum of the entropies of the two gases:

S N s C T R V N N s C T R V NV Vinit m m/ /= + + + + +[ ln( ) ln( )] [ ln( ) ln( )]01 1 02 2  (6.1.10)

Now if the wall separating the two chambers is removed, the two gases will mix 
irreversibly and the entropy will increase. When the two gases have completely 
mixed and the system has reached a new state of equilibrium, each gas would be 
occupying a volume of 2 V. Hence, the total fi nal entropy after the mixing is

S N s C T R V N N s C T R V NV Vfin m m/ /= + + + + +[ ln( ) ln( )] [ ln( ) ln( )]01 1 02 22 2  (6.1.11)

The difference between (6.1.10) and (6.1.11) is the entropy of mixing ∆Smix = Sfi n − 
Sinit. It is easy to see that

 ∆S NRmix = 2 2ln  (6.1.12)

The generalization of this result to unequal volumes and molar amounts is left 
as an exercise. It can be shown that if initially the densities of the two gases are 
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the same, i.e. (N1/V1) = (N2/V2), then the entropy of mixing can be written as 
(Exercise 6.2)

 ∆S RN x x x xmix = − +( ln ln )1 1 2 2  (6.1.13)

where x1 and x2 are the mole fractions and N = N1 + N2.
Gibbs noted a curious aspect of this result. If the two gases were identical, then 

the states of the gas before and after the removal of the wall are indistinguishable 
except for the wall; by replacing the wall, the initial state can be restored. This means 
that there is no irreversible process mixing the two gases. Hence, there is no change 
in entropy because the initial and fi nal states are the same. But for two nonidentical 
gases, however small the difference between them is, the change of entropy is given 
by (6.1.12). Generally, in most physical systems, a small change in one quantity 
results in a small change in another dependent quantity. Not so with the entropy of 
mixing; even the smallest difference between two gases leads to an entropy difference 
of 2NRln2. If the difference between the two gases vanishes, then Smix abruptly 
drops to zero. This discontinuous behavior of the entropy of mixing is often called 
the Gibbs paradox.

The entropy of mixing (6.1.13) can also be obtained using the statistical formula 
S = kB lnW introduced in Chapter 3 (Box 3.1). Consider a gas containing (N1 + N2) 
moles or (N1 + N2)NA molecules. For this gas, interchange of molecules does not 
correspond to distinct microstates because the molecules are indistinguishable. 

Figure 6.1 The entropy of mixing of two 
nonidentical gases, however small the differ-
ence between the gases, is given by (6.1.12). 
If the two gases are identical, then there is no 
change in the entropy



However, if N2 moles of the gas are replaced by another gas, then an interchange 
of molecules of the two different gases corresponds to a distinct microstate. Thus, 
the gas mixture with N1 moles of one gas and N2 of another gas has additional 
microstates in comparison with (N1 + N2) moles of one gas. That these additional 
microstates when used in the formula S = kB lnW give the entropy of mixing (6.1.13) 
can be seen as follows. The number of additional microstates in the mixture is

 
W

N N N N
N N N N

mix
A A

A A

= +( )!
( )!( )!

1 2

1 2

 
(6.1.14)

in which we have introduced the Avogadro number NA to convert moles to number 
of molecules. Using the Stirling approximation N! ≈ NlnN − N, it can easily be shown 
that (Exercise 6.2)

 ∆S k W k N N N x x x xmix B mix B A= = − + +ln ( )( ln ln )1 2 1 1 2 2  (6.1.15)

in which x1 and x2 are mole fractions. Equation (6.1.15) is identical to (6.1.13) 
because R = kBNA and N = N1 + N2. This derivation shows that expression (6.1.13) 
for the entropy of mixing is not dependent on the interactions between the gas 
molecules: it is entirely a consequence of distinguishablity of the two components 
of the system.

6.2 Thermodynamics of Real Gases

Useful though it might be, the idea gas approximation ignores the fi nite size of the 
molecules and the intermolecular forces. Consequently, as the gas becomes denser, 
the ideal gas equation does not predict the relation between the volume, pressure 
and temperature with good accuracy: one has to use other equations of state that 
provide a better description. If the molecular size and forces are included in the 
theory, then one refers to it as a theory of a ‘real gas’.

As a result of molecular forces, the total internal energy U, the relation between 
the molar heat capacities Cmp and CmV, the equation for adiabatic processes and 
other thermodynamic quantities will differ from those for the ideal gas. In this 
section, we shall see how the thermodynamic quantities of a real gas can be obtained 
from an equation of state that takes molecular size and forces into account.

The van der Waals equation, which takes into account the intermolecular forces 
and molecular size, and the critical constants pc, Vmc and Tc were introduced in 
Chapter 1:
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(6.2.1a)

 
p

a
b

V b T
a
bR

c mc c= = =
27

3
8

272

 
(6.2.1b)
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in which Vm is the molar volume. Since the van der Waals equation also has its limi-
tations, others have been proposed for gases. Some of the other equations that have 
been proposed and the corresponding critical constants are as follows:

The Berthelot equation:
 

p
RT

V b
a

TV
    =

−
−

m m
2

 
(6.2.2a)
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(6.2.2b)

The Dieterici equation:
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(6.2.3a)
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(6.2.3b)

in which a and b are constants similar to the van der Waals constants which can be 
related to the critical constants as shown. Another equation that is often used is the 
virial expansion, proposed by Kamerlingh Onnes (1853–1926). It expresses the pres-
sure as power series in the molar density r = N/V:

 
p RT

N
V

B T
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V

C T
N
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    ( )   ( ) . . .= + + 
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1

2  
(6.2.4)

in which B(T) and C(T) are functions of temperature, called the virial coeffi cients; 
they are experimentally measured and tabulated. For example, it is found that 
experimental data for the virial coeffi cient can be approximated by the function B(T) 
= a − bexp(g /T), in which a, b and g are constants and T is the temperature in 
kelvin.* Values of these constants for a few gases are shown in Table 6.1. It is also 

Table 6.1 An empirical function for the second virial coeffi cient B(T) = a − b exp(g/T)

Gas a/mL  mol−1 b/mL  mol−1 g/K Range of validity/K

Ar 154.2 119.3 105.1   80–1024
N2 185.4 141.8  88.7  75–700
O2 152.8 117.0 108.8  90–400
CH4 206.4 159.5 133.0 110–600
C2H6 267.3 191.5 256 210–500

Source: Online Kaye & Laby Tables of Physical and Chemical Constants at the National Physical Laboratory, 
UK (http://www.kayelaby.npl.co.uk/chemistry).

* The values of the constants a, b and g and the ranges of T for which the empirical formula is valid 
can be found at http://www.kayelaby.npl.co.uk/chemistry/3_5/3_5.html of the National Physical Labo-
ratory, UK.



found that a better fi t for experimental data can be obtained by dropping (N/V)3 
and higher odd powers from the virial expansion (6.2.4). As expected, (6.2.4) reduces 
to the ideal gas equation at low densities. The van der Waals constants a and b can 
be related to the virial coeffi cients B(T) and C(T) (Exercise 6.4); and, conversely, 
the virial coeffi cients can be calculated form the van der Waals constants. Since 
the ideal gas equation is valid at low pressures, the virial equation may also be 
written as

 
p RT

N
V

B T p C T p= + ′ + ′ +[ ( ) ( ) . . . ]1 2  
(6.2.5)

Comparing (6.2.4) and (6.2.5), it can be shown that B = B′RT, to a fi rst 
approximation.

TOTAL INTERNAL ENERGY

For real gases, due to the molecular interaction, the energy is no longer only a func-
tion of the temperature. Because the interaction energy of the molecules depends on 
the distance between the molecules, a change in volume (at a fi xed T) causes a change 
in energy, i.e. the term (∂U/∂V)T does not vanish for a real gas. Molecular forces 
have a short range. At low densities, since molecules are far apart, the force of 
interaction is small. As the density approaches zero, the energy of real gas Ureal 
approaches the energy of an ideal gas Uideal. We can obtain an explicit expression 
for Ureal through the Helmholtz equation, (∂U/∂V)T = T2[∂(p/T)/∂T]V, which is valid 
for all systems (not only for gases). Upon integration, this equation yields

 U T V N U T V N T
T

p
T

V
VV

V

real real d( , , ) ( , , )= + ∂
∂





∫0

2

0

 
(6.2.6)

To write this in a convenient form, fi rst we note that, for a fi xed N, as the volume 
V0 → ∞, the density approaches zero, and, as noted above, Ureal approaches the 
energy of an ideal gas Uideal given by (6.1.3). Hence, (6.2.6) can be written as

 U T V N U T N T
T

p
T

V
V

V

real ideal d( , , ) ( , )= + ∂
∂







∞
∫ 2  

(6.2.7)

If [∂(p/T)/∂T]V can be calculated using the equation of state, then explicit expressions 
for Ureal could be derived. For example, let us consider the van der Waals equation 
of state. From (6.2.1) it is easy to see that p/T = NR/(V − Nb) − a(N/V)2(1/T). 
Substituting this expression into (6.2.7) we obtain the energy of a van der Waals 
gas Uvw:
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Evaluation of the integral gives

 
U V T N U a

N
V

Vvw ideal( , , )    = − 





2  
(6.2.8)

Writing the energy in this form shows us that the energy due to molecular interac-
tions is equal to −a(N/V)2 per unit volume. As we expect, as the volume increases 
Uvw approaches Uideal.

MOLAR HEAT CAPACITYS CmV AND Cmp

If the molar internal energy Um of a gas is known, then the molar heat capacity at 
constant volume CmV = (∂Um/∂T)V can be calculated. For a real gas, we can use (6.2.7) 
to obtain the following expression for the molar heat capacity CmV:
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which upon explicit evaluation of the derivatives in the integral gives
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∫
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(6.2.9)

Given an equation of state, such as the van der Waals equation, the above integral 
can be evaluated to obtain an explicit expression for CmV. Equation (6.2.9) shows 
that, for any equation of state in which p is a linear function of T, CmV,real = CmV,ideal. 
This is true for the case of the van der Waals equation. The energy due to the 
molecular interactions depends on the intermolecular distance or density N/V. 
Because this does not change at constant V, the value of CmV is unaffected by the 
molecular forces. CmV is the change in kinetic energy of the molecules per unit change 
in temperature.

Also, given the equation of state, the isothermal compressibility kT and the coef-
fi cient of volume expansion a (which are defi ned by Equations (5.4.5) and (5.4.6) 
respectively) can be calculated. Then, using the general relation
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m− = α
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2  
(6.2.10)

(see Equation (5.4.10)) Cmp can also be obtained. Thus, using (6.2.9) and (6.2.10), the 
two molar heat capacities of a real gas can be calculated using its equation of state.

ADIABATIC PROCESSES

For an ideal gas, we have seen in Chapter 2 that in an adiabatic process TVg−1 = 
constant or pVg = constant (see (2.3.11) and (2.3.12)), in which g = Cmp/CmV. One can 



obtain a similar equation for a real gas. An adiabatic process is defi ned by dQ = 0 
= dU + p dV. By considering U as a function of V and T, this equation can be 
written as

 ∂
∂





 + ∂

∂




 + =U
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(6.2.11)

Since (∂U/∂T)V = NCmV, where N is the molar amount of the gas, this equation 
becomes

 ∂
∂
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= −U
V

p V NC T
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Vd dm

 
(6.2.12)

By evaluating the derivative on the right-hand side of the Helmholtz equation 
(5.2.11), it is easy to see that [(∂U/∂V)T + p] = T(∂p/∂T)V. Furthermore, we have also 
seen in Chapter 5 (see (5.4.7)) that (∂p/∂T)V = a/kT. Using these two relations, 
(6.2.12) can be written as

 T
V NC T

T
V

α
κ

d dm= −
 

(6.2.13)

To write this expression in terms of the ratio g = Cmp/CmV we use the general 
relation:
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2  
(6.2.14)

in which Vm is the molar volume. Combining (6.2.14) and (6.2.13) we obtain
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(6.2.15)

where we have made the substitution Vm = V/N for the molar volume. Dividing both 
sides of this expression by CmV and using the defi nition g = Cmp/CmV we obtain the 
simple expression

 γ α− = −1
V

V Td d
 

(6.2.16)

Generally, g varies little with volume or temperature, so it may be treated as a con-
stant and Equation (6.2.16) can be integrated to obtain

 ( ) ln ( )γ α− = − +∫1 V T T Cd  (6.2.17)
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in which we have written a as an explicit function of T. C is the integration constant. 
An alternative way of writing this expression is

 V
T Tγ α− ∫ =1 e

( ) d
constant  (6.2.18)

This relation is valid for all gases. For an ideal gas, a = (1/V)(∂V/∂T)p = 1/T. When 
this is substituted into (6.2.18) we obtain the familiar equation TVg−1 = constant. If 
p is a linear function of T, as is the case with the van der Waals equation, since 
CmV,real = CmV,ideal, from (6.2.14) it follows that

 
γ α
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2T V
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(6.2.19)

If the equation of state of a real gas is known, then a and g can be evaluated (numeri-
cally, if not analytically) as function of T, and the relation (6.2.18) between V and 
T can be made explicit for an adiabatic process.

HELMHOLTZ AND GIBBS ENERGIES

The method used to obtain a relation (6.2.7) between Uideal and Ureal can also be used 
to relate the corresponding Helmholtz and Gibbs energies. The main idea is that the 
thermodynamic quantities for a real gas approach those of an ideal gas as p → 0 or 
V → ∞. Let us consider the Helmholtz energy F. Since (∂F/∂V)T = −p (see (5.1.6)) 
we have the general expression

 F T V N F T V N p V
V

V

( , , ) ( , , )  = − ∫0

0

d  (6.2.20)

The difference between the Helmholtz energy of a real and an ideal gas at any T, V 
and N can be obtained as follows. Writing Equation (6.2.20) for a real and an ideal 
gas, and subtracting one from the other, it is easy to see that

F T V N F T V N F T V N F T V Nreal ideal real ideal( , , ) ( , , )  ( , , ) ( , , )− = − −0 0 (( )p p V
V

V

real ideal d−∫
0

  (6.2.21)

Now, since limV0→∞[Freal(V0,T,N) − Fideal(V0,T,N)] = 0, we can write the above expres-
sion as

 F T V N F T V N p p Vk k

V

real ideal real ideal d( , , ) ( , , )  ( )− = − −
∞
∫  (6.2.22)

where we have explicitly indicated the fact that this expression is valid for a multi-
component system by replacing N by Nk. Similarly, we can also show that



 G T p N G T p N V V pk k

p

real ideal real ideal d( , , ) ( , , )  ( )− = −∫
0

 (6.2.23)

As an example, let us calculate F using the van der Waals equation. For the van der 
Waals equation, we have preal = pvw = [NRT/(V − bN)] − (aN 2/V 2). Substituting this 
expression for preal into (6.2.22) and performing the integration one can obtain 
(Exercise 6.10)
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where
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= − + +[ ln( ) ln( )]0  (6.2.25)

Substituting (6.2.25) into (6.2.24) and simplifying we obtain
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where we have used the expression Uvw(V,T,N) = Uideal − a(N/V)2V for the energy of 
a van der Waals gas (see (6.2.8)). Similarly, the Gibbs energy of a real gas can be 
calculated using the van der Waals equation.

ENTROPY

The entropy of a real gas can be obtained using expressions (6.2.7) and (6.2.21) for 
Ureal and Freal because Freal = Ureal − TSreal. Using the van der Waals equation, for 
example, the entropy Svw of a real gas can be identifi ed in (6.2.26):

 S T V N N s C T R V Nb NVvw m /( , , ) { ln( ) ln[( ) ]}= + + −0  (6.2.27)

A comparison of (6.2.27) with the entropy of an ideal gas (6.1.6) shows that, in the 
van der Waals entropy, the term (V − Nb) takes the place of V in the ideal gas 
entropy.

CHEMICAL POTENTIAL

The chemical potential for a real gas can be derived from the expression (6.2.23) for 
the Gibbs free energy. Since the chemical potential of the component k is mk = 
(∂G/∂Nk)p,T, by differentiating (6.2.23) with respect to Nk we obtain

 µ µk k k k

p

T p T p V V p, , , ,( , ) ( , )   ( )real ideal m real m ideal d− = −∫
0

 (6.2.28)
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in which Vmk = (∂V/∂Nk)p,T is the partial molar volume of the component k by defi ni-
tion. For simplicity, let us consider a single gas. To compare the molar volume of 
the ideal gas Vm,ideal = RT/p with that of a real gas Vm,real, a compressibility factor Z 
is defi ned as follows:

 V ZRT pm real /, =  (6.2.29)

For an ideal gas Z = 1; a deviation of the value of Z from 1 indicates nonideality. 
In terms of Z, the chemical potential can be written as
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(6.2.30)

in which we have used expression mideal(p,T) = m(p0,T) + RT ln(p/p0) for the chemical 
potential of an ideal gas. The chemical potential is also expressed in terms of a quan-
tity called fugacity f, which was introduced by G.N. Lewis, a quantity similar to pres-
sure [1]. To keep the form of the chemical potential of a real gas similar to that of the 
ideal gases, G.N. Lewis introduced the fugacity f through the defi nition

 µ µreal ideal( , ) ( , ) lnp T p T RT
f
p

= + 





 (6.2.31)

Indeed, we must have limp→0(f / p)= 1 to recover the expression for the ideal gas 
at a very low pressure. Thus, the deviation of f from the pressure of an ideal gas 
is a measure of the ‘nonideality’ of the real gas. Comparing (6.2.30) and (6.2.31), 
we see that
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(6.2.32)

It is possible to obtain Z explicitly for various equations such as the van der Waals 
equation or the virial equation (6.2.5). For example, if we use the virial equation 
we have
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(6.2.33b)

Substituting this expression in (6.2.33a) in (6.2.32) we fi nd that, to the second order 
in p:
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(6.2.34)

Generally, terms of the order p2 are small and may be ignored. Then, (6.2.34) can 
be used for the chemical potential of a real gas mreal by noting that (6.2.31) can also 
be written as
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(6.2.35)

This expression can also be written in terms of the virial coeffi cients of Equation 
(6.2.4) by noting the relation B = B′RT, to a fi rst approximation. Thus:

 µ µreal ideal= + +( , )  . . .p T Bp  (6.2.36)

Equations (6.2.35) and (6.2.36) give us the chemical potential of a real gas in terms 
of its virial coeffi cients. Similar computation can be performed using the van der 
Waals equation.

We can also obtain explicit expressions for m using (∂F/∂N)T,V = m. Using the van 
der Waals equation, for example, we can write the chemical potential as a function 
of the molar density n = N/V and temperature T (Exercise 6.9):

G. N. Lewis (1875–1946) (Reproduced courtesy of the AIP Emilio Segre Visual Archive, 
photo by Francis Simon)
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CHEMICAL AFFINITIES

Finally, to understand the nature of chemical equilibrium of real gases it is useful 
to obtain affi nities for chemically reacting real gases. The affi nity of a reaction A = 
−Σknkmk, in which nk are the stoichiometric coeffi cients (which are negative for reac-
tants and positive for products). For a real gas this can be written using the expres-
sion (6.2.28) for the chemical potential:

 A A V V pk k

p

k
k

real ideal m real m ideal d= − −∫∑  ( ), , , ,ν
0

 (6.2.38)

This expression can be used to calculate the equilibrium constants for reacting real 
gases. The partial molar volume Vm,ideal,k for all gases is RT/p. Hence, the above 
expression becomes
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(6.2.39)

With the above quantities, all the thermodynamics of real gases can be described 
once the real gas parameters, such as the van der Waals constants or the virial coef-
fi cients, are known.

6.3 Thermodynamics Quantities for Pure Liquids and Solids

EQUATION OF STATE

For pure solids and liquids, jointly called condensed phases, the volume is determined 
by the molecular size and molecular forces and it does not change much with change 
in p and T. Since the molecular size and forces are very specifi c to a compound, the 
equation of state is specifi c to that compound. A relation between V, T and p is 
expressed in terms of the coeffi cient of thermal expansion a and the isothermal 
compressibility kT defi ned by (5.4.5) and (5.4.6). If we consider V as a function of p 
and T, V(p, T), we can write
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(6.3.1)

The values of a and kT are small for solids and liquids. For liquids, the coeffi cient 
of thermal expansion a is in the range 10−3 to 10−4 K−1 and isothermal compressibility 
kT is about 10−5 atm−1. For solids, a is in the range 10−5 to 10−6 K−1 and kT is in the 
range 10−6 to 10−7 atm−1. Table 6.2 lists the values of a and kT for some liquids and 



solids. Furthermore, the values of a and kT are almost constant for T variations of 
about 100 K and pressure variation of about 50 atm. Therefore, (6.3.1) can be inte-
grated to obtain the following equation of state:
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THERMODYNAMIC QUANTITIES

Thermodynamically, the characteristic feature of solids and liquids is that m, S, and 
H change very little with pressure and, hence, they are essentially functions of T for 
a given N. If entropy is considered as a function of p and T, then
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(6.3.3)

The fi rst term, (∂S/∂T)p = NCmp/T, which relates dS to the experimentally measurable 
Cmp. The second term can be related to a as follows:
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(6.3.4)

With these observations, we can now rewrite (6.3.3) as
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Upon integration, this equation yields
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(6.3.6)

Table 6.2 List of coeffi cient of thermal expansion a and isothermal 
compressibility kT for some liquids and solids

Compound a/10−4  K−1 kT/10−6  atm−1

Water 2.1 49.6
Benzene 12.4 92.1
Mercury 1.8 38.7
Ethanol 11.2 76.8
Carbon tetrachloride 12.4 90.5
Copper 0.501 0.735
Diamond 0.030 0.187
Iron 0.354 0.597
Lead 0.861 2.21
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where we have used V = NVm. (That S(0, 0) is well defi ned is guaranteed by the 
Nernst theorem.) Since Vm and a do not change much with p, the third term 
in (6.3.6) can be approximated to NaVmp. For p = 1–10 atm, this term is small 
compared with the second term. For example, in the case of water, Vm = 18.0 × 
10−6 m3 mol−1 and a = 2.1 × 10−4 K−1. For p = 10 bar = 10 × 105 Pa, the term aVmp 
is about 3.6 × 10−3 J K−1 mol−1. The value of Cmp, on the other hand, is about 
75 J K−1 mol−1. Though Cmp approaches zero so that S is fi nite as T → 0, the molar 
entropy of water at p = 1 bar and T = 298 K is about 70 J K−1. Thus, it is clear that 
the third term in (6.3.6) that contains p is insignifi cant compared with the second 
term. Since this is generally true for solids and liquids, we may write
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(6.3.7)

where we have written Cmp explicitly as a function of T. A knowledge of Cmp(T) will 
enable us to obtain the value of entropy of a pure solid or liquid. Note that the

integral in (6.3.7) is deS
T

0∫  because (NCmp dT/T) = dQ/T = deS.
The chemical potential of condensed phases can be obtained from the Gibbs–

Duhem equation dm = −SmdT + Vmdp (see (5.2.4)). Substituting the value of molar 
entropy into the Gibbs–Duhem equation and integrating, we get
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where we assumed that Vm is essentially a constant. Once again, it can be shown 
that the term containing p is small compared with the fi rst term, which is a function 
of T. For water, Vmp = 1.8 J mol−1 when p = 1 atm, whereas the fi rst term is of the 
order 280 kJ mol−1. Following the defi nition of activity a, if we write Vmp = RTln(a), 
then we see that for liquids and solids the activity is nearly equal to unity.

In a similar manner, one can obtain other thermodynamic quantities such as 
enthalpy H and the Helmholtz free energy F.

HEAT CAPACITIES

From the above expressions it is clear that one needs to know the molar heat capaci-
ties of a substance as a function of temperature and pressure in order to calculate 
the entropy and other thermodynamic quantities. A detailed understanding of the 
theory of molar heat capacities (which requires the statistical mechanics and quantum 
theory) is beyond the scope of this book. Here we shall only give a brief outline of 
the Debye’s theory of molar heat capacities of solids that provides an approximate 
general theory. The situation is more complex for liquids because for liquids there 
is neither complete molecular disorder, as in a gas, nor is there long-range order as 
the case of a solid.



According to a theory of solids formulated by Peter Debye, the molar heat capac-
ity CmV of a pure solid is of the form

 C RD TVm /= 3 ( )θ  (6.3.9)

in which D(T/q) is a function of the ratio T/q. The parameter q depends mainly on 
the chemical composition of the solid and, to a very small extent, varies with the 
pressure. As the ratio T/q increases, the ‘Debye function’ D(T/q) tends to unity, and 
molar heat capacities of all solids CmV = 3R. The fact that the heat capacities of 
solids tend to have the same value had been observed long before Debye formulated 
a theory of heat capacities; it is called the law of Dulong and Petit. Debye theory 
provided an explanation for the law of Dulong and Petit. At very low temperatures, 
when T/q < 0.1:
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(6.3.10)

Thus, Debye’s theory predicts that the molar heat capacities at low temperatures 
will be proportional to the third power of the temperature. Experimentally, this was 
found to be true for many solids.

Once CmV is known, Cmp can be obtained using the general expression Cmp − CmV 
= TVma 2 / kT. More detail on this subject can be found in texts on condensed matter. 
The thermodynamics of liquid and solid mixtures is discussed in Chapters 7 
and 8.

Appendix 6.1 Equations of State

In addition to the equations of state presented in Section 6.2, the following equation 
of state is also used for describing real gases:

Redlich–Kwong equation:
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(A6.1.1)

For this equation, the relations between the critical constants and the constants a 
and b are
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Examples

Example 6.1 Show that CmV for a van der Waals gas is the same as that of an 
ideal gas.
Solution The relation between CmV for real and ideal gases is given by (6.2.9):
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For 1 mol of a van der Waals gas:
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Since this is a linear function of T the derivative (∂2p/∂T2)V = 0. Hence, the integral 
in the expression relating CmV,real and CmV,ideal is zero. Hence, CmV,real = CmV,ideal.

Example 6.2 Calculate the total internal energy of a real gas using the Berthelot 
equation (6.2.2).
Solution The internal energy of a real gas can be calculated using the relation 
(6.2.7)
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For the Berthelot equation:
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Exercises

6.1 For an ideal gas obtain the explicit expressions for the following:

(i) F(V, T, N) = U − TS as a function of V, T and N.
(ii) G = U − TS + pV as a function of p, T, and N.
(iii) Use the relation m = (∂F/∂N)V,T and obtain an expression for m as 
function of the number density N/V and T. Also show that m = m0(T) + 
RT ln(p/p0), in which m0(T) is a function of T.

6.2 (a) Obtain a general expression for the entropy of mixing of two nonidentical 
gases of equal molar densities N/V, with molar amounts N1 and N2, initially 
occupying volumes V1 and V2. Also show that the entropy of mixing can be 
written as ∆Smix = −RN(x1lnx1 = x2lnx2), where x1 and x2 are the mole fractions 
and N = N1 + N2.
(b) Using the Stirling approximation N! ≈ NlnN − N, obtain (6.1.15) from 
(6.1.14).

6.3 For N2 the critical values are pc = 33.5 atm, Tc = 126.3 K and Vmc = 90.1 × 
10−3 L mol−1. Using Equations (6.2.1a)–(6.2.3b), calculate the constants a and 
b for the van der Waals, Berthelot and Dieterici equations. Plot the p–Vm 
curves for the three equations at T = 300 K, 200 K and 100 K on the same 
graph in the range Vm = 0.1 L to 10 L and comment on the differences between 
the curves.

6.4 Using the van der Waals equation, write the pressure as a function of the 
density N/V. Assume that the quantity b(N/V) is small and use the expansion 
1/(1 − x) = 1 + x + x2 + x3 +  .  .  .  , valid for x < 1, to obtain an equation similar 
to the virial equation
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Comparing the two series expansions for p, show that van der Waals 
constants a and b and the virial coeffi cients B(T) and C(T) are related by 
B = b − (a/RT) and C = b2.

6.5 The Boyle temperature is defi ned as the temperature at which the virial 
coeffi cient B(T) = 0. An empirical function used to fi t experimental data is 
B(T) = a − bexp(g /T), in which a, b and g are constants tabulated in 
Table 6.1.

(a) Using the data in Table 6.1, determine the Boyle temperatures of N2, O2 
and CH4.
(b) Plot B(T) for the three gases on one graph.
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6.6 (i) Assume ideal gas energy U = CmVNT, where CmV = 28.46 J K−1 for CO2 and 
calculate the difference ∆U between Uideal and Uvw for N = 1, T = 300 K at V 
= 0.5 L. What percentage of Uideal is ∆U?
(ii) Use Maple/Mathematica to obtain a three-dimensional plot of ∆U/Uideal 
for 1 mol of CO2, in the volume range V = 22.00 L to 0.50 L for T = 200 to 
500 K.

6.7 Obtain (6.2.9) from (6.2.7) and the defi nition CmV,real(∂Ureal/∂T)V.

6.8 For CO2, using the van der Waals equation:

(i) Obtain an expression for the compressibility factor Z. At T = 300 K and 
for N = 1, using Mathematica/Maple, plot Z as a function of V from V = 
22.0 L to 0.5 L.
(ii) Obtain an explicit expression for (Fvw − Fideal) for 1 mol of CO2 as a func-
tion of T and V in which if T is in kelvin and V is in liters, then (Fvw − Fideal) 
is in joules.

6.9 Using the relation m = (∂F/∂N)V,T, show that for a van der Waals gas:
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in which n = N/V.

6.10 Obtain (6.2.24) from (6.2.22) and (6.2.26) from (6.2.24) and (6.2.25).



7  THERMODYNAMICS OF 
PHASE CHANGE

Introduction

Transformations from the liquid to the vapor phases or from the solid to the liquid 
phases are caused by heat. The eighteenth-century investigations of Joseph Black 
revealed that these transformations take place at a defi nite temperature: the boiling 
point or the melting point. At this temperature the heat absorbed by the substance 
does not increase its temperature but is ‘latent’ or concealed; heat’s effect is to cause 
the change from one phase to another, not to increase the substance’s temperature. 
Joseph Black, who clarifi ed this concept, measured the ‘latent heat’ for the trans-
formation of ice to water.

Under suitable conditions, the phases of a compound can coexist in a state of 
thermal equilibrium. The nature of this state of thermal equilibrium and how it 
changes with pressure and temperature can be understood using the laws of ther-
modynamics. In addition, at the point where the phase transition takes place, some 
thermodynamic quantities, such as molar entropy, change discontinuously. Based 
on such discontinuous changes of some thermodynamic quantities, such as molar 
heat capacity and molar entropy, phase transitions in various materials can be clas-
sifi ed into different ‘orders’. There are general theories that describe phase transi-
tions of different orders. The study of phase transitions has grown to be a large and 
interesting subject, and some very important developments occurred during the 
1960s and the 1970s. In this chapter, we will only present some of the basic results. 
For further understanding of phase transitions, we refer the reader to books devoted 
to this subject [1–3].

7.1 Phase Equilibrium and Phase Diagrams

The conditions of temperature and pressure under which a substance exists in dif-
ferent phases, i.e. gas, liquid and solid, are summarized in a phase diagram. A simple 
phase diagram is shown in Figure 7.1. Under suitable conditions of pressure and 
temperature, two phases may coexist in thermodynamic equilibrium. The thermo-
dynamic study of phase equilibrium leads to many interesting and useful results. 
For example, it tells us how the boiling point or freezing point of a substance 
changes with changes in pressure. We shall see how the thermodynamic formalism 
developed in the previous chapters enables us to obtain expressions to calculate the 
boiling point of a liquid at a given pressure.

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd



216 THERMODYNAMICS OF PHASE CHANGE

Gas

TTC

Solid 

C

Triple 
point 

Critical 
point 

T

p

Liquid 
g

pg

l 

(a)      (b) 

Figure 7.1 (a) Phase diagram for a one-component system showing equi-
librium p–T curves (defi ned by the equality of the chemical potentials), the 
triple point T and the critical point C. Tc is the critical temperature above 
which the gas cannot be liquefi ed by increasing the pressure. (b) A liquid 
in equilibrium with its vapor. The affi nity for the liquid–vapor transforma-
tion A = ml − mg = 0. An infi nitely slow expansion in the system’s volume 
results is a ‘reversible’ transformation of liquid to gas at an affi nity A ≈ 0

We begin by looking at the equilibrium between liquid and gas phases, as shown 
in Figure 7.1b. When a liquid is in a closed container, a part of it evaporates and 
fi lls the space above it until an equilibrium is reached. The system under consider-
ation is closed and it consists only of the liquid in equilibrium with its vapor at a 
fi xed temperature. In Figure 7.2, the p–V isotherms of a vapor–liquid system are 
shown. The region of coexistence of the liquid and vapor phases corresponds to the 
fl at portion XY of the isotherms. When T > Tc, the fl at portion does not exist; there 
is no distinction between the gas and the liquid phases. The fl at portion of each 
isotherm in Figure 7.2 corresponds to a point on the curve TC in Figure 7.1a; as 
the temperature approaches Tc, we approach the critical point C.

For a thermodynamic analysis of the equilibrium between liquid and gas phases 
of a substance let us consider a heterogeneous system in which the two phases occupy 
separate volumes. Under these conditions, the liquid converts irreversibly to vapor, 
or vice versa, until equilibrium between the two phases is attained. The exchange of 
matter between the two phases may be considered a ‘chemical reaction’ which we 
may represent as

 1� g  (7.1.1)

Let the chemical potential of the substance k in the two phases be mg
k and m1

k, with 
the superscripts ‘g’ for gas and ‘l’ for liquid. At equilibrium, the entropy production 
due to every irreversible process must vanish. This implies that the affi nity corre-
sponding to liquid–vapor conversion must vanish, i.e.
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 A = m1
k(p,T ) − mg

k(p,T ) = 0

i.e.

 µ µk kp T p T1( , ) ( , )= g  (7.1.2)

in which we have made explicit that the two chemical potentials are functions of 
pressure and temperature. The pressure of the vapor phase in equilibrium with the 
liquid phase is called the saturated vapor pressure. The equality of the chemical 
potentials implies that, when a liquid is in equilibrium with its vapor, the pressure 
and temperature are not independent. This relationship between p and T, as expressed 
in (7.1.2), gives the coexistence curve TC in the phase diagram shown in Figure 
7.1a.

A liquid in equilibrium with its vapor is a good system to illustrate the idea of a 
‘reversible’ transformation for which diS = 0 (Figure 7.1b). Let us assume that ini-
tially the system is in equilibrium with A = 0. If the volume of the system is increased 
slowly, the chemical potential of the gas phase will decrease by a small amount, 
making the affi nity for the liquid-to-gas transformation positive. This will result in 
the conversion of liquid to gas until a new equilibrium is established. In the limit of 
‘infi nitely slow’ increase of volume such that the transformation takes place at an 
arbitrarily small A, i.e. A ≈ 0, no entropy is produced during this transformation 
because diS = A dx ≈ 0. Therefore, it is a reversible transformation. A reversible 
transformation, of course, is an idealized process taking place at an infi nitely slow 

VC
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T > TC

T = TC

T < TC

YX

W

Z

p

V

Figure 7.2 p–V isotherms of a gas showing critical 
behavior. Tc is the critical temperature above which 
the gas cannot be liquefi ed by increasing the pressure. 
In the fl at region XY the liquid and the gas phases 
coexist
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rate. In any real process that occurs at a nonzero rate, diS = A dx > 0; but this change 
can be made arbitrarily small by slowing the rate of transformation.

Clearly, equality of chemical potentials as in (7.1.2) must be valid between any 
two phases that are in equilibrium. If there are P phases, then we have the general 
equilibrium condition:

 µ µ µµk k k k
Pp p T p T p TT1 2 3( ( , ) ( , ) . . . ( , ), ) = = =  (7.1.3)

The phase diagram Figure 7.1a also shows another interesting feature, viz. the criti-
cal point C at which the coexistence curve TC (between the liquid and vapor phase) 
terminates. If the temperature of the gas is above Tc, the gas cannot be liquefi ed by 
increasing the pressure. As the pressure increases, the density increases but there is 
no transition to a condensed phase – and no latent heat. In contrast, there is no 
critical point for the transition between solid and liquid due to the fact that a solid 
has a defi nite crystal structure that the liquid does not have. Owing to the defi nite 
change in symmetry, the transition between a solid and liquid is always well 
defi ned.

A change of phase of a solid is not necessarily a transformation to a liquid. A 
solid may exist in different phases. Thermodynamically, a phase change is identifi ed 
by a sharp change in properties such as the heat capacity. In molecular terms, these 
changes correspond to different arrangements of the atoms, i.e. different crystal 
structures. For example, at very high pressures, ice exists in different structures, and 
these are the different solid phases of water. Figure 7.3 shows the phase diagram of 
water.
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Figure 7.3 (a) The phase diagram of water at ordinary pressures (not to scale). 
(b) At high pressures, the solid phase (ice) can exist in different phases as shown on 
the right. The triple point of water is at p = 0.006 bar, T = 273.16 K. The critical 
point is at pc = 218 bar, Tc = 647.3 K
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THE CLAPEYRON EQUATION

The temperature on the coexistence curves corresponds to the temperature at which 
the transition from one phase to another takes place at a given pressure. Thus, if 
we obtain an explicit relation between the pressure and the temperature that defi nes 
the coexistence curve, then we can know how the boiling point or freezing point 
changes with pressure. Using the condition for equilibrium (7.1.2), we can arrive at 
a more explicit expression for the coexistence curve. Let us consider two phases 
denoted by 1 and 2. Using the Gibbs–Duhem equation, dm = −Sm dT + Vm dp, one 
can derive a differential relation between p and T of the system as follows. From 
(7.1.3) it is clear that, for a component k, dm1

k = dm2
k. Therefore, we have the 

equality

 − + = − +S T V p S T V pm m m md d d d1 1 2 2  (7.1.4)

in which the molar quantities for the two phases are indicated by the subscripts ‘m1’ 
and ‘m2’. From this it follows that
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1 2 1 2

∆
( )

 (7.1.5)

in which we have expressed the difference in the molar entropy between the two 
phases in terms of the enthalpy of transition: Sm1 − Sm2 = (∆Htrans/T), where ∆Htrans 
is the molar enthalpy of the transition (vaporization, fusion or sublimation). Molar 
enthalpies of vaporization and fusion of some substances are listed in Table 7.1. 
More generally, then, we have the equation called the Clapeyron equation:

Table 7.1 Enthalpies of fusion of and vaporization at p = 1  bar = 105 Pa = 0.987  atm

Substance Tm/K ∆Hfus/kJ  mol−1 Tb/K ∆Hvap/kJ  mol−1

He 0.95* 0.021 4.22 0.082
H2 14.01 0.12 20.28 0.46
O2 54.36 0.444 90.18 6.820
N2 63.15 0.719 77.35 5.586
Ar 83.81 1.188 87.29 6.51
CH4 90.68 0.941 111.7 8.18
C2H5OH 156 4.60 351.4 38.56
CS2 161.2 4.39 319.4 26.74
CH3OH 175.2 3.16 337.2 35.27
NH3 195.4 5.652 239.7 23.35
CO2 217.0 8.33 194.6 25.23
Hg 234.3 2.292 629.7 59.30
CCl4 250.3 2.5 350 30.0
H2O 273.15 6.008 373.15 40.66
Ga 302.93 5.59 2676 270.3
Ag 1235.1 11.3 2485 257.7
Cu 1356.2 13.0 2840 306.7

Source: D.R. Lide (ed.) CRC Handbook of Chemistry and Physics, 75th edition. 1994, CRC Press: Ann 
Arbor.
*  Under high pressure.



220 THERMODYNAMICS OF PHASE CHANGE

 
d
d

trans

m

p
T

H
T V

= ∆
∆
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Here, ∆Vm is the difference in the molar volumes of the two phases. The temperature 
T in this equation is the transition temperature, i.e. boiling point, melting point, etc. 
This equation tells us how the transition temperature changes with pressure. For 
example, for a transition from a solid to a liquid in which there is an increase in the 
molar volume (∆V > 0), the freezing point will increase (dT > 0) when the pressure 
is increased (dp > 0); if there is a decrease in the molar volume, then the opposite 
will happen.

THE CLAUSIUS–CLAPEYRON EQUATION

For the case of liquid–vapor transitions, the Clapeyron equation can be further 
simplifi ed. In this transition Vm1 << Vmg. Therefore, we may approximate Vmg − Vm1 

by Vmg. In this case the Clapeyron equation (7.1.6) simplifi es to

 
d
d

vap

mg

p
T

H
TV

=
∆

 (7.1.7)

As a fi rst approximation, we may use the ideal-gas molar volume Vmg = RT/p. Sub-
stituting this expression in the place of Vmg, and noting that dp/p = d(ln p), we arrive 
at the following equation called the Clausius–Clapeyron equation:

 
d(

d
vapln )p
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2

 (7.1.8)

This equation is also applicable to a solid in equilibrium with its vapor (e.g. I2), since 
the molar volume of the vapor phase is much larger than that of the solid phase. 
For a solid in equilibrium with its vapor, ∆Hsub takes the place of ∆Hvap. At times, 
Equation (7.1.8) is also written in its integrated form:

 ln lnp p
H
R T T

2 1
1 2

1 1− = −





∆ vap  (7.1.9)

As illustrated in Figure 7.4, Equations (7.1.8) and (7.1.9) tell us how the boiling 
point of a liquid changes with pressure. When a liquid subjected to an external pres-
sure, pext, is heated, bubbles containing the vapor (in equilibrium with the liquid) 
can form provided that the vapor pressure pg ≥ pext. The liquid then begins to ‘boil’. 
If the vapor pressure p is less than pext, then the bubbles cannot form: they ‘collapse’. 
The temperature at which p = pext is what we call the boiling point Tb. Hence, in 
Equations (7.1.8) and (7.1.9) we may interpret p as the pressure to which the liquid 
is subjected, and T is the corresponding boiling point. It tells us that the boiling 
point of a liquid decreases with a decrease in pressure pext.



7.2 The Gibbs Phase Rule and Duhem’s Theorem

Thus far we have considered the equilibrium between two phases of a single com-
pound. When many compounds or components and more than two phases are in 
equilibrium, the chemical potential of each component should be the same in every 
phase in which it exists. When we have a single phase, such as a gas, its intensive 
variables, i.e. pressure and temperature, can be varied independently. However, 
when we consider equilibrium between two phases, such as a gas and liquid, p and 
T are no longer independent. Since the chemical potentials of the two phases must 
be equal, m1(p,T) = m2(p,T), which implies that only one of the two intensive variables 
is independent. In the case of liquid–vapor equilibrium of a single component, p and 
T are related through relation (7.1.8). The number of independent intensive vari-
ables depends on the number of phases in equilibrium and the number of compo-
nents in the system.

The independent intensive variables that specify a state are called its degrees of 
freedom. Gibbs observed that there is general relationship between the number of 
degrees of freedom f, the number of phases P, and the number of components C:

 f C P= − + 2  (7.2.1)

This can be seen as follows. At a given T, specifying p is equivalent to specifying 
the density as moles per unit volume (through the equation of state). For a given 
density, the mole fractions specify the composition of the system. Thus, for each 
phase, p, T and the C mole fractions xi

k (in which the superscript indicates the phase 
and the subscript the component) are the intensive variables that specify the state. 
Of the C mole fractions in each phase i, there are (C − 1) independent mole fractions 

pg

   g 

    l 

Atmospheric pressure: pext 

(a)    (b) (c) 

pg 
  g          

    l 

Figure 7.4 Equilibrium between liquid and vapor phases. (a) An isolated 
system which contains a liquid in equilibrium with its vapor. The pressure 
of the vapor pg is called the saturated vapor pressure. (b) When the liquid 
subject to a pressure pext (atmospheric pressure) is heated, bubbles of its 
vapor can form when pg ≥ pext and the liquid begins to ‘boil’. (c) The vapor 
in the bubble is the saturated vapor in equilibrium with the liquid, as in 
the case of an isolated system (a)
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xi
k because ΣC

k=1xi
k = 1. In a system with C components and P phases, there are a total 

of P(C − 1) independent mole fractions xi
k. These, together with p and T, make a 

total of P(C − 1) + 2 independent variables. On the other hand, equilibrium between 
the P phases of a component k requires the equality of chemical potentials in all the 
phases:

 µ µµ µk k k k
Pp p T p p TT T1 2 3( ( , ) ( ( , ), ) , ) . . .= = ==  (7.2.2)

in which, as before, the superscript indicates the phase and the subscript the com-
ponent. These constitute (P − 1) constraining equation for each component. For the 
C components we then have a total of C(P − 1) equations between the chemical 
potentials, which reduces the number of independent intensive variables by C(P − 1). 
Thus, the total number of independent degrees of freedom is

 f = P(C − 1) + 2 − C(P − 1) = C − P + 2

If a component ‘a’ does not exist in one of the phases ‘b’, then the corresponding 
mole fraction xa

b = 0, thus reducing the number of independent variables by one. 
However, this also decreases the number of constraining equations by one. Hence, 
there is no overall change in the number of degrees of freedom.

As an illustration of the Gibbs phase rule, let us consider the equilibrium between 
the solid, liquid and gas phases of a pure substance, i.e. one component. In this case 
we have C = 1 and P = 3, which gives f = 0. Hence, for this equilibrium, there are 
no free intensive variables; there is only one pressure and temperature at which all 
three phases can coexist. This point is called the triple point (see Figure 7.1). At the 
triple point of H2O, T = 273.16 K = 0.01 °C and p = 611 Pa = 6.11 × 10−3 bar. This 
unique condition for the coexistence of the three phases may be used in defi ning the 
kelvin temperature scale.

If the various components of the system also chemically react through R indepen-
dent reactions, then, in addition to (7.2.2), we also have R equations for the chemical 
equilibrium, viz. the corresponding affi nities are zero:

 A A A AR1 2 3 0= = = =. . .  (7.2.3)

Consequently, the number of degrees of freedom is further decreased by R and we 
have

 f C R P= − − + 2  (7.2.4)

In older statements of the phase rule, the term ‘number of independent components’ 
is used to represent (C − R). In a reaction such as A � B + 2C, if the amount B 
and C is entirely a result of decomposition of A, then the amount of B and C is 
determined by the amount of A that has converted to B and C; in this case the mole 
fractions of B and C are related, xC = 2xB. This additional constraint, which depends 
on the initial preparation of the system, decreases the degrees of freedom by one.



In addition to the phase rule identifi ed by Gibbs, there is another general observa-
tion which Pierre Duhem made in his treatise Traité élémentaire de Mechanique 
Chimique which is referred to as Duhem’s theorem. It states:

Whatever the number of phases, components and chemical reactions, if the initial molar 
amounts Nk of all the components are specifi ed, the equilibrium state of a closed system is 
completely specifi ed by two independent variables.

The proof of this theorem is as follows. The state of the entire system is specifi ed 
by the pressure p, temperature T and the molar amounts Ni

k in which the superscript 
indicates the P phases and the subscript the C component – a total of CP molar 
amounts in P phases. Thus, the total number of variables that specify a system is 
CP + 2. Considering the constraints on these variables, for the equilibrium of each 
component k between the phases we have

 µ µ µ µk k k k
Pp T p T p T p T1 2 3( , ) ( , ) ( , ) . . . ( , )= = = =  (7.2.5)

a total of (P − 1) equations for each component, a total of C(P − 1) equations. In 
addition, since the total molar amount, say Nk,total, of each component is specifi ed, 
we have ΣP

i=1Ni
k = Nk,total for each component, a total of C equations. Thus, the total 

number of constraints is C(P − 1) + C. Hence, the total number of independent 
equations is CP + 2 − C(P − 1) − C = 2.

The addition of chemical reactions does not change this conclusion because each 
chemical reaction a adds a new independent variable xa, its extent of reaction, to 
each phase and at the same time adds the constraint for the corresponding chemical 
equilibrium Aa = 0. Hence, there is no net change in the number of independent 
variables.

Comparing the Gibbs phase rule and the Duhem theorem, we see the following. 
The Gibbs phase rule specifi es the total number of independent intensive variables 
regardless of the extensive variables in the system. In contrast, Duhem’s equation 
specifi es the total number of independent variables, intensive or extensive, in a closed 
system.

7.3 Binary and Ternary Systems

Figure 7.1 shows the phase diagram for a single-component system. The phase dia-
grams for systems with two and three components are more complex. In this section 
we shall consider examples of two- and three-component systems.

BINARY LIQUID MIXTURES IN EQUILIBRIUM WITH THE VAPOR

Consider a liquid mixture of two components, A and B, in equilibrium with their 
vapors. This system contains two phases and two components. The Gibbs phase 
rule tells us that such a system has two degrees of freedom. We may take these 
degrees of freedom to be the pressure and the mole fraction xA of component A. 
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Thus, if we consider a system subjected to a constant pressure, for each value of the 
mole fraction xA there is corresponding temperature at which the two phases are in 
equilibrium. For example, if the applied pressure is 0.5 bar, for the liquid to be in 
equilibrium with its vapor the temperature T must be set at an appropriate value 
(T equals the boiling point at 0.5 bar).

If the applied pressure is the atmospheric pressure, then the temperature corre-
sponds to the boiling point. In Figure 7.5, the curve I is the boiling point as a func-
tion of the mole fraction xA; the boiling points of the two components A and B are 
TA and TB respectively. Curve II shows the composition of the vapor at each boiling 
temperature. If a mixture with composition corresponding to the point M is boiled, 
then the vapor will have the composition corresponding to the point N; if this vapor 
is now collected and condensed, then its boiling point and composition will corre-
spond to the point O. This process enriches the mixture in component B. For such 
systems, by continuing this process a mixture can be enriched in the more volatile 
component.

AZEOTROPES

The relation between the boiling point and the compositions of the liquid and the 
vapor phases shown in Figure 7.5 is not valid for all binary mixtures. For many 
liquid mixtures the boiling point curve is as shown in Figure 7.6. In this case, there 
is value of xA at which the composition of the liquid and the vapor are the same. 
Such systems are called azeotropes. The components of an azeotrope cannot be 
separated by distillation. For example, in the case of Figure 7.6a, starting at a point 
to the left of the maximum, if the mixture is boiled and the vapor collected, then 
the vapor will be enriched in component B while the remaining liquid will be richer 
in component A and move towards the azeotropic composition. Thus, successive 
boiling and condensation results in pure B and a mixture with azeotropic composi-
tion, not pure A and pure B. The azeotropic composition and the corresponding 
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Figure 7.5 The boiling point versus 
composition of a mixture of two similar 
liquids, such as benzene and toluene



boiling points for binary mixtures are tabulated. One may notice in Figure 7.6 that 
the boiling point corresponding to the azeotropic composition occurs at an extre-
mum (maximum or minimum). That this must be so for thermodynamic reasons 
has been noted by Gibbs and later by Konovolow and Duhem. This observation is 
called the Gibbs–Konovalow theorem [4], which states that:

At constant pressure, in an equilibrium displacement of a binary system, the temperature of 
coexistence passes through an extremum if the composition of the two phases is the same.

We shall not discuss the proof of this theorem here. An extensive discussion of this 
and other related theorems may be found in the classic text by Prigogine and Defay 
[4]. Azeotropes are an important class of solutions whose thermodynamic properties 
we shall discuss in more detail in Chapter 8. Some examples of azeotropes are given 
in Table 7.2.

SOLUTION IN EQUILIBRIUM WITH PURE SOLIDS: EUTECTICS

The next example we consider is a solid–liquid equilibrium of two components, A 
and B, which are miscible in the liquid state but not in the solid state. This system 
has three phases in all, the liquid with A + B, solid A and solid B.

We can understand the equilibrium of such a system by fi rst considering the 
equilibrium of two-phase systems, the liquid and one of the two solids, A or B, and 
then extending it to three phases. In this case, the Gibbs phase rule tells us that, 
with two components and two phases, the number of degrees of freedom equals two. 
We can take these two degrees of freedom to be the pressure and composition. Thus, 
if the mole fraction xA and the pressure are fi xed, then the equilibrium temperature 
is also fi xed. By fi xing the pressure at a given value (say the atmospheric pressure) 
one can obtain an equilibrium curve relating T and xA. The two curves correspond-
ing to solid A in equilibrium with the liquid and solid B in equilibrium with the 
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Figure 7.6 The boiling point versus composition of liquid and vapor 
phases of binary mixtures called azeotropes. Azeotropes have a point at 
which the vapor and the liquid phases have the same composition. At this 
point the boiling point is either a maximum (a) or minimum (b)
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liquid are shown in Figure 7.7. In this fi gure, along the curve EN, the solid A is in 
equilibrium with the liquid; along the curve EM, solid B is in equilibrium with the 
solution. The point of intersection of the two curves, E, is called the eutectic point, 
and the corresponding composition and temperature are called the eutectic composi-
tion and the eutectic temperature.

Now, if we consider a three-phase system, the liquid, solid A and solid B, all in 
equilibrium, then the Gibbs phase rule tells us that there is only one degree of 
freedom. If we take this degree of freedom to be the pressure and fi x it at a particular 
value, then there is only one point (T, xA) at which equilibrium can exist between 
the three phases. This is the eutectic point. This is the point at which the chemical 
potentials of solid A and solid B are equal to their corresponding chemical potentials 
in the liquid mixture. Since the chemical potentials of solids and liquids do not 
change much with changes in pressure, the eutectic composition and temperature 
are insensitive to variations in pressure.

TERNARY SYSTEMS

As was noted by Gibbs, the composition of a solution containing three components 
may be represented by points within an equilateral triangle whose sides have a length 
equal to one. Let us consider a system with components A, B, and C. As shown in 
Figure 7.8, a point P may be used to specify the mole fractions xA, xB and xC as 
follows. From the point P, lines are drawn parallel to the sides of the equilateral 

Table 7.2 Examples of azeotropes

Boiling point (°C) Azeotropic wt %

Pure compound Azeotrope

Azeotropes formed with water at p = 1  bar
Boiling point of water = 100  °C
 Hydrogen chloride (HCl) −85 108.58 20.22
 Nitric acid (HNO3) 86 120.7 67.7
 Ethanol (C2H5OH) 78.32 78.17 96

Azeotropes formed with acetone at p = 1  bar
Boiling point of acetone ((CH3)2CO) = 56.15  °C
 Cyclohexane (C6H12) 80.75 53.0 32.5
 Methyl acetate (CH3COOCH3) 57.0 55.8 51.7
 n-Hexane (C6H14) 68.95 49.8 41

Azeotropes formed with methanol at p = 1  bar
Boiling point of methanol (CH3OH) = 64.7  °C
 Acetone ((CH3)2CO) 56.15 55.5 88
 Benzene (C6H6) 80.1 57.5 60.9
 Cyclohexane (C6H12) 80.75 53.9 63.6

Source: D.R. Lide (ed.), CRC Handbook of Chemistry and Physics, 75th edition. 1994, CRC Press: Ann 
Arbor, MI.
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Figure 7.7 The phase diagram of a two-compo-
nent system with three phases. The system has only 
one degree of freedom. For a fi xed pressure, the 
three phases (the liquid, solid A and solid B) are at 
equilibrium at the eutectic point E. Along the curve 
ME, solid B is in equilibrium with the liquid; and 
along the curve NE, solid A is in equilibrium with 
the liquid. The point of intersection E specifi es the 
equilibrium composition and temperature when all 
three phases are in equilibrium. At a fi xed T, if the 
system is initially at point P it will move towards 
the equilibrium curve ME. Below the eutectic point 
the solid is a mixture of solid A and solid B

triangle. The length of these lines can be used to represent the mole fractions xA, 
xB and xC. It is left as an exercise to show that such a construction ensures that 
xA + xB + xC = 1. In this representation of the composition, we see that:

1. The vertices A, B and C correspond to pure substances.
2. A line parallel to a side of the triangle corresponds to a series of ternary systems 

in which one of the mole fractions remains fi xed.
3. A line drawn through one of the apexes to the opposite side represents a set of 

systems in which the mole fractions of two components have a fi xed ratio. As the 
apex is approached along this line, the system becomes increasingly richer in the 
component represented by the apex. The variation of some property of a three-
component solution can be shown in a three-dimensional graph in which the base 
is the above composition triangle; the height will then represent the property.

BINARY AND TERNARY SYSTEMS 227



228 THERMODYNAMICS OF PHASE CHANGE

As an example, let us consider three components, A, B and C, in two phases: a 
solution that contains A, B and C, and the other a solid phase of B in equilibrium 
with the solution. This system has three components and two phases and, hence, 
has three degrees of freedom, which may be taken as the pressure and the mole 
fractions xA and xB. At constant pressure, every value of xA and xB has a correspond-
ing equilibrium temperature. In Figure 7.9a, the point P shows the composition of 
the solution at a temperature T. As the temperature decreases, the relative values of 
xA and xC remain the same while more of B turns into a solid. According to the 
observations in point (3) above, this means the point moves along the line BP as 
shown by the arrow. As the temperature decreases, a point P′ is reached at which 
the component C begins to crystallize. The system now has two solid phases and 
one solution phase and, hence, has two degrees of freedom. The composition of the 
system is now confi ned to the line P′E. With further decrease in the temperature, 
component A also begins to crystallize at point E, which corresponds to the eutectic 
temperature. The system now has only one degree of freedom. At the eutectic tem-
perature and composition, all three components will crystallize out in the eutectic 
proportions.

C
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c

a

A B

P

xA
xB

xC

Figure 7.8 The composition of a ternary system 
consisting of components A, B and C can be 
represented on a triangular graph because xA + 
xB + xC = 1. The composition is represented as 
a point P inside an equilateral triangle whose 
side has a length equal to one. The mole frac-
tions are the lengths of the lines drawn parallel 
to the sides of the triangle. Showing that Pa + 
Pb + Pc = 1 for any point P is left as an 
exercise



7.4 Maxwell’s Construction and the Lever Rule

The reader might have noticed that the isotherms obtained from an equation of 
state, such as the van der Waals equation, do not coincide with the isotherms shown 
in Figure 7.2 at the part of the curve that is fl at, i.e. where the liquid and vapor 
phases coexist. The fl at part of the curve represents what is physically realized when 
a gas is compressed at a temperature below the critical temperature. Using the con-
dition that the chemical potential of the liquid and the vapor phases must be equal 
at equilibrium, Maxwell was able to determine the location of the fl at part of the 
curve.

Let us consider a van der Waals isotherm for T < Tc (Figure 7.10). Imagine a 
steady decrease in volume starting at the point Q. Let the point P be such that, at 
this pressure, the chemical potentials of the liquid and the vapor phases are equal. 
At this point the vapor will begin to condense and the volume can be decreased with 
no change in the pressure. This decrease in volume can continue until all the vapor 
has condensed to a liquid at the point L. If the volume is maintained at some value 
has between P and L, then liquid and vapor coexist. Along the line PL the chemical 
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Figure 7.9 (a) The phase diagram of a ternary system showing the com-
position of the solution as it is cooled. At the point P the system consists 
of two phases: the solution (A + B + C) in equilibrium with solid B. As the 
temperature decreases, the composition moves along PP′. At P′ the com-
ponent C begins to crystallize and the composition moves along P′E until 
it reaches the ternary eutectic point E, at which all components begin to 
crystallize. (b) The composition of the system at points P, P′ and E
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potentials of the liquid and the vapor are equal. Thus, the total change in the chemi-
cal potential along the curve LMNOP must be equal to zero:

 d
LMNOP

µ∫ = 0  (7.4.1)

Now, since the chemical potential is a function of T and p, and since the path is an 
isotherm, it follows from the Gibbs–Duhem relation that dm = Vmdp. Using this 
relation we may write the above integral as

 V p V p V p V pm
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The area I shown in Figure 7.10 is equal to

 V p V p V p V pm
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which is same as the fi rst two integrals in (7.4.2). Similarly, the sum of the second 
two terms equals the negative of area II.

Thus, Equation (7.4.2) may be interpreted as
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Figure 7.10 Maxwell’s construction specifi es the physically 
realized fl at part LP with respect to the theoretical isotherm 
given by an equation of state such as the van der Waals 
equation. At equilibrium, the chemical potentials at the 
points L and P must be equal. As shown in the text, this 
implies that the physically realized states lie on a line LP 
that makes area I equal area II



 ( ) ( )Area I Area II− = 0  (7.4.3)

This condition specifi es how to locate or construct a fl at line on which the chemical 
potentials of the liquid and the vapor are equal, the one that is physically realized. 
It is called the Maxwell construction.

At point P the substance is entirely in the vapor phase with volume Vg; at the 
point L it is entirely in the liquid phase with volume Vl. At any point S on the line 
LP, if a fraction x of substance is in the vapor phase, then the total volume VS of 
the system is

 V xV x VS g= + −( )1 1  (7.4.4)

It follows that

 x
V V
V V

= −
−

=S l

g l

SL
LP

 (7.4.5)

From this relation it can be shown that (Exercise 7.10) the mole fraction x of the 
vapor phase and (1 − x) of the liquid phase satisfy

 ( ) ( )( )SL SPx x= −1  (7.4.6)

This relation is called the lever rule, in analogy with a lever supported at S, in equi-
librium with weights Vl and Vg attached to either end.

7.5 Phase Transitions

Phase transitions are associated with many interesting and general thermodynamic 
features. As described below, based on some of these features, phase transitions can 
be classifi ed into different ‘orders’. Thermodynamic behavior in the vicinity of the 
critical points has been of much interest from the point of view of thermodynamic 
stability and extremum principles discussed in Chapter 5. A classical theory of phase 
transitions was developed by Lev Landau; but, in the 1960s, experiments showed 
that the predictions of this theory were incorrect. This resulted in the development 
of the modern theory of phase transitions during the 1960s and the 1970s. The 
modern theory is based on the work of C. Domb, M. Fischer, L. Kadanoff, G.S. 
Rushbrook, B. Widom, K. Wilson and others. In this section we will only outline 
some of the main results of the thermodynamics of phase transitions. A detailed 
description of the modern theory of phase transitions, which uses the mathemati-
cally advanced concepts of renormalization-group theory, is beyond the scope of 
this book. For a better understanding of this rich and interesting subject we refer 
the reader to books on this topic [1–3].
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GENERAL CLASSIFICATION OF PHASE TRANSITIONS

When transition from a solid to a liquid or from a liquid to vapor takes place, there 
is a discontinuous change in the entropy. This can clearly be seen (see Figure 7.11) 
if we plot molar entropy Sm = −(∂Gm/∂T)p as function of T, for a fi xed p and N. The 
same is true for other derivatives of Gm, such as Vm = (∂Gm/∂p)T. The chemical poten-
tial changes continuously, but its derivative is discontinuous. At the transition tem-
perature, because of the existence of latent heat, the molar heat capacities (∆Q/∆T) 
have a ‘singularity’ in the sense they become infi nite, i.e. heat absorbed ∆Q causes 
no change in temperature, i.e. ∆T = 0. Transitions of this type are classifi ed as fi rst-
order phase transitions.

The characteristic features of second-order phase transitions are shown in Figure 
7.12. In this case the changes in the thermodynamic quantities are not so drastic: 
changes in Sm and Vm are continuous, but their derivatives are discontinuous. Simi-
larly, for the chemical potential it is the second derivative that is discontinuous; the 
molar heat capacity does not have a singularity, but it has a discontinuity. Thus, 
depending on the order of the derivatives that are discontinuous, phase transitions 
are classifi ed as transitions of fi rst or second order.

X

Ttrans T

µ 

Ttrans T

Cm

Ttrans T

Figure 7.11 The change of thermodynamic quantities in a fi rst-order 
phase transition that occurs at the temperature Ttrans. X is a molar extensive 
quantity such as Sm or Vm that changes discontinuously

X

Tt rans T

µ 

Ttrans T

Cm

Ttrans T

Figure 7.12 The change of thermodynamic quantities in a second-order 
phase transition that occurs at the temperature Ttrans. X is a molar extensive 
quantity such as Sm or Vm whose derivative changes discontinuously



BEHAVIOR NEAR THE CRITICAL POINT

The classical theory of phase transitions was developed by Lev Landau to explain 
the coexistence of phases and the critical point at which the distinction between the 
phases disappears. Landau’s theory explains the critical behavior in terms of the 
minima of the Gibbs free energy. According to this theory, as shown in Figure 7.13, 
in the coexistence region for a given p and T, G as a function of V has two minima. 
As the critical point is approached, the minima merge into one broad minimum. 
The classical theory of Landau makes several predictions regarding the behavior of 
systems near the critical point. The predictions of the theory are, in fact, quite 
general, valid for large classes of systems. Experiments done in the 1960s did not 
support these predictions. We shall list below some of the discrepancies between 
theory and experiments using the liquid–vapor transition as an example, but the 
experimental values are those obtained for many similar systems. Also, all the clas-
sical predictions can be verifi ed using the van der Waals equation of state as an 
example.

• For the liquid–vapor transition, as the critical temperature was approached from 
below (T < Tc), the theory predicted that

 V V T Tmg ml c /− − =∝ ( )β β 1 2  (7.5.1)

 However, experiments showed that b was in the range 0.3–0.4, not equal to 0.5.
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Solid 

Triple  
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Figure 7.13 Classical theory of phase transitions is based on the shape of 
the Gibbs energy. The Gibbs energies associated with the points A, B, C 
and D are shown in the insets. As the system moves from A to D, the Gibbs 
energy changes from a curve with two minima to a curve with one minimum, 
as shown in the small fi gures
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• Along the critical isotherm, as the critical pressure pc is approached from above, 
the theory predicted

 V V p pmg ml c− − =∝ ( ) /1 3δ δ  (7.5.2)

 Experiments place the value of d in the range 4.0–5.0.
• When the gas can be liquefi ed, it is easy to see that the isothermal compressibility 

kT = −(1/V)(∂V/∂p)T diverges during the transition (the fl at part of the p–V iso-
therm). Above the critical temperature, since there is no transition to liquid there 
is no divergence. According to classical theory, as the critical temperature is 
approached from above, the divergence of kT should be according to

 κ γγ
T T T∝ ( )− =−

c 1  (7.5.3)

 Experimental values of g  were found to be in the range 1.2–1.4.
• We have seen in Chapter 6 that the values of molar heat capacity CmV for real and 

ideal gases are the same if the pressure is a linear function of the temperature. 
This means the value of CmV does not diverge (though the value of Cp diverges). 
Thus, according to classical theory, if

 C T TVm c then∝ ( )− =−α α 0  (7.5.4)

 Experimentally, the value of a found was in the range −0.2 to +0.3.

The failure of the classical or Landau theory initiated a reexamination of the 
critical behavior. The main reason for the discrepancy was found to be the role of 
fl uctuations. Near the critical point, due to the fl at nature of the Gibbs energy, large 
long-range fl uctuations arise in the system, but they were not properly included in 
Landau’s theory. Kenneth Wilson incorporated these fl uctuations into the theory 
through the development of new mathematical techniques and the theory of the 
renormalization group. The modern theory of critical behavior not only predicts the 
experimental values of the exponents a, b, g and d more successfully than the clas-
sical theory, but it also relates these exponents. For example, the modern theory 
predicts that

 β α
δ

γ α δ
δ

= −
+

= − −
+

2
1

2 1
1

and
( )( )

( )
 (7.5.5)

Since a detailed presentation of the theory of the renormalization group is 
beyond the scope of this book, we will leave the reader with only this brief outline 
of the limitations of the classical theory and accomplishments of the modern 
theory.
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Examples

Example 7.1 A chemical reaction occurs in CCl4 at room temperature, but it is 
very slow. To increase its speed to a desired value, the temperature needs to be 
increased to 80 °C. Since CCl4 boils at 77 °C at p = 1.00 atm, the pressure has to be 
increased so that CCl4 will boil at a temperature higher than 80 °C. Using the data 
in Table 7.1, calculate the pressure at which CCl4 will boil at 85 °C.
Solution From the Clausius–Clapeyron equation we have

 ln ln( . )
.
.

.p − = × −



 =1 00

30 0 10
8 314

1
350

1
358

0 230
3

atm

p = (1.00 atm)e0.23 = 1.26 atm

Example 7.2 If a system contains two immiscible liquids (such as CCl4 and CH3OH), 
how many phases are there?
Solution The system will consist of three layers. A layer rich in CCl4, a layer rich 
in CH3OH and a layer of vapor of CCl4 and CH3OH. Thus, there are three phases 
in this system.

Example 7.3 Determine the number of degrees of freedom of a two-component 
liquid mixture in equilibrium with its vapor.
Solution In this case C = 2, P = 2. Hence, the number of degrees of freedom 
f = 2 − 2 + 2 = 2. These two degrees of freedom can be, for example, T and the mole 
fraction xl of one of the components. The pressure of the system (vapor phase in 
equilibrium with the liquid) is completely specifi ed by xl and T.

Example 7.4 How many degrees of freedom does an aqueous solution of the weak 
acid CH3COOH have?
Solution The acid decomposition is

 CH3COOH � CH3COO− + H+
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The number of components is C = 4 (water, CH3COOH, CH3COO− and H+). 
The number of phases is P = 1. There is one chemical reaction in equilibrium; 
hence R = 1. However, since the concentrations of CH3COO− and H+ are equal, the 
degrees of freedom is reduced by one. Hence, the number of degrees of freedom 
f = C − R − P + 2 − 1 = 4 − 1 − 1 + 2 − 1 = 3.

Exercises

7.1 The heat of vaporization of hexane is 30.8 kJ mol−1. The boiling point of 
hexane at a pressure of 1.00 atm is 68.9 °C. What will the boiling point be at 
a pressure of 0.50 atm?

7.2 The atmospheric pressure decreases with height. The pressure at a height 
h above sea level is given approximately by the barometric formula 
p = p0e−Mgh/RT, in which M = 0.0289 kg mol−1, and g = 9.81 m s−2. Assume that 
the enthalpy of vaporization of water is ∆Hvap = 40.6 kJ mol−1 and predict at 
what temperature water will boil at a height of 3.5 km.

7.3 At atmospheric pressure, CO2 turns from solid to gas, i.e. it sublimates. Given 
that the triple point of CO2 is at T = 216.58 K and p = 518.0 kPa, how would 
you obtain liquid CO2?

7.4 In a two-component system, what is the maximum number of phases that 
can be in equilibrium?

7.5 Determine the number of degrees of freedom for the following systems:
(a) solid CO2 in equilibrium with CO2 gas;
(b) an aqueous solution of fructose;
(c) Fe(s) + H2O(g) � FeO(s) + H2(g).

7.6 Draw qualitative fi gures of T versus xA curves (Figure 7.6) for the azeotropes 
in Table 7.2.

7.7 In Figure 7.8, show that PA + PB + PC = 1 for any point P.

7.8 In the triangular representation of the mole fractions of ternary solution, 
show that along the line joining an apex and a point on the opposite side, 
the ratio of two of the mole fractions remain constant while mole fraction of 
the third component changes.

7.9 On triangular graph paper, mark points representing the following 
compositions:
(a) xA = 0.2, xB = 0.4, xC = 0.4
(b) xA = 0.5, xB = 0, xC = 0.5



(c) xA = 0.3, xB = 0.2, xC = 0.5
(d) xA = 0, xB = 0, xC = 1.0.

7.10 Obtain the lever rule (7.4.6) from (7.4.5).

7.11 When the van der Waals equation is written in terms of the reduced variables 
pr, Vr and Tr (see 1.4.6), the critical pressure, temperature and volume are 
equal to one. Consider small deviations from the critical point, pr = 1 + dp 
and Vr = 1 + dV on the critical isotherm. Show that dV is proportional to 
(dp)1/3. This corresponds to the classical prediction (7.5.2).
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8  THERMODYNAMICS OF 
SOLUTIONS

8.1 Ideal and Nonideal Solutions

Many properties of solutions can be understood through thermodynamics. For 
example, we can understand how the boiling and freezing points of a solution change 
with composition, how the solubility of a compound changes with temperature and 
how the osmotic pressure depends on the concentration.

We begin by obtaining the chemical potential of a solution. As noted in Chapter 
5 (Equation (5.3.5)), the general expression for the chemical potential of a substance 
may be written as m(p,T) = m0(p0,T) + RT1n a in which a is the activity and m0 is the 
chemical potential of the standard state in which a = 1. For an ideal gas mixture, in 
Equation (6.1.9) we saw that the chemical potential of a component can be written 
in terms of its mole fraction xk in the form mk(p,T,xk) = m0

k(p,T) + RT1n xk. We shall 
see in this section that properties of many dilute solutions can be described by a 
chemical potential of the same form. This has led to the following defi nition of an 
ideal solution as a solution for which

 µ µk k k kp T x p T RT x( ) ( ), , , ln= +0  (8.1.1)

where m0
k(p,T) is the chemical potential of a reference state which is independent of 

xk. We stress that the similarity between ideal gas mixtures and ideal solutions is 
only in the dependence of the chemical potential on the mole fraction; the depen-
dence on the pressure, however, is entirely different, as can be seen from the general 
expression for the chemical potential of a liquid (6.3.8).

In (8.1.1), if the mole fraction of the ‘solvent’ xs is nearly equal to one, i.e. for 
dilute solutions, then for the chemical potential of the solvent the reference state 
m0

k(p, T) may be taken to be m*k (p, T), the chemical potential of the pure solvent. For 
the other components, xk << 1; as we shall see below, (8.1.1) is still valid in a small 
range, but in general the reference state is not m*k (p, T). Solutions for which (8.1.1) 
is valid for all values of xk are called perfect solutions. When xk = 1, since we must 
have mk(p,T) = m*k (p,T), it follows that for perfect solutions

 µ µk k k k kp T x p T RT x x( ) *( ), , , ln= + ∀  (8.1.2)

The activity of nonideal solutions is expressed as ak = gkxk in which gk is the activity 
coeffi cient, a quantity introduced by G.N. Lewis. Thus, the chemical potential of 
nonideal solutions is written as

Introduction to Modern Thermodynamics Dilip Kondepudi
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(8.1.3)

The activity coeffi cient gk → 1 as xk → 1.
Let us now look at conditions under which ideal solutions are realized. We con-

sider a solution with many components, whose mole fractions are xi, in equilibrium 
with its vapor (see Figure 8.1). At equilibrium, the affi nities for the conversion of 
liquid to the gas phase are zero for each component i, i.e. for each component, the 
chemical potentials in the two phases are equal. If we use the ideal gas approxima-
tion for the component in the vapor phase we have

 µ µi i i ip T RT a p T RT p p, ,g, ln , ln /1
0

0
0

0 0( ) ( ) ( )+ = +  (8.1.4)

in which the subscripts l and g indicate the liquid and gas phases. The physical 
meaning of the activity ai can be seen as follows. Consider a pure liquid in equilib-
rium with its vapor. Then pi = p*i, the vapor pressure of a pure liquid in equilibrium 
with its vapor. Since ai is nearly equal to one for a pure liquid, ln(ai) ≈ 0. Hence, 
(8.1.4) can be written as

 µ µi i ip T p T RT p p, ,g
0, , ln */1

0
0 0 0( ) ( ) ( )= +  (8.1.5)

Subtracting (8.1.5) from (8.1.4) we fi nd that

 RT a RT p p a
p
pi i i i

i

i
ln ln( / or *= =*)  (8.1.6)

i.e. the activity is the ratio of the partial vapor pressure pi of the component when 
in a solution and its vapor pressure p∗ when it is a pure substance. By measuring 
the vapor pressure of a substance, its activity can be determined.

For an ideal solution, Equation (8.1.4) takes the form

 µ µi i i ip T RT x p T RT p p,1
0

,g, ln( , ln /( ) ) ( ) ( )+ = +0
0 0  (8.1.7)

From this equation it follows that the partial pressure in the vapor phase and the 
mole fraction of a component can be written as

Figure 8.1 Equilibrium between a 
solution and its vapor
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 (8.1.9)

As indicated, the term Ki(p,T) is, in general, a function of p and T; but since the 
chemical potential of the liquid m0

i,1(p,T) changes little with p, it is essentially a 
function of T. Ki has the dimensions of pressure. For any component, when xi = 
1, we must have K(p*,T) = p*, the vapor pressure of the pure substance (Figure 
8.2). (This is consistent with (8.1.9) because when we set p = p0 = p*, the exponent 
m0

1(T,p*) − m0
g(T,p*) = 0 because the vapor and the liquid are in equilibrium.) At a 

given temperature T, if xl ≈ 1 for a particular component, which is called the 
‘solvent’, then since the change of Ki is small for changes in pressure we may 
write

 p p x1 1 1= *  (8.1.10)

Experiments conducted by François-Marie Raoult (1830–1901) in the 1870s showed 
that if the mole fraction of the solvent is nearly equal to unity, i.e. for dilute solu-
tions, then (8.1.10) is valid. For this reason, (8.1.10) is called the Raoult’s law. The 
chemical potential of the vapor phase of the solvent ms,g = ms,g(p0,T) + RT 1n(ps/p0) 
can now be related to its mole fraction in the solution by using Raoult’s law and 
by setting p0 = p∗:
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Figure 8.2 The vapor pressure diagram of a perfect 
binary solution for which (8.1.1) is valid for all values 
of the mole fraction x1. p*1 and p*2 are the vapor pres-
sures of the pure substances; p1 and p2 are the partial 
pressures of the two components in the mixture and 
p is the total vapor pressure
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 µ µs,g s s,g s, , *, ln( ) ( )p T x p T RT x= +  (8.1.11)

For a minor component of a solution, when its mole fraction xk << 1, (8.1.10) is not 
valid but (8.1.8) is still valid. This relation is called Henry’s law after William Henry 
(1774–1836), who studied this aspect for the solubility of gases [1]:

 p K x xi i i i= �1  (8.1.12)

The constant Ki is called the Henry’s constant. Some values of Henry’s constants 
are given in Table 8.1. In the region where Henry’s law is valid, Ki is not equal to 
the vapor pressure of the pure substance. The graphical representation of the Henry’s 
constant is shown in Figure 8.3. (Also, where Henry’s law is valid, in general the 
chemical potential of the reference state m0

i is not the same as the chemical potential 
of the pure substance.) Only for a perfect solution do we have Ki = p*i when xi << 1, 
but such solutions are very rare. Many dilute solutions obey Raoult’s and Henry’s 
laws to a good approximation.

When the solution is not dilute, the nonideal behavior is described using the activ-
ity coeffi cients gi in the chemical potential:

 µ µ γi i i i ip T x p T RT x( ) ( ) ( ), , , ln= +0  (8.1.13)

The deviation from Raoult’s or Henry’s law is a measure of gi. For nonideal solu-
tions, as an alternative to the activity coeffi cient, an osmotic coeffi cient fi is defi ned 
through

 m m fi i i i ip T x p T RT x( ) ( ), , , ln= + ( )0  (8.1.14)

As we will see in the following section, the signifi cance of the osmotic coeffi cient lies 
in the fact that it is the ratio of the osmotic pressure to that expected for ideal solu-
tions. From (8.1.13) and (8.1.14) it is easy to see that

 φ γ
k

k

kx
− =1

ln
ln

 (8.1.15)

Table 8.1 Henry’s law constants at 25  °C for atmospheric gases

Gas K/104  atm Volume in the atmosphere/ppm

N2(g) 8.5 780  900
O2(g) 4.3 209  500
Ar(g) 4.0  9  300
CO2(g) 0.16     380
CO(g) 5.7 –
He(g) 13.1 5.2
H2(g) 7.8 0.5
CH4(g) 4.1 1.5
C2H2(g) 0.13 –

Source: D.R. Lide (ed.) CRC Handbook of Chemistry and Physics, 75th edition. 1994, CRC Press: Ann Arbor, 
MI.



8.2 Colligative Properties

By using the chemical potential of ideal solutions we can derive several properties 
of ideal solutions that depend on the total number of the solute particles and not on 
the chemical nature of the solute. (For example, a 0.2 M solution of NaCl will have 
colligative concentration of 0.40 M due to the dissociation into Na+ and Cl−.) Such 
properties are collectively called colligative properties.

CHANGES IN BOILING AND FREEZING POINTS

Equation (8.1.11) could be used to obtain an expression for the increase in the 
boiling point and the decrease in the freezing point of solutions (Figure 8.4). As we 
noted in Chapter 7, a liquid boils when its vapor pressure p = pext, the atmospheric 
(or applied external) pressure. Let T* be the boiling temperature of the pure solvent 
and T the boiling temperature of the solution. We assume that the mole fraction of 
the solvent is x2 and that of the solute is x1. We assume that the solute is nonvolatile 
so that the gas phase of the solution is pure solvent. At equilibrium, the chemical 
potentials of the liquid and gas phases of the solvent must be equal:

 µ µ2 2 2,g ext ,1 ext* , , ,( ) ( )p T p T x=  (8.2.1)

Figure 8.3 The vapor pressure diagram of a binary 
solution. When the mole fraction is very small or 
nearly equal to one, we have ideal behavior. The 
minor component obeys Henry’s law, while the major 
component obeys Raoult’s law. p*1 and p*2 are the 
vapor pressures of the pure substances; p1 and p2 are 
the partial pressures of the two components in the 
mixture and p is the total vapor pressure. The devia-
tion from the partial pressure predicted by Henry’s 
law or Raoult’s law can be used to obtain the activity 
coeffi cients
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Using (8.1.11) we can now write this equation as

 µ µ µ2 2 2 2 2,g ext ,1 ext ,1* , , , * ln( ) ( ) ( )p T p T x T RT x= = +  (8.2.2)

Since the chemical potential of a pure substance m = Gm, the molar Gibbs energy, 
we have

 
µ µ2 2

2
,g ext ,l m m m* , *

ln
( ) ( )p T T

RT
G

RT
H T S

RT
x

−
= = − =∆ ∆ ∆

 (8.2.3)

in which ∆ denotes the difference between the liquid and the gas phase. Generally, 
∆Hm does not vary much with temperature. Therefore, ∆Hm(T) = ∆Hm(T*) = ∆Hvap. 
Also, ∆Sm = ∆Hvap(T)/T∗, and x2 = (1 − x1), in which x1 << 1 is the mole fraction of 
the solute. With these observations we can write Equation (8.2.3) as

 ln
*

vap( )1
1 1

1− = −





x
H
R T T

∆
 (8.2.4)

If the difference T − T* = ∆T is small, then it is easy to show that the terms contain-
ing T and T * can be approximated to −∆T/T∗2. Furthermore, since ln(1 − x1) ≈ −x1 
when x1 << 1, we can approximate (8.2.4) by the relation

 ∆
∆

T
RT

H
x= *2

vap
1  (8.2.5)

which relates the change in boiling point to the mole fraction of the solute. In a 
similar way, by considering a pure solid in equilibrium with the solution, one can 
derive the following relation for the decrease in freezing point ∆T in terms of the 
enthalpy of fusion ∆Hfus, the mole fraction xk of the solute and the freezing point 
T* of the pure solvent:

 ∆
∆

T
RT

H
x= *2

fus
1  (8.2.6)

The changes in the boiling point and the freezing point are often expressed in terms 
of molality, i.e. moles of solute/kilogram of solvent, instead of mole fraction. For 

p*

Pure solvent Solution

p

T T

Figure 8.4 The vapor pressure of a solution with a non-
volatile solute is less than that of a pure solvent. Conse-
quently, the boiling point of a solution increases with the 
solute concentration



Table 8.2 Ebullioscopic and cryoscopic constants

Compound Kb/°C  kg  mol−1 Tb/°C Kf/°C  kg  mol−1 Tf/°C

Acetic acid, CH3COOH 3.07 118 3.90 16.7
Acetone, (CH3)2CO 1.71 56.3 2.40 −95
Benzene, C6H6 2.53 80.10 5.12 5.53
Carbon disulfi de, CS2 2.37 46.5 3.8 −111.9
Carbon tetrachloride, CCl4 4.95 76.7 30 −23
Nitrobenzene, C6H5NO2 5.26 211 6.90 5.8
Phenol, C6H5OH 3.04 181.8 7.27 40.92
Water, H2O 0.51 100.0 1.86 0.0

Source: G.W.C. Laye and T.H. Laby (eds) Tables of Physical and Chemical Constants. 1986, London: 
Longmans.

dilute solutions, the conversion from mole fraction x to molality m is easily 
done. If Ms is the molar mass of the solvent in kilograms, then the mole 
fraction of the solute

 x
N

N N
N
N

M
N

M N
M ms

s
s1

1

1 2

1

2

1

2
1=

+
≈ = 



 =

Equations (8.2.5) and (8.2.6) are often written as

 ∆T K m m m= + + +( . . . )1 2 s  (8.2.7)

in which the molalities of all the ‘s’ species of solute particles is shown 
explicitly. The constant K is called the ebullioscopic constant for changes in 
boiling point and the cryoscopic constant for changes in freezing point. The 
values of ebullioscopic and cryoscopic constants for some liquids are given 
in Table 8.2.

OSMOTIC PRESSURE

When a solution and pure solvent are separated by a semi-permeable mem-
brane (see Figure 8.5a), which is permeable to the solvent but not the solute 
molecules, the solvent fl ows into the chamber containing the solution until 
equilibrium is reached. This process is called osmosis and was noticed in the 
mid eighteenth century. In 1877, a botanist named Pfeffer made a careful 
quantitative study of it. Jacobus Henricus van’t Hoff (1852–1911), who was 
awarded the fi rst Nobel Prize in chemistry in 1901 for his contributions to 
thermodynamics and chemistry [1], found that a simple equation, similar to 
that of an ideal gas, could be used to describe the observed data.

As shown in Figure 8.5, let us consider a solution and a pure solvent 
separated by a membrane that is permeable to the solvent but not the solute. 
Initially, the chemical potentials of the solvent on the two sides of the 
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membrane may not be equal, the chemical potential on the solution side being 
smaller. Unequal chemical potentials will cause a fl ow of the solvent from higher to 
a lower chemical potential, i.e. a fl ow of pure solvent towards the solution. The 
affi nity driving this solvent fl ow is

 A p T p T x= − ′µ µ*( , , ,) ( )2  (8.2.8)

in which x2 is the mole fraction of the solvent, p′ is the pressure of the solution 
and p the pressure of the pure solvent. Equilibrium is reached when the chemi-
cal potentials become equal and the corresponding affi nity (8.2.8) equals zero. 
Using Equation (8.1.1) for an ideal solution, the affi nity of this system can be 
written as

 A p T p T RT x= − ′ −µ µ*( , *( , ln) ) 2  (8.2.9)

Jacobus van’t Hoff (1852–1911) (Reproduced courtesy of the AIP Emilio Segre Visual 
Archive, Brittle Book Collection)



in which m0 = m∗, the chemical potential of the pure solvent. When p = p′, the affi nity 
takes the following simple form:

 A RT x= − ln 2  (8.2.10)

The fl ow of the solvent into the solution can generate a pressure difference 
between the solvent and the solution (Figure 8.5b). The fl ow continues until the 
difference between solvent pressure p and solution pressure p′ makes A = 0. 
When A = 0, the pressure difference (p′ − p) = p, is called the osmotic pressure. 
In the experimental set-up shown in Figure 8.5b, the liquid level in the solution 
rises to a height h above the pure-solvent level when equilibrium is reached. 
The excess pressure in the solution p = hrg, in which r is the solution density 
and g is the acceleration due to gravity. At equilibrium, from (8.2.9) it follows 
that

 A p T p T RT x= = − + −0 2µ µ π* , *( , ln( ) )  (8.2.11)

At constant temperature, the change in the chemical potential with pressure dm = 
(∂m/∂p)T dp = Vm dp, where Vm is the partial molar volume. Since the partial molar 
volume of a liquid changes very little with pressure, we may assume it to be a con-
stant equal to V *m, the solvent molar volume (because when m = m*, Vm = V *m). Hence, 
we may write

 µ π µ µ µ

µ π

π π

*( , *( , d *d

*( , *

m

m

p T p T p T V p

p T V

p

p

p

p

+ ≈ + = ( ) +

= +

+ +

∫ ∫) ) * ,

)

 
(8.2.12)

Solution 

Membrane 

Solvent

h

(a)   (b) 

Figure 8.5 Osmosis: the pure solvent fl ows toward 
the solution through a semi-permeable membrane 
until its chemical potentials in both chambers are 
equal
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Also, as we noted before, for dilute solutions, ln(x2) = ln(1 − x1) ≈ −x1. If N1 is 
the molar amount of the solute and N2 is the molar amount of the solvent, then, 
since N2 >> N1, we see that x1 = N1/(N1 + N2) ≈ N1/N2. Hence, we see that ln(x2) 
≈ −N1/N2. Using (8.2.12) and the fact that ln(x2) ≈ −N1/N2, Equation (8.2.11) can 
be written as

 RT
N
N

V1

2

= m*π  

i.e.

 RTN N V V1 2= =m*π π  (8.2.13)

in which V = N2V*m is nearly the volume of the solution (the correction due to the 
solute being small). This shows that the osmotic pressure p obeys an ideal-gas-like 
equation:

 π = =N RT
V

S RTsolute

solution

[ ]  (8.2.14)

in which [S] is the molar concentration of the solution. This is the van’t Hoff equa-
tion for the osmotic pressure. The osmotic pressure is as if an ideal gas consisting 
of the solute particles is occupying a volume equal to the solution volume. By mea-
suring the osmotic pressure one can determine the molar amount Nsolute of a solute. 
Thus, if the mass of the solute is known, then its molar mass can be calculated. The 
measurement of osmotic pressure is used to determine the molar mass or molecular 
weight of large biomolecules for which semi-permeable membranes can be easily 
found (Exercise 8.10).

Table 8.3 shows a comparison between experimentally measured osmotic pres-
sures and those calculated using the van’t Hoff equation (8.2.14) for an aqueous 

Table 8.3 Comparison between theoretical osmotic pressure calculated using van’t Hoff’s equation 
and the experimentally observed osmotic pressure for an aqueous solution of sucrose at two 
temperatures

T = 273  K T = 333  K

Concentration/mol  L−1 p (atm) Concentration/mol  L−1 p (atm)

Experiment Theory Experiment Theory

0.029  22 0.65 0.655 0.098 2.72 2.68
0.058  43 1.27 1.330 1.923 5.44 5.25
0.131  5 2.91 2.95 0.370  1 10.87 10.11
0.273  9 6.23 6.14 0.533 16.54 14.65
0.532  8 14.21 11.95 0.685  5 22.33 18.8
0.876  6 26.80 19.70 0.827  3 28.37 22.7

Source: I. Prigogine and R. Defay, Chemical Thermodynamics, 4th edition. 1967, London: Longmans.



solution of sucrose. We see that for concentrations up to about 0.2 M the van’t Hoff 
equation agrees with experimental values. Deviation from the van’t Hoff equation 
is not necessarily due to deviation from ideality. In deriving the van’t Hoff equation, 
we also assumed a dilute solution. Using (8.1.11) and (8.2.12), it is easy to see that 
the osmotic pressure can also be written as

 π ideal

m

ln

*
= −RT x

V

2
 (8.2.15)

where x2 is the mole fraction of the solvent. Here we have indicated explicitly that 
the osmotic pressure in this expression is valid for ideal solutions. This formula was 
obtained by J.J. van Larr in 1894.

For nonideal solutions, instead of an activity coeffi cient g, an osmotic coeffi cient 
f is defi ned through

 µ µ φ( ) )p T x p T RT x, , *( , ln2 2= +  (8.2.16)

in which m∗ is the chemical potential of the pure solvent. At equilibrium, when the 
affi nity vanishes and osmotic pressure is p we have the equation

 µ µ π φ*( , *( , lnp T p T RT x) )= + + 2  (8.2.17)

Following the same procedure as above, we arrive at the following expression for 
the osmotic pressure of a nonideal solution:

 π φ= − RT x

V

ln

*m

2  (8.2.18)

Equation (8.2.18) was proposed by Donnan and Guggenheim in 1932. From 
Equations (8.2.15) and (8.2.18) it follows that f = p/pideal. Hence, the name 
‘osmotic coeffi cient’ for f. We can also relate the affi nity to the osmotic pres-
sure. When the solution and the pure solvent are at the same pressure the affi nity 
is A = m*(p,T) − m*(p,T) − fRT ln x2 = −fRT ln x2. Using this in (8.2.18) we see 
that

 π = =A
V

p p
m

solution solvent*
when .  (8.2.19)

Another approach for the consideration of nonideal solutions is similar to that 
used to obtain the virial equation for real gases. In this case the osmotic pressure is 
written as

 π = + +[ ] ( ( )[ ] . . .)S RT B T S1  (8.2.20)

in which B(T) is a constant that depends on the temperature. The experimental data 
on the osmotic pressure of polymer solutions (such as polyvinyl chloride in cyclo-
hexanone) shows a fairly linear relation between p/[S] and [S]. Also, the value of 
B(T) changes sign from negative to positive as the temperature increases. The 
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temperature at which B equals zero is called the theta temperature. If the concentra-
tion is expressed in grams per liter, which we shall denote by [C], then (8.2.20) can 
be written as

 π = + +{ }[ ]
( )

[ ]
. . .

C RT
M

B T
C

Ms s

1  (8.2.21)

in which Ms is molar mass of the solute. With this equation, a plot of p/[C] versus 
[C] is expected to be linear with an intercept equal to RT/Ms. From the intercept, 
the molar mass can be determined. From the slope, equal to BRT/M2

s, the ‘virial 
constant’ B can be obtained.

8.3 Solubility Equilibrium

The solubility of a solid in a solvent depends on the temperature. Solubility is the 
concentration when the solid solute is in equilibrium with the solution: it is the 
concentration at saturation. Thermodynamics gives us a quantitative relation 
between solubility and temperature. In considering the solubilities of solids one must 
distinguish between ionic solutions and nonionic solutions. When ionic solids, such 
as NaCl, dissolve in polar solvents, such as water, the solutions contain ions, Na+ 
and Cl−. Since ions interact strongly even in dilute solutions, the activities cannot 
be approximated well by mole fractions. For nonionic solutions, such as sugar in 
water or naphthalene in acetone, the activity of dilute solution can be approximated 
by the mole fraction.

NONIONIC SOLUTIONS

For dilute nonionic solutions, we may assume ideality and use the expression 
(8.1.1) for the chemical potential to analyze the conditions for thermodynamic 
equilibrium. Solutions of higher concentrations require a more detailed theory (as 
can be found for instance in the classic text by Prigogine and Defay [2]). Recall 
that, like it does for liquids, the chemical potential of a solid varies very little with 
pressure and so it is essentially a function only of the temperature. If m*s(T) is the 
chemical potential of the pure solid in equilibrium with the solution, then we have 
(using (8.1.1))

 m m ms* * ln( ) ( ) ( ) ( )T T T RT x= = +1 1 1  (8.3.1)

in which the ml the chemical potential of the solute in the solution phase (liquid 
phase), m*1 is the chemical potential of the pure solute in the liquid phase, and x1 is 
the mole fraction of the solute. If ∆Gfus(T) = m*1 − m*s is the molar Gibbs energy of 
fusion at temperature T, then the above equation can be written in the form

 ln fusx
R

G
T

1
1= − ∆

 (8.3.2)



In this form the temperature dependence of the solubility is not explicit because 
∆Gfus is itself a function of T. This expression can also be written in terms of the 
enthalpy of fusion ∆Hfus by differentiating this expression with respect to T and using 
the Gibbs–Helmholtz equation d(∆G/T)dT = −(∆H/T2) (5.2.14); this equation can be 
written as

 d ln(
d

fusx
T R

H
T

1
2

1) = ∆  (8.3.3)

Since ∆Hfus does not change much with T, this expression can be integrated to obtain 
a more explicit dependence of solubility with temperature.

IONIC SOLUTIONS

Ionic solutions, also called electrolytes, are dominated by electrical forces which can 
be very strong. To get an idea of the strength of electrical forces, it is instructive to 
calculate the force of repulsion between two cubes of copper of side 1 cm in which 
one in a million Cu atoms is a Cu+ ion, when the two cubes are 10 cm apart. The 
force is suffi cient to lift a weight of 16 × 106 kg (Exercise 8.13).

Owing to the enormous strength of electrical forces, there is almost no separation 
between positive and negative ions in a solution; positive and negative charges 
aggregate to make the net charge in every macroscopic volume nearly zero, i.e. every 
macroscopic volume is electrically neutral. Solutions, and indeed most matter, main-
tain electroneutrality to a high degree. Thus if ck (mol L−1) are the concentrations of 
positive and negative ions with ion numbers (number of electronic charges) zk, the 
total charge carried by an ion per unit volume is Fzkck, in which F = eNA is the 
Faraday constant, equal to the product of the electronic charge e = 1.609 × 10−19 C 
and the Avogadro number NA. Since electroneutrality implies that the net charge is 
zero, we have

 
k

k kFz c∑ = 0  (8.3.4)

Let us consider the solubility equilibrium of a sparingly soluble electrolyte AgCl 
in water:

 AgCl(s) Ag Cl+� + −  (8.3.5)

At equilibrium:

 µ µ µAgCl Ag Cl+= + −  (8.3.6)

In ionic systems, since the positive and negative ions always come in pairs, physically 
it is not possible to measure the chemical potentials mAg+ and mCl− separately; only 
their sum can be measured. A similar problem arises for the defi nition of enthalpy 
and Gibbs energy of formation. For this reason, for ions, these two quantities are 
defi ned with respect to a new reference state based on the H+ ions, as described in 
Box 8.1. For the chemical potential, a mean chemical potential is defi ned by
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 µ µ µ± = + −
1
2

( )Ag Cl+  (8.3.7)

so that (8.3.6) becomes

 µ µAgCl = ±2  (8.3.8)

In general, for the decomposition of a neutral compound W into positive and nega-
tive ions, AZ+ and BZ− respectively (with ion numbers Z+ and Z−), we have

 W A B� v vZ Z
+

+
−

−+  (8.3.9)

in which �+ and �− are the stoichiometric coeffi cients. The mean chemical potential 
in this case is defi ned as

 µ µ µ µ
±

+ + − −

+ − + −
= +

+
=

+
v v

v v v v
salt  (8.3.10)

Box 8.1 Enthalpy and Gibbs Free Energy of Formation of Ions.

When ionic solutions form, the ions occur in pairs; therefore, it is not possible to isolate 
the enthalpy of formation of a positive or negative ion. Hence, we cannot obtain the 
heats of formation of ions with the usual elements in their standard state as the refer-
ence state. For ions, the enthalpy of formation, is tabulated by defi ning the ∆Hf of 
formation of H+ as zero at all temperatures. Thus

∆H 0
f [H+(aq)] = 0 at all temperatures

With this defi nition it is now possible to obtain the ∆Hf of all other ions. For example, 
to obtain the heat of formation of Cl−(aq), at a temperature T, the enthalpy of solution 
of HCl is measured. Thus, ∆H 0

f [Cl−(aq)] is the heat of solution at temperature T:

HCl → H+(aq) + Cl−(aq)

The tabulated values of enthalpies are based on this convention. Similarly, for the 
Gibbs energy:

∆G 0
f [H+(aq)] = 0 at all temperatures

For ionic systems, it has become customary to use the molality scale (mol/kg solvent). 
This scale has the advantage that the addition of another solute does not change the 
molality of a given solute. The values of ∆G 0

f and ∆H 0
f for the formation of ions in 

water at T = 298.15 K are tabulated for the standard state of an ideal dilute solution 
at a concentration of 1 mol kg−1. This standard state is given the subscript ‘ao’. Thus, 
the chemical potential or the activity of an ion is indicated by ‘ao’. The chemical 
potential of an ionized salt, msalt ≡ v+m+ + v−m−, and the corresponding activity are 
denoted with the subscript ‘ai’.



in which msalt ≡ �+m+ + �−m−. Here, we have written the chemical potential of the posi-
tive ion AZ+ as m+ and that of the negative ion BZ− as m−.

The activity coeffi cients g of electrolytes are defi ned with respect to ideal solutions. 
For example, the mean chemical potential for AgCl is written as

 µ µ γ µ γ

µ γ

±

±

= + + +

= +

− − −
1
2

0 0

0

[ ) )]Ag Ag Ag Cl Cl Cl+ + +ln( ln(

ln

RT x RT x

RT AAg Cl Ag Cl+ +γ − −x x

 (8.3.11)

where m0
± = 1/2(m0

Ag+ +0
Cl−). Once again, since the activity coeffi cients of the positive 

and negative ions cannot be measured individually, a mean activity coeffi cient g± is 
defi ned by

 γ γ γ± = −( )Ag Cl
1/2

+  (8.3.12)

In the more general case of (8.3.9), the mean ionic activity coeffi cient is defi ned as

 γ γ γ± + −= + − + −+( ) )v v v v1/(  (8.3.13)

where we have used g+ and g− for the activity coeffi cients of the positive and negative 
ions.

The chemical potentials of dilute solutions may be expressed in terms of molality 
mk (moles of solute per kilogram of solvent) or molarities ck (moles of solute per 
liter of solution*) instead of mole fractions xk. In electrochemistry, it is more common 
to use molality mk. For dilute solutions, since xk = Nk/Nsolvent , we have the following 
conversion formulas for the different units:

 x m M x V ck k k k= =s msand  (8.3.14)

in which Ms is the molar mass of the solvent in kilograms and Vms the molar 
volume of the solvent in liters. The corresponding chemical potentials then 
are written as

 m m gk
x

k
x

k kRT x= +0 ln( ) (8.3.15)
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(8.3.17)

* Molarity of k is also expressed as [k].
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in which the defi nitions of the reference chemical potentials mk
m0 and mk

c0 in each 
concentration scale are self-evident. The activity in the molality scale is written in 
the dimensionless form as ak = gkmk/m0, in which m0 is standard value of molality 
equal to (1 mol of solute per kilogram of solvent). Similarly, the activity in the molar-
ity scale is written as ak = gkck/c0, in which c0 equals (1 mol per liter of solution). For 
electrolytes the mean chemical potential m ± is usually expressed in the molality scale; 
the tabulation of ∆G0

f and ∆H0
f for the formation of ions in water at T = 298.15 K is 

usually for the standard state of an ideal dilute solution at a concentration of 
1 mol kg−1. This standard state is given the subscript ‘ao’.

In the commonly used molality scale, the solution equilibrium of AgCl expressed 
in (8.3.8) can now be written as

 µ µ
γ

AgCl
0

AgCl

2
Ag Cl

o
ln ln

+

+ = +








±

± −
RT a RT

m m

m
m2 0

2( )
 (8.3.18)

Since the activity of a solid is nearly equal to one, aAgCl ≈ 1. Hence, we obtain the fol-
lowing expression for the equilibrium constant† for solubility in the molality scale:

 K T
m m

m
a a

RT

m

m
Ag Cl

o Ag Cl
AgCl
0

+

+ exp( )
( )

≡ = =
−





± ±−

−

γ µ µ2

2

02
 (8.3.19)

The equilibrium constant for electrolytes is also called the solubility product KSP. For 
sparingly soluble electrolytes such as AgCl, even at saturation the solution is very 
dilute and g ± ≈ 1. In this limiting case, the solubility product

 K m mSP Ag Cl+≈ ⋅
−  (8.3.20)

in which we have not explicitly included mO, which has a value equal to one.

ACTIVITY, IONIC STRENGTH AND SOLUBILITY

A theory of ionic solutions developed by Peter Debye and Erich Hückel in 1923 
(which is based on statistical mechanics and is beyond the scope of this text) provides 
an expression for the activity. We shall only state the main result of this theory, 
which works well for dilute electrolytes. The activity depends on a quantity called 
the ionic strength I defi ned by

 I z m
k

k k= ∑1
2

2  (8.3.21)

The activity coeffi cient of an ion k in the molality scale is given by

 log10 ( )γ k kAz I= − 2  (8.3.22)

in which

 A
N

R T
e= 
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0.
πρ

πε ε
 (8.3.23)

† A general defi nition of the equilibrium constant is discussed in Chapter 9.



where rs is the density of the solvent, e is the electronic charge, e0 = 8.854 × 10−12 C2 
N−1 m−2 is the permittivity of vacuum, and er the relative permittivity of the solvent (er 
= 78.54 for water). For ions in water, at T = 298.15 K, we fi nd A = 0.509 kg1/2 mol−1/2. 
Thus, at 25 °C the activity of ions in dilute solutions can be approximated well by the 
expression

 log10 ( ) .γ k kz I= −0 509 2  (8.3.24)

The Debye–Hückel theory enables us to understand how solubility is infl uenced 
by ionic strength. For example, let us look at the solubility of AgCl. If the mAg+ = 
mCl− = S, the solubility, we may write the equilibrium constant Km as

 K T m m Sm Ag Cl+( ) ≡ =± ±−γ γ2 2 2  (8.3.25)

The ionic strength depends not only on the concentration of Ag+ and Cl− ions, but 
also on all the other ions. Thus, for example, the addition of nitric acid, HNO3, 
which adds H+ and NO−

3 ions to the system, will change the activity coeffi cient g ±. 
But the equilibrium constant, which is a function of T only (as is evident from 
(8.3.19)) remains unchanged if T is constant. As a result, the value of m (or solubility 
in molal) will change with the ionic strength I. If the concentration of HNO3 (which 
dissociates completely) is mHNO3

, then the ionic strength will be

 I m m m m

S m

= + + +

= +
− −

1
2

( )Ag Cl H NO

HNO

+ +
3

3

 (8.3.26)

Using (8.3.12) for g ± for AgCl and substituting (8.3.24) in (8.3.25) we can obtain
the following relation between the solubility S of AgCl and the concentration of 
HNO3:

 log log10 10 m HNO3( ) ( ( )) .S K T S m= + +1
2

0 509  (8.3.27)

If S << mHNO3
 then the above relation can be approximated by

 log log10 10 m HNO3( ) ( ( )) .S K T m= +1
2

0 509  (8.3.28)

Thus, a plot of log S versus mHNO3  should yield a straight line, which is indeed 
found to be the case experimentally. In fact, such plots can be used to determine the 
equilibrium constant Km and the activity coeffi cients.

8.4 Thermodynamic Mixing and Excess Functions

PERFECT SOLUTIONS

A perfect solution is one for which the chemical potential of the form mk(p, T, xk) = 
m*k(p, T) + RT ln(xk) is valid for all values of the mole fraction xk. The molar Gibbs 
energy of such a solution is

THERMODYNAMIC MIXING AND EXCESS FUNCTIONS 255



256 THERMODYNAMICS OF SOLUTIONS

 G x x RT x x
k

k k
k

k k
k

k km * ln= = +∑ ∑ ∑µ µ  (8.4.1)

If each of the components were separated, then the total Gibbs energy for thecom-
ponents is the sum G x G xk k k k k km m* * *= =Σ Σ m  in which we have used the fact
that, for a pure substance, G*mk, the molar Gibbs energy of k, is equal to the chemi-
cal potential m*k. Hence, the change (decrease) in the molar Gibbs energy due to
the mixing of the components in the solution is

 ∆G RT x x
k

k kmix ln= ∑  (8.4.2)

and

 G x G G
k

k mkm mix*= +∑ ∆  (8.4.3)

Since the molar entropy Sm = −(∂Gm/∂T)p, it follows from (8.4.2) and (8.4.3) that

 S x S S
k

k km m mix*= +∑ ∆  (8.4.4)

 ∆S R x x
k

k kmix ln= − ∑  (8.4.5)

where ∆Smix is the molar entropy of mixing. This shows that, during the formation 
of a perfect solution from pure components at a fi xed temperature, the decrease in 
G is ∆Gmix = −T∆Smix. Since ∆G = ∆H − T∆S, we can conclude that, for the formation 
of a perfect solution at a fi xed temperature, ∆H = 0. This can be verifi ed explicitly 
by noting that the Helmholtz equation (5.2.11) can be used to evaluate the enthalpy. 
For G given by (8.4.2) and (8.4.3) we fi nd

 H T
T

G
T

x H
k

k km
m

m*= − 





= ∑2 ∂
∂

 (8.4.6)

Thus, the enthalpy of the solution is the same as the enthalpy of the pure compo-
nents and there is no change in the enthalpy of a perfect solution due to mixing. 
Similarly, by noting that Vm = (∂Gm/∂p)T, it is easy to see (Exercise 8.16) that there 
is no change in the molar volume due to mixing, i.e. ∆Vmix = 0; the total volume is 
the sum of the volumes of the components in the mixture. Furthermore, since ∆U 
= ∆H − p∆V, we see also that ∆Umix = 0. Thus, for a perfect solution, the molar 
quantities for mixing are

 ∆G RT x x
k

k kmix ln= ∑  (8.4.7)

 ∆S R x x
k

k kmix ln= − ∑  (8.4.8)

 ∆Hmix = 0  (8.4.9)



 ∆Vmix = 0  (8.4.10)

 ∆Umix = 0  (8.4.11)

In a perfect solution, the irreversible process of mixing of the components at con-
stant p and T is entirely due to the increase in entropy; no heat is evolved or 
absorbed.

IDEAL SOLUTIONS

Dilute solutions may be ideal over a small range of mole fractions xi. In this case 
the molar enthalpy Hm and the molar volume Vm may be a linear function of the 
partial molar enthalpies Hmi and partial molar volumes Vmi. Thus:

 H x H V xV
i

i mi
i

i im m mand= =∑ ∑  (8.4.12)

However, the partial molar enthalpies Hmi may not be equal to the molar enthalpies 
of pure substances if the corresponding mole fractions are small. The same is true 
for the partial molar volumes. On the other hand, if xi is nearly equal to one, then 
Hmi will be nearly equal to the molar enthalpy of the pure substance. A dilute solu-
tion for which (8.4.12) is valid will exhibit ideal behaviour, but it may have a nonzero 
enthalpy of mixing. To see this more explicitly, consider a dilute (x1 >> x2) binary 
solution for which H*ml and H*m2 are the molar enthalpies of the two pure compo-
nents. Then, before mixing, the molar enthalpy is

 H x H x Hm m1 m2* * *= +1 2  (8.4.13)

After mixing, since for the major component (for which x1 ≈ 1) we have H*ml = Hml, 
the molar enthalpy will be

 H x H x Hm m1 m2*= +1 2  (8.4.14)

The molar enthalpy of mixing is then the difference between the above two 
enthalpies:

 ∆H H H x H Hmix m m m2 m2* *= − = −2( )  (8.4.15)

In this way, an ideal solution may have a nonzero enthalpy of mixing. The same 
may be true for the volume of mixing.

EXCESS FUNCTIONS

For nonideal solutions, the molar Gibbs energy of mixing is

 ∆G RT x x
i

i i imix ln= ∑ ( )γ  (8.4.16)
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The difference between the Gibbs energies of mixing of perfect and nonideal solu-
tions is called the excess Gibbs energy, which we shall denote by ∆GE. From (8.4.7) 
and (8.4.16) it follows that

 ∆G RT x
i

i iE ln= ∑ γ  (8.4.17)

Other excess functions, such as excess entropy and enthalpy, can be obtained from 
∆GE. For example:

 ∆S
G
T

RT x
T

R x x
p i

i
i

i
i iE

E ln
ln= −





= − −∑ ∑∂
∂

∂
∂

∆ γ
 (8.4.18)

Similarly ∆HE can be obtained using the relation

 ∆ ∆
H T

T
G
T

E
E= − 





2 ∂
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 (8.4.19)

These excess functions can be obtained experimentally through measurements of 
vapor pressure and heats of reaction (Figure 8.6).

REGULAR AND ATHERMAL SOLUTIONS

Nonideal solutions may be classifi ed into two limiting cases. In one limiting case, 
called regular solutions, ∆GE ≈ ∆HE, i.e. most of the deviation from ideality is due 
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Figure 8.6 Thermodynamic excess function for a solution 
of n-heptane (component 1) and n-hexadecane (component 
2) at 20 °C. The graph shows molar excess functions as a 
function of the mole fraction x2 of n-hexadecane



to the excess enthalpy of mixing. Since ∆GE = ∆HE − T∆SE, it follows that for regular 
solutions ∆SE ≈ 0. Furthermore, since ∆SE = −(∂∆GE/∂T)p, from (8.4.18) it follows 
that the activity coeffi cients

 lnγ i
T

∝ 1
 (8.4.20)

For regular binary solutions, the activities may be approximated by the function 
gk = ax2

k/RT.
The other limiting case of nonideal solutions is when ∆GE ≈ −T∆SE, in which 

case the deviation from ideality is mostly due to the excess entropy of mixing 
and ∆HE ≈ 0. In this case, using (8.4.17) in (8.4.19), we see that ln gi are inde-
pendent of T. Such solutions are called athermal solutions. Solutions in which the 
component molecules are of nearly the same size but differ in intermolecular 
forces generally behave like regular solutions. Solutions whose component mole-
cules have very different sizes but do not differ signifi cantly in their intermolecular 
forces, as in the case of monomers and polymers, are examples of athermal 
solutions.

8.5 Azeotropy

In Chapter 7 we discussed azeotropes briefl y. We shall apply the thermodynamics 
of solutions that was presented in the previous sections of this chapter to azeo-
tropes. For an azeotrope in equilibrium with its vapor, the composition of the 
liquid and the vapor phases are the same. At a fi xed pressure, a liquid mixture 
is an azeotrope at a particular composition called the azeotropic composition. In 
a closed system, an azeotropic transformation is one in which there is an exchange 
of matter between two phases without change in composition. In this regard, an 
azeotrope is similar to the vaporization of a pure substance. This enables us to 
obtain the activity coeffi cients of azeotropes just as can be done for a pure 
substance.

Let us consider a binary azeotrope. As we have seen in Section 8.1, the chemical 
potentials of the components can be written in the form mk(T, p, xk) = m0

k(T, p) + RT 
ln(gkxk), in which activity coeffi cient gk is a measure of the deviation from ideality. 
If gk,l and gk,g are the activity coeffi cients of component k in the liquid and gas phases 
respectively, then by considering an azeotropic transformation it can be shown that 
(Exercise 8.17)
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 (8.5.1)

in which ∆Hvap,k is the heat of vaporization of component k, and ∆V*mk is the change 
in the molar volume of the pure component between the liquid and the vapor phases. 
T∗ is the boiling point of the pure solvent at pressure p∗. If we consider an azeotropic 
transformation at a fi xed pressure, e.g. p = p∗ = 1 atm, then since ∆Hvap generally 
does not change much with T, we obtain
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For the activity coeffi cient of the vapor phase, if we use the ideal gas approximation 
gk,g = 1. This gives us an explicit expression for the activity coeffi cient of the liquid 
phase:

 ln
*

,l
vap,γ k

kH
R T T

( ) = −





∆ 1 1
 (8.5.3)

With this expression, the activity coeffi cient of a component of an azeotrope, can 
be calculated, and it gives a simple physical meaning to the activity coeffi cient. 
Molecular theories of solutions give us more insight into the relation between the 
intermolecular forces and the thermodynamics of azeotropes [3].
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Examples

Example 8.1 In the oceans, to a depth of about 100 m the concentration of O2 is 
about 0.25 × 10−3 mol L−1. Compare this value with the value obtained using Henry’s 
law assuming equilibrium between the atmospheric oxygen and the dissolved 
oxygen.
Solution The partial pressure of O2 in the atmosphere is pO2

 ≈ 0.2 atm. Using 
Henry’s law constant in Table 8.1 we have for the mole fraction of the dissolved 
oxygen xO2

 pO2
 = KO2

xO2

Hence:

 x
p
K

O
O

O
42

2

2

atm
4.3 10 atm

= =
×

= × −0 2
4 6 10 6.

.  

i.e. there are 4.6 × 10−6 mol of O2 per mole of H2O. Noting that 1 L of H2O is equal 
to 55.5 mol, the above mole fraction of O2 can be converted a concentration in moles 
per liter:

 cO2
 = 4.6 × 10−6 × 55.5 mol L−1 = 2.5 × 10−4 mol L−1

which is equal to the measured concentration of O2 in the oceans.



Example 8.2 In an aqueous solution of NH3 at 25.0 °C, the mole fraction of NH3 
is 0.05. For this solution, calculate the partial pressure of water vapor assuming 
ideality. If the vapor pressure is found to be 3.40 kPa, what is the activity a of water, 
and what is its activity coeffi cient g ?
Solution If p∗ is the vapor pressure of pure water at 25.0 °C, then, according to 
Raoult’s law (8.1.10), the vapor pressure of the above solution is given by p = xH2Op* 
= 0.95p*. The value of p∗ can be obtained as follows. Since water boils at 373.0 K 
at p = 1.0 atm = 101.3 kPa, we know that its vapor pressure is 101.3 kPa at 373.0 K. 
Using the Clausius–Clapeyron equation, we can calculate the vapor pressure at 
25.0 °C = 298.0 K:

 ln ln vapp p
H
R T T

1 2
2 1

1 1− = −





∆
 

With p2 = 1 atm, T2 = 373.0, T1 = 298.0, ∆Hvap = 40.66k J mol−1 (see Table 7.1), the 
vapor pressure, p1 (atm) can be computed:

 ln(p1/atm) = −3.299

i.e.

 p1 = exp(−3.299) atm = 0.0369 atm = 101.3 × 0.0369 kPa
 = 3.73 kPa = p∗

Hence, the vapor pressure p∗ of pure water at 25 °C is 3.738 kPa. For the above 
solution in which the mole fraction of water is 0.95, the vapor pressure for an ideal 
solution according to Raoult’s law should be

 p = 0.95 × 3.73 kPa = 3.54 kPa

For an ideal solution, the activity a is the same as the mole fraction x1. As shown 
in (8.1.6), in the general case the activity a = p/p∗. Hence, if the measured vapor 
pressure is 3.40 kPa, then the activity

 a1 = 3.40/3.738 = 0.909

The activity coeffi cient is defi ned by ak = gkxk. Hence, g1 = a1/x1 = 0.909/0.95 = 
0.956.

Example 8.3 Living cells contain water with many ions. The osmotic pressure cor-
responds to that of an NaCl solution of about 0.15 M. Calculate the osmotic pres-
sure at T = 27 °C.
Solution Osmotic pressure depends on the ‘colligative concentration’, i.e. the 
number of particles per unit volume. Since NaCl dissociates into Na+ and Cl− ions, 
the colligative molality of the above solution is 0.30 M. Using the van’t Hoff equa-
tion (8.2.14), we can calculate the osmotic pressure p:
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 p = RT[S] = (0.0821 L atm K−1 mol−1)(300.0 K)(0.30 mol L−1) = 7.40 atm

If an animal cell is immersed in water, then the water fl owing into the cell due to 
osmosis will exert a pressure of about 7.4 atm and causes the cell to burst. Plant cell 
walls are strong enough to withstand this pressure.

Example 8.4 At p = 1 atm, the boiling point of an azeotropic mixture of C2H5OH 
and CCl4 is 338.1 K. The heat of vaporization of C2H5OH is 38.58 kJ mol−1 and its 
boiling point is 351.4 K. Calculate the activity coeffi cient of ethanol in the 
azeotrope.
Solution This can be done by direct application of Equation (8.5.3), where ∆Hl,vap 
= 38.58 kJ mol−1, T = 338.1 K and T ∗ = 351.4 K:

 ln( l,g k )
.
. . .

.= × −



 =38 5 10

8 314
1

338 1
1

351 4
0 519

3

 

i.e.

 gl,k = 1.68

Exercises

 8.1 Obtain equation (8.1.8) from (8.1.7).

 8.2 14.0 g of NaOH is dissolved in 84.0 g of H2O. The solution has a density of 
1.114 × 103 kg m−3. For the two components, NaOH and H2O, in this solution, 
obtain (a) the mole fractions, (b) the molality and (c) molarity.

 8.3 The composition of the atmosphere is shown in Table 8.1. Using the Henry’s 
law constants, calculate the concentrations of N2, O2 and CO2 in a lake.

 8.4 Obtain (8.2.5) from (8.2.4) for small changes in the boiling point of a 
solution.

 8.5 (a) The solubility of N2(g) in water is about the same as in blood serum. 
Calculate the concentration (in mol L−1) of N2 in the blood.
(b) The density of seawater is 1.01 g mL−1. What is the pressure at a depth of 
100 m? What will the blood serum concentration (in mol L−1) of N2 be at this 
depth? If divers rise too fast, then any excess N2 can form bubbles in the 
blood, causing pain, paralysis and distress in breathing.

 8.6 Assuming Raoult’s law holds, predict the boiling point of a 0.5 M aqueous 
solution of sugar. Do the same for NaCl, but note that the number of particles 
(ions) per molecule is twice that of a nonionic solution. Raoult’s law is a col-
ligative property that depends on the number of solute particles.



 8.7 Ethylene glycol (OH—CH2—CH2—OH) is used as an antifreeze. (Its boiling 
point is 197 °C and freezing point is −17.4 °C.)
(a) Look up the density of ethylene glycol in the CRC Handbook or other 
tables and write a general formula for the freezing point of a mixture of X mL 
of ethylene glycol in 1.00 L of water for X in the range 0–100 mL.
(b) If the lowest expected temperature is about −10 °C, what is the minimum 
amount (in milliliters per liter of H2O) of ethylene glycol do you need in your 
coolant?
(c) What is the boiling point of the coolant that contains 300 mL of ethylene 
glycol per liter of water?

 8.8 What will be the boiling point of a solution of 20.0 g of urea ((NH2)2CO) in 
1.25 kg of nitrobenzene (use Table 8.2).

 8.9 A 1.89 g pellet of an unknown compound was dissolved to 50 mL of acetone. 
The change in the boiling point was found to be 0.64 °C. Calculate the molar 
mass of the unknown. Density of acetone is 0.7851 g/mL and the value of 
ebullioscopic constant Kb may be found in Table 8.2.

8.10 A solution of 4.00 g hemoglobin in 100 mL was prepared and its osmotic 
pressure was measured. The osmotic pressure was found to be 0.0130 atm at 
280 K. (a) Estimate the molar mass of hemoglobin. (b) If 4.00 g of NaCl is 
dissolved in 100 mL of water, what would the osmotic pressure be?

 (Molecular weights of some proteins: ferricytochrome c 12 744; myoglobin 16 
951; lysozyme 14 314; immunoglobulin G 156 000; myosin 570 000.)

8.11 The concentration of the ionic constituents of seawater are:

Ion Cl− Na+ SO4
2− Mg2+ Ca2+ K+ HCO−

3

Concentration/M 0.55 0.46 0.028 0.054 0.010 0.010 0.0023

Many other ions are present in much lower concentrations. Estimate the 
osmotic pressure of seawater due to its ionic constituents.

8.12  The concentration of NaCl in seawater is approximately 0.5 M. In the process 
of reverse osmosis, seawater is forced through a membrane impermeable to 
the ions to obtain pure water. The applied pressure has to be larger than the 
osmotic pressure.

Membrane

Sea water
Pure 
water
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(a) At 25 °C, what is the minimum pressure needed to achieve reverse osmosis? 
What is the work done in obtaining 1.0 L of pure water from seawater?
(b) If the cost of 1 kWh of electrical power is about $0.15, what would be the 
energy cost of producing 100 L of water from seawater through reverse 
osmosis if the process is 50% effi cient in using the electrical power to obtain 
pure water?
(c) Suggest another process to obtain pure water from seawater.

8.13 Consider two cubes of copper of side 1 cm. In each cube, assume that one out 
of million Cu atoms is Cu+. Using Coulomb’s law, calculate the force between 
the two cubes if they are placed at a distance of 10 cm.

8.14 Calculate the ionic strength and the activity coeffi cients of a 0.02 M solution 
of CaCl2.

8.15 The solubility product of AgCl is 1.77 × 10−10. Calculate the concentration of 
Ag+ ions in equlibrium with solid AgCl.

8.16 Show that for a perfect solution the molar volume of mixing ∆Vmix = 0.

8.17 Consider a binary azeotrope. The chemical potentials of a component, say 2, 
in the gas and the liquid phases can be written as: 

 m2,g(T, p, x) = m*2,g(T, p) + RT ln(g2,gx2)

 and

 m2,1(T, p, x) = m*2,1(T, p) + RT ln(g2,1x2)

 in which m* is the chemical potential of the pure substance. Note that the 
mole fraction is the same in the two phases. Use Equation (5.3.7) to derive 
the relation (8.5.1).

8.18 A regular solution is one for which the excess entropy ∆SE = 0. Show that this 
implies that ln gi ∝ 1/T in which gi is the activity coeffi cient.



9  THERMODYNAMICS OF 
CHEMICAL TRANSFORMATIONS

9.1 Transformations of Matter

Transformations of matter take place through chemical, nuclear and elementary 
particle reactions. We shall speak of ‘chemical transformations’ in this broader 
sense. Though thermodynamics was founded in our daily experience, its reach is 
vast, ranging from the most simple changes like the melting of ice to the state of 
matter during the fi rst few minutes after the big bang, to the radiation that fi lls the 
entire universe today.

Let us begin by looking at the transformation that matter undergoes at various 
temperatures. Box 9.1 gives an overview of the reactions that take place at various 
temperatures ranging from those during the fi rst few minutes after the big bang [1] 
to terrestrial and interstellar temperatures. All these transformations or reactions 
can be associated with enthalpies of reaction and an equilibrium characterized by 
the vanishing of the corresponding affi nities.

Our present knowledge of the universe is based on the radiation emitted by galax-
ies that we can detect and on the motion of galaxies due to gravitational forces 
exerted by matter that is visible and invisible. Astrophysical data on observable 
gravitational effects indicate that only about 4% of the energy density in the universe 
is in the form of the protons, neutrons and electrons that make up ordinary matter 
in all the visible galaxies. Of the rest, 74% is in an unknown form spread diffusely 
throughout the universe; this is called dark energy. The remaining 22% is matter in 
galaxies that is not visible and it is called dark matter; its presence is inferred through 
the gravitational effects it has on visible matter. The universe is also fi lled with 
thermal radiation* at a temperature of about 2.73 K (usually called cosmic micro-
wave background) and particles called neutrinos, which interact only very weakly 
with protons, neutrons and electrons.

The small amount of matter which is in the form of stars and galaxies is not in 
thermodynamic equilibrium. The affi nities for the reactions that are currently occur-
ring in the stars are not zero. The nuclear reactions in the stars produce all the known 
elements from hydrogen [2–4]. Hence, the observed properties, such as the abun-
dance of elements in stars and planets, cannot be described using the theory of 
chemical equilibrium. A knowledge of the rates of reactions and the history of the 
star or planet is necessary to understand the abundance of elements.

* The precise thermodynamic nature of thermal radiation is discussed in Chapter 12.
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Box 9.1 Transformation of Matter at Various Temperatures.

Temperature>1010 K. This was the temperature during the fi rst few minutes of the uni-
verse after the big bang. At this temperature, the thermal motion of the protons and 
neutrons is so violent that even the strong nuclear forces cannot contain them as nuclei 
of elements. Electron–positron pairs appear and disappear spontaneously and are in 
thermal equilibrium with radiation. (The threshold for electron–positron pair produc-
tion is about 6 × 109 K.)

Temperature range 109–107 K. At about 109 K, nuclei begin to form and nuclear reac-
tions occur in this range. Temperatures as high as 109 are reached in stars and super-
nova, where heavier elements are synthesized from H and He. The binding energy per 
nucleon (proton or neutron) is in the range (1.0–1.5) × 10−12 J ≈ (6.0–9.0) × 106 eV, which 
corresponds to (6.0–9.0) × 108 kJ mol−1.

Temperature range 106–104 K. In this range, electrons bind to nuclei to form atoms, 
but the bonding forces between atoms are not strong enough to form stable molecules. 
At a temperature of about 1.5 × 105 K, hydrogen atoms begin to ionize. The ionization 
energy of 13.6 eV corresponds to 1310 kJ mol−1. Heavier atoms require larger energies 
for complete ionization. To ionize a carbon atom completely, for example, requires 
490 eV of energy, which corresponds to 47187 kJ mol−1.* Carbon atoms will be com-
pletely dissociated at T ≈ 5 × 106 K into electrons and nuclei. In this temperature range, 
matter exists as free electrons and nuclei, a state of matter called Plasma.

Temperature range 10–104 K. Chemical reactions take place in this range. The chemical 
bond energies are of the order of 102 kJ mol−1. The C—H bond energy is about 
414 kJ mol−1. At a temperature of about 5 × 104 K, chemical bonds will begin to break. 
The intermolecular forces, such as hydrogen bonds, are of the order 10 kJ mol−1. The 
enthalpy of vaporization of water, which is essentially the breaking of hydrogen bonds, 
is about 40 kJ mol−1.

* 1 eV = 1.6 × 10−19 J = 96.3 kJ mol−1; T = (Energy in J mol−1)/R = (Energy in J)/kB.

When a system reaches thermodynamic equilibrium, however, its history is of no 
importance. Regardless of the path leading to equilibrium, the state of equilibrium 
can be described by general laws. In this chapter we shall fi rst look at the nature of 
chemical reactions and equilibrium, then we study the relation between entropy 
production and the rates chemical reactions that drive the system to equilibrium.

9.2 Chemical Reaction Rates

In studying chemical reactions and the approach to equilibrium, it is also our 
purpose to look explicitly at the entropy production while the reactions are in prog-
ress. In other words, we would like to obtain explicit expressions for the entropy 
production diS/dt in terms of the rates of reactions. The introduction of reaction 
rates takes us beyond the classical thermodynamics of equilibrium states that was 
formulated by Gibbs and others.



In general, the laws of thermodynamics cannot specify reaction rates (which 
depend on many factors, such as the presence of catalysts); but, as we shall see in 
later chapters, close to thermodynamic equilibrium – called the ‘linear regime’ – 
thermodynamic formalism can be used to show that rates are linearly related to the 
affi nities. But the general problem of specifying the rates of chemical reactions has 
become a subject in itself and it goes by the name of ‘chemical kinetics’. Some basic 
aspects of chemical kinetics will be discussed in this section.

We have already seen that the entropy production due to a chemical reaction may 
be written in the form (see (4.1.16))

 
d
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iS
t

A
T t

= ξ
 (9.2.1)

in which x is the extent of reaction introduced in Section 2.5 and A is the affi nity, 
expressed in terms of the chemical potentials. The time derivative of x is related to 
the rate of reaction. The precise defi nition of the rate of reaction is given in Box 9.2. 
For the following simple reaction*:

 Cl(g) H (g) HCl(g) H(g)2+ +�  (9.2.2)

the affi nity A and the extent of reaction x are defi ned by

 A = mCl + mH2
 − mHCl − mH (9.2.3)

 d
d d d dCl HCl Hξ =

−
=

−
= =N N N NH

1 1 1 1
2  (9.2.4)

As explained in Box 9.2, the forward reaction rate is kf[Cl][H2], in which the square 
brackets indicate concentrations and kf is the forward rate constant, which depends 
on temperature. Similarly, the reverse reaction rate is kr[HCl][H]. The time derivative 
of x is the net rate of conversion of reactants Cl and H2 to the products HCl and H 
due to the forward and reverse reactions. Since the reaction rates are generally 
expressed as functions of concentrations, it is more convenient to defi ne this net rate 
per unit volume. Accordingly, we defi ne a reaction velocity v as

 v
V t

k k= = −d
d

Cl] H HCl Hf 2 r
ξ

[ [ ] [ ][ ]  (9.2.5)

Note that this equation follows from (9.2.4) and the defi nition of the forward and 
reverse rates. For example, in a homogeneous system, the rate of change of the 
concentration of Cl is dNCl / V dt = −kf [Cl][H2] + kr [HCl][H]. More generally, if Rf 
and Rr are the forward and reverse reaction rates, we have

* For a detailed study of this reaction, see Science 273, 1519 (1996).
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Box 9.2 Reaction Rate and Reaction Velocity.

The reaction rate is defi ned as the number of reactive events per second per unit 
volume. It is usually expressed as mol L−1 s−1. Chemical reactions depend on collisions. 
In most reactions, only a very small fraction of the collisions result in a chemical reac-
tion. For each reacting species, since the number of collisions per unit volume is pro-
portional to its concentration, the rates are proportional to the product of the 
concentrations. A reaction rate refers to conversion of the reactants to the products or 
vice versa. Thus, for the reaction

Cl(g) + H2(g) �  HCl(g) + H(g)

the forward rate Rf = kf[Cl][H2] and the reverse rate Rr = kr[HCl][H]. In a reaction, both 
forward and reverse reactions take place simultaneously. For thermodynamic consid-
erations, we defi ne the velocity of a reaction as the rate of net conversion of the reactants 
to products. Thus:

Reaction velocity n = Forward rate − Reverse rate
 = kf[Cl][H2] − kr[HCl][H]
 = Rf − Rr

In a homogeneous system, the reaction velocity n in terms of the extent of reaction is 
given by

v
V t

R R= = −d
d

f r
ξ

in which V is the volume of the system. In practice, monitoring the progress of a reac-
tion by noting the change in some property (such as refractive index or spectral 
absorption) of the system generally amounts to monitoring the change in the extent of 
reaction x.

 v
V t

R R= = −d
d

f r
ξ

 (9.2.6)

The reaction velocity units are mol L−1 s−1.
In the above example, the rate of reaction bears a direct relation to the stoichi-

ometry of the reactants, but this is not always true. In general, for a reaction 
such as

 2X Y products, rate [X] [Y]+ → = k a b  (9.2.7)

in which k is a temperature-dependent rate constant, and the exponents a and b are 
not necessarily integers. The rate is said to be of order a in [X] and of order b in 
[Y]. The sum of all the orders of the reactants a + b is called the order of the reac-



tion. Reaction rates can take complex forms because they may be the result of many 
intermediate steps with widely differing rates that depend on the presence of cata-
lysts. If all the intermediate steps are known, then each step is called an elementary 
step. Rates of elementary steps do bear a simple relation to the stoichiometry: the 
exponents equal the stoichiometric coeffi cients. If reaction (9.2.7) were an elemen-
tary step, for example, then its rate would be k[X]2[Y].

In many cases, the temperature dependence of the rate constant is given by the 
Arrhenius equation:

 k k E RT= −
0 e a/  (9.2.8)

Svante Arrhenius (1859–1927) proposed it in 1889 and showed its validity for a large 
number of reactions [5,6]. The term k0 is called the pre-exponential factor and Ea the 
activation energy. For the forward reaction of (9.2.2), Cl + H2 → HCl + H, we have, 
for example, k0 = 7.9 × 1010 L mol−1 s−1 and Ea = 23 kJ mol−1. For large variations in 
temperature, the Arrhenius equation was found to be inaccurate in predicting the 
variation of the rate constant, though it is quite useful for many reactions.

A more recent theory that is based on statistical mechanics and quantum theory 
was developed in the 1930s by Wigner, Pelzer, Eyring, Polyani and Evans. Accord-
ing to this theory, the reaction occurs through a transition state (see Box 9.3). We 
shall discuss transition state theory in some detail later in this chapter. The concept 
of a transition state leads to the following expression for the rate constant:

 k
kT
h

kT
h

H T S RT G RT= 





= 





− − −κ κe e(∆ ∆ ∆† † † ) / /  (9.2.9)

in which kB = 1.381 × 10−23 J K−1 is the Boltzmann constant and h is the Planck’s 
constant. The terms ∆H† and ∆S† are the transition-state enthalpy and entropy 
respectively, as explained briefl y in Box 9.3. The term k is small, of the order of 
unity that is characteristic of the reaction. A catalyst increases the rate of reaction 
by altering the transition state such that (∆H† − T∆S†) = ∆G† decreases.

RATE EQUATIONS USING THE EXTENT OF REACTIONS

Reaction rates are generally determined empirically. The mechanisms of reactions, 
which detail all the elementary steps, are usually a result of long and detailed study. 
Once the reaction rate laws are known, the time variation of the concentration can 
be obtained by integrating the rate equations, which are coupled differential equa-
tions. (Box 9.4 lists elementary fi rst- and second-order reactions.) For example, if 
we have an elementary reaction of the form

 X Y
k

k

f

r
� ⇀��↽ ��� 2  (9.2.10)

then the concentrations are governed by the following differential equations:
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Box 9.3 Arrhenius Equation and Transition State Theory.

According to the Arrhenius equation, the rate constant of a chemical reaction is of the 
form

k = k0e−Ea / RT

The rate constant k has this form because, for the reactants to convert to products, 
the collisions must have suffi cient energy to overcome an energy barrier. As shown 
in the above fi gure, the transformation from the reactants to the products is schemati-
cally represented with a ‘reaction coordinate’ and the energy of the molecules undergo-
ing the reaction.

According to the transition state theory, the reactants X and Y reversibly form a 
transition state (XY)†. The transition state then irreversibly transforms to the products. 
The difference in the enthalpy and entropy between the free molecules X and Y and 
the transition state are denoted by ∆H† and ∆S† respectively. The main result of the 
transition state theory (which is obtained using principles of statistical mechanics) is 
that the rate constant is of the form

k = k(kBT / h)exp[−(∆H† − T∆S†) / RT] = k(kBT / h)exp[(−∆G† / RT)

in which k = 1.381 × 1023 J K−1 is the Boltzmann constant and h = 6.626 × 10−34 J s is 
Planck’s constant. k is a term of the order of unity that is characteristic of the 
reaction.

A catalyst increases the rate of reaction by altering the transition state such that 
(∆H† − T∆S†) = ∆G† decreases.
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Box 9.4 Elementary Reactions.

To obtain an explicit analytic expression for the concentrations of the reactants and 
products as a function of time, we must solve differential equations such as (9.2.11) 
and (9.2.12). Generally, this is possible only in the case of simple reactions. For more 
complex reactions, one can obtain numerical solutions using a computer. Two elemen-
tary reactions for which we can obtain explicit expressions for the concentrations as 
functions of time are given below.

First-order reaction. For a decomposition reaction X → (products), in which the 
reverse reaction rate is so small that it can be neglected, we have the differential 
equation

d X
d

Xf
[ ]

[ ]
t

k= −

It is easy to see that solution of this equation is

[X](t) = [X]0e−kft

in which [X]0 is the concentration at time t = 0. This is the well-known exponential 
decay; in a given amount of time, [X] decreases by the same fraction. In particular, the 
time it takes for any initial value of [X] to decrease by a factor of 1/2 is called the half-
life. It is usually denoted by t1/2. The half-life can be computed by noting that exp(−kft1/2) 
= 1/2, i.e.

t
k k

1 2
2 0 6931

/
f f

= =ln( ) .

Second-order reaction. For the elementary reaction 2X → (products), if the reverse 
reaction can be neglected, the rate equation is

d X
d

Xf
[ ]

[ ]
t

k= −2 2

The solution is obtained by evaluating

d X
X

d
X

X

f
[ ]

[ ]
[ ]

[ ]

2
00

2∫ ∫= − k t
t

which give us

1 1
2

0[ ] [ ]X X
f− = k t

Given kf and [X]0 at t = 0, this expression gives us the value [X] at any time t.
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Without loss of generality, we may assume V = 1 and simplify the notation. These 
two equations are not independent. In fact, there is only one independent variable x 
for every independent reaction. If [X]0 and [Y]0 are the values of the concentrations 
at t = 0, then by assigning x(0) = 0 and using dx = −d[X] and 2dx = d[Y] it is easy 
to see that [X] = [X]0 − x and [Y] = [Y]0 + 2x. Substituting these values into (9.2.1) 
we obtain

 
d
d

X Yf r
ξ ξ ξ
t

k k= − − +([ ] ) ([ ] )0 0
22  (9.2.13)

In this equation, the initial concentrations [X]0 and [Y]0 appear explicitly and 
x(0) = 0 for all initial concentrations. The solution x(t) of such an equation can be 
used to obtain the rate of entropy production, as will be shown explicitly in Section 
9.5. Differential equations such as these, and more complicated systems, can be 
solved numerically on a computer, e.g. using software such as Mathematica or 
Maple (sample programs are provided in the appendix). Furthermore, in describing 
reactions involving solid phases, concentration cannot be used to describe the change 
in the amount of a solid phase; the extent of reaction x, which represents the change 
in the total amounts of a reactant or product, is a convenient variable for this 
purpose.

When many reactions are to be considered simultaneously, we will have one x for 
each independent reaction, denoted by xk, and the entire system will be described 
by a set of coupled differential equations in xk. Only in a few cases can we fi nd ana-
lytical solutions to such equations, but they can be readily solved numerically using 
Mathematica, Maple or other similar software.

REACTION RATES AND ACTIVITIES

Though reaction rates are generally expressed in terms of concentrations, one could 
equally well express them in terms of activities. In fact, we shall see in the following 
sections that the connection between affi nities and reaction rates can be made more 
easily if the reaction rates are expressed in terms of activities. For example, for the 
elementary reaction

 X Y 2W+ �  (9.2.14)

the forward rate Rf and the reverse rate Rr may be written as

 R k a a R k af f X Y r r Wand= = 2  (9.2.15)

The rate constants kf and kr in (9.2.15) will have units of mol L−1 s−1; their numerical 
values and units differ from those of the rate constants when Rf and Rr are expressed 
in terms of concentrations (Exercise 9.11).

Experimentally we know that reaction rates do depend on the activities; they are 
not specifi ed by concentrations alone. For example, at fi xed values of temperature 



and concentrations of the reactants, it is well known that the rates of ionic reactions 
can be altered by changing the ionic strength of the solution (usually known as the 
‘salt effect’). This change in the rate is due to a change in the activities. It has become 
general practice, however, to express the reaction rates in terms of the con-
centrations and to include the effects of changing activities in the rate constants. 
Thus, the rate constants are considered functions of the ionic strength when rates 
are expressed in terms of concentrations. Alternatively, if the rates are expressed in 
terms of activities, then the rate constant is independent of the ionic strength; a 
change in rate due to a change in ionic strength would be because activity depends 
on ionic strength.

9.3 Chemical Equilibrium and the Law of Mass Action

In this section we shall study chemical equilibrium in detail. At equilibrium, the 
pressure and temperature of all components and phases are equal; the affi nities and 
the corresponding velocities of reactions vanish. For example, for a reaction such 
as

 X Y Z+ � 2  (9.3.1)

at equilibrium we have

 A
t

= + − = =µ µ µ ξ
X Y Z and

d
d

2 0 0  (9.3.2)

or

 µ µ µX Y Z+ = 2  (9.3.3)

The condition that the ‘thermodynamic force’, affi nity A, equals zero implies that 
the corresponding ‘thermodynamic fl ow’, i.e. the reaction velocity dx / dt, also equals 
zero. The condition A = 0 means that at equilibrium the ‘stoichiometric sum’ of the 
chemical potentials of the reactants and products are equal, as in (9.3.3). It is easy 
to generalize this result to an arbitrary chemical reaction of the form

 a a a a b b b bn n m m1 1 2 2 3 3 1 1 2 2 3 3A A A A  B B B B+ + + + + + + +. . . . . .�  (9.3.4)

in which the ak are the stoichiometric coeffi cients of the reactants Ak and the bk are 
the stoichiometric coeffi cients of the products Bk. The corresponding condition for 
chemical equilibrium will then be

 a a a a a a a an mn m1 2 3 1 2 31 2 3 1 2 3µ µ µ µ µ µ µ µA A A A B B B B+ + + + = + + + +. . . . . .  (9.3.5)

Such equalities of chemical potentials are valid for all reactions: changes of phase, 
and chemical, nuclear and elementary particle reactions. Just as a difference in 
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temperature drives the fl ow of heat until the temperatures difference vanishes, a 
nonzero affi nity drives a chemical reaction until the affi nity vanishes.

To understand the physical meaning of the mathematical conditions such as 
(9.3.3) or (9.3.5), we express the chemical potential in terms of experimentally mea-
surable quantities. We have seen in Section 5.3 (Equation (5.3.5)) that the chemical 
potential in general can be expressed as

 µ µk kp T T RT a
k

( , ) ( ) ln= +0  (9.3.6)

in which ak is the activity and m0
k(T0) = ∆Gf

0[k] is the standard molar Gibbs 
energy of formation (Box 5.1), the values of which are tabulated. This being a 
general expression, for gases, liquids and solids we have the following explicit 
expressions:

• ideal gas: ak = pk/p0, where pk is the partial pressure;
• real gases: expressions for activity can be derived using (6.2.30), as was shown in 

Section 6.2;
• pure solids and liquids: ak ≈ 1;
• solutions: ak ≈ gkxk, where gk is the activity coeffi cient and xk is the mole fraction.

For ideal solutions, gk = 1. For nonideal solutions, gk is obtained by various means, 
depending on the type of solution. The chemical potential can also be written in 
terms of the concentrations by appropriately redefi ning m0

k.
We can now use (9.3.6) to express the condition for equilibrium (9.3.3) in terms 

of the activities, which are experimentally measurable quantities:

 µ µ µX X eq Y Y eq Z Z eq
0 0 02( ) ln( ) ( ) ln( ) [ ( ) ln( ), , ,T RT a T RT a T RT a+ + + = + ]]  (9.3.7)

where the equilibrium values of the activities are indicated by the subscript ‘eq’.
This equation can be rewritten as
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K TZ eq
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X Y Z,
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exp
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2 0 0 02= + −





≡µ µ µ
 (9.3.8)

K(T), as defi ned above, is called the equilibrium constant. It is a function only of 
temperature. That the equilibrium constant as defi ned above is a function of T only 
is an important thermodynamic result. It is called the law of mass action. m0

k(T) = 
∆G f

0[k,T] is the standard molar Gibbs energies of formation of compound k at a 
temperature T. The ‘Standard Thermodynamic Properties’ table at the end of the 
book lists this quantity at T = 298.15 K. It is convenient and conventional to defi ne 
the Gibbs energy of reaction ∆Gr as

∆
∆ ∆ ∆

G T T T T
G T G T G

r X Y Z

f f fZ X
( ) [ ( ) ( ) ( )]

[ , ] [ , ] [
= − + −
= − −

µ µ µ0 0 0

0 0 0
2

2 YY, ]T
 (9.3.9)



The equilibrium constant is then written as

K T G RT
H T S RT

( ) exp( )
exp[ ( ) ]

= −
= − −

∆
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r

r r

/
/

0

0 0  (9.3.10)

in which ∆G0
r, ∆H0

r and ∆S0
r are respectively the standard Gibbs energy, enthalpy 

and entropy of the reaction at temperature T, though their temperature dependence 
is usually not explicitly indicated. The activities in (9.3.8) can be written in terms of 
partial pressures pk or mole fractions xk. If (9.3.1) were an ideal-gas reaction, then 
ak = pk/p0. With p0 = 1 bar and pk measured in bars, the equilibrium constant takes 
the form

 
p

p p
K T G RTZ eq

X eq Y eq
p r /,

,  ,

( ) exp( )
2

0= = −∆  (9.3.11)

At a given temperature, regardless of the initial partial pressures, the chemical reac-
tion (9.3.1) will irreversibly proceed towards the state of equilibrium in which the 
partial pressures will satisfy equation (9.3.11). This is one form of the law of mass 
action. Kp is the equilibrium constant expressed in terms of the partial pressures. Since 
in an ideal gas mixture pk = (Nk/V)RT = [k]RT (in which R is in the units of bar 
L mol−1 K−1), the law of mass action can also be expressed in terms of the concentra-
tions of the reactants and products:
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[ ] [ ]
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Z

X Y
eq

eq eq
c

2

= K T  (9.3.12)

in which Kc is the equilibrium constant expressed in terms of the concentrations. In 
general, for a reaction of the form aX + bY �  cZ, it is easy to obtain the relation 
Kc = (RT)aKp, where a = a + b − c (Exercise 9.14). In the particular case of reaction 
(9.3.1) a happens to be zero.

If one of the reactants were a pure liquid or a solid, then the equilibrium constant 
will not contain corresponding ‘concentration’ terms. For example, let us consider 
the reaction

 O (g) + 2C(s) 2CO(g)2 �  (9.3.13)

Since aC(s) ≈ 1 for the solid phase, the equilibrium constant in this case is written 
as

 
a

a a

p

p
K TCO,eq

O ,eq C,eq

CO,eq

O ,eq
p

2 2

2

2

2

= = ( )  (9.3.14)

Equations (9.3.9) and (9.3.10) provide us with means of calculating the equilibrium 
constant K(T) using the tabulated values of ∆Gf

0[k]. If the activities are expressed in 
terms of partial pressures, then we have Kp. Some examples are shown in Box 9.5.
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Box 9.5 The Equilibrium Constant.

A basic result of equilibrium chemical thermodynamics is that the rate constant K(T) 
is a function of temperature only. It can be expressed in terms of the standard Gibbs 
energy of reaction ∆G0

r (Equations (9.3.9) and (9.3.10)):

K(T)=exp(−∆G 0
r/RT)

For a reaction such as O2(g) + 2C(s) �  2CO(g) the equilibrium constant at 298.15 K 
can be calculated using the tabulated values of standard Gibbs energy of formation 
∆Gf

0at T = 298.15 K:

∆G0
r = 2∆Gf

0[CO] − 2∆Gf
0[C] − ∆Gf

0[O2]
       = −2(137.2) kJ mol−1 −2(0) − (0) = −274.4 kJ mol−1

Using this value in the expression K(T) = exp(−∆G0
r / RT) we can calculate K(T) at T 

= 298.15 K:

K(T) = exp(−∆G0
r/RT)

         = exp[274.4 × 103 / (8.314 × 298.15)]
= 1.19 × 1048

Similarly, for the reaction CO(g) + 2H2(g) �  CH3OH(g) at T = 298.15 K:

∆G0
r = 2∆Gf

0[CH3OH] − ∆Gf
0[CO] − 2∆Gf

0[H2]
       = −161.96 kJ mol−1 − (−137.2 kJ mol−1) − 2(0) = −24.76 kJ mol−1

for which the equilibrium constant is

 K(T) = exp(−∆G 0
r / RT)

 = exp[24.76 × 103 / (8.1314 × 298.15)]
 = 2.18 × 104

RELATION BETWEEN THE EQUILIBRIUM CONSTANTS AND 
THE RATE CONSTANTS

Chemical equilibrium can also be described as a state in which the forward rate of 
every reaction equals its reverse rate. If the reaction X + Y �  2Z is an elementary 
step, and if we express the reaction rates in terms of the activities, then when the 
velocity of the reaction is zero we have

 k a a k af X Y r Z= 2  (9.3.15)

From a theoretical viewpoint, writing the reaction rates in terms of activities rather 
than concentrations is better because the state of equilibrium is directly related to 
activities, not concentrations.

Comparing (9.3.15) and the equilibrium constant (9.3.8), we see that



 K T
a

a a
k
k

( ) = =Z

X Y

f

r

2

 (9.3.16)

Thus, the equilibrium constant can also be related to the rate constants kr and kf 
when the rates are expressed in terms of the activities. It must be emphasized that 
Equation (9.3.8) is valid even if the forward and reverse rates do not have the form 
shown in (9.3.15); in other words, (9.3.8) is valid whether the reaction X + Y �  
2Z is an elementary reaction step or not. The relation between the activities and the 
equilibrium constant is entirely a consequence of the laws of thermodynamics; it is 
independent of the kinetic rates of the forward and reverse reactions.

THE VAN’T HOFF EQUATION

Using (9.3.10), the temperature variation of the equilibrium constant K(T) can be 
related to the enthalpy of reaction ∆Hr. From (9.3.10) it follows that
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T T
G

RT
= − ∆

 (9.3.17)

But, according to the Gibbs–Helmholtz equation (5.2.14), the variation of ∆G with 
temperature is related to ∆H by (∂ / ∂T)(∆G / T) = −∆H / T2. Using this in the above 
equation we have
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RT
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2  (9.3.18)

This relation enables us to deduce how the equilibrium constant K(T) depends on 
the temperature. It is called the van’t Hoff equation. In many situations of interest, 
the heat of reaction ∆Hr changes very little with temperature and may be assumed 
to be a constant equal to the standard enthalpy of reaction at 298.15 K, which we 
denote by ∆H0

r. Thus, we may integrate (9.3.18) and obtain

 ln ( )K T
H

RT
C= − +∆ r

0

 (9.3.19)

Experimentally, the equilibrium K(T) constant can be obtained at various temperatures. 
According to (9.3.19), a plot of ln K(T) versus 1/T should result in a straight line with a 
slope equal to −∆H0

r / R. This method can be used to obtain the values of ∆H0
r.

RESPONSE TO PERTURBATION FROM EQUILIBRIUM: 
THE LE CHATELIER–BRAUN PRINCIPLE

When a system is perturbed from its state of equilibrium, it will relax to a new state 
of equilibrium. Le Chatelier and Braun noted in 1888 that a simple principle may 
be used to predict the direction of the response to a perturbation from equilibrium. 
Le Chatelier stated this principle thus:

CHEMICAL EQUILIBRIUM AND THE LAW OF MASS ACTION 277



278 THERMODYNAMICS OF CHEMICAL TRANSFORMATIONS

Any system in chemical equilibrium undergoes, as a result of a variation in one of the factors 
governing the equilibrium, a compensating change in a direction such that, had this change 
occurred alone it would have produced a variation of the factors considered in the opposite 
direction.

To illustrate this principle, let us consider the reaction

N2 + 3H2 �  2NH3

in equilibrium. In this reaction, the total molar amount of all components decreases 
when the reactants convert to products. If the pressure of this system is suddenly 
increased, then the system’s response will be the production of more NH3, which 
decreases the total molar amount and thus the pressure. The compensating change 
in the system is in a direction opposite to that of the perturbation. The new state of 
equilibrium will contain more NH3. Similarly, if a reaction is exothermic, if heat is 
supplied to the system, then the product will be converted to reactants, which has 
the effect of opposing the increase in temperature. Though this principle has its 
usefulness, it does not always give unambiguous results. For this reason, a more 
general approach under the name ‘theorems of moderation’ has been developed [7]. 
This approach provides a very precise and accurate description of the response of 
a system in equilibrium to a perturbation from this state, which is always the evolu-
tion to another state of equilibrium.

Le Chatelier’s principle only describes the response of a system in thermodynamic 
equilibrium; it says nothing about the response of a system that is maintained in a 
nonequilibrium state. Indeed, the response of a nonequilibrium system to small 
changes in temperature could be extraordinarily complex. This is obviously evident 
in living organisms, which are nonequilibrium systems. A small change in tempera-
ture could denature an enzyme and result in profound changes in the state of an 
organism. Nonequilibrium systems can be extraordinarily sensitive to small 
perturbations.

9.4 The Principle of Detailed Balance

There is an important aspect of the state of chemical equilibrium, and the state of 
thermodynamic equilibrium in general, that must be noted, namely the principle of 
detailed balance.

We noted earlier that, for a given reaction, the state of equilibrium depends only 
on the stoichiometry of the reaction, not its actual mechanism. For example, in the 
reaction X + Y �  2Z considered above, if the forward and reverse reaction rates 
were given by

 R k a a R k af f X Y r r Zand= = 2  (9.4.1)

respectively, then result that a2
Z/aXaY = K(T) at equilibrium can be interpreted as the 

balance between forward and reverse reactions:



Rf = kfaXaY = Rr = kra2
Z

so that
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However, the equilibrium relation a2
Z/aXaY = K(T) was not obtained using any 

assumption regarding the kinetic mechanism of the reaction. It remains valid even 
if there was a complex set of intermediate reactions that result in the overall reaction 
X + Y �  2Z. This feature could be understood through the principle of detailed 
balance, according to which:

In the state of equilibrium, every transformation is balanced by its exact opposite or 
reverse.

That the principle of detailed balance implies that a2
Z / aXaY = K(T) regardless of the 

mechanism can be seen through the following example. Assume that the reaction 
really consists of two steps:

(a) X X W+ �  (9.4.3)

(b) W Y 2Z X+ +�  (9.4.4)

which results in the net reaction X + Y �  2Z. According to the principle of detailed 
balance, at equilibrium we must have
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in which the subscripts a and b stand for reactions (9.4.3) and (9.4.4) respectively. 
The thermodynamic equation for equilibrium a2

Z / aXaY = K(T) can now be obtained 
as the product of these two equations:
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From this derivation it is clear that this result will be valid for an arbitrary set of 
intermediate reactions.

The principle of detailed balance is a very general principle, valid for all transforma-
tions. It is in fact valid for the exchange of matter and energy between any two volume 
elements of a system in equilibrium. The amount of matter and energy transferred 
from volume element X to volume element Y exactly balances the energy and matter 
transferred from volume element Y to volume element X (see Figure 9.1). The same 
can be said of the interaction between the volume elements Y and Z and X and Z. One 
important consequence of this type of balance is that the removal or isolation of one 
of the volume elements from the system, say Z, does not alter the states of X or Y or 
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the interaction between them. This is another way of saying that there is no long-range 
correlation between the various volume elements. As we shall see in later chapters, the 
principle of detailed balance is not valid in nonequilibrium systems that make a transi-
tion to organized dissipative structures. Consequently, the removal or isolation of a 
volume element at one part will alter the state of a volume element located elsewhere. 
It is then said to have long-range correlations. We can see this clearly if we compare 
a droplet of water that contains carbon compounds in thermal equilibrium and a 
living cell that is in an organized state far from thermodynamic equilibrium. Removal 
of a small part of the water droplet does not change the state of other parts of the 
droplet, whereas removing a small part of a living cell is likely to have a drastic infl u-
ence on other parts of the cell.

9.5 Entropy Production due to Chemical Reactions

The formalism of the previous sections can now be used to relate entropy production 
to reaction rates more explicitly. In Chapter 4 we saw that the entropy production 
rate due to a chemical reaction is given by

A B

C

A B

C

(a)

X

Y

Z

(c)

 (b) 

Figure 9.1 The principle of detailed balance. (a) The 
equilibrium between three interconverting compounds 
A, B and C is a result of ‘detailed balance’ between each 
pair of compounds. (b) Though a conversion from one 
compound to another as shown can also result in con-
centrations that remain constant in time, such a state is 
not the equilibrium state. (c) The principle of detailed 
balance has a more general validity. The exchange of 
matter (or energy) between any two regions of a system 
is balanced in detail; the amount of matter going from X 
to Y is balanced by exactly the reverse process
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Our objective is to relate the affi nity A and dx/dt to the reaction rates, so that the 
entropy production is written in terms of the reaction rates. In order to do this, let 
us consider the reaction that we have considered before:

 X Y 2Z+ �  (9.5.2)

Assuming that this is an elementary step, we have for the forward and reverse rates 
that

 R k a a R k af f X Y r r Zand= = 2  (9.5.3)

Since the forward and reverse rates must be equal at equilibrium, we have seen from 
(9.4.2) that

 K T
k
k

( ) = f

r
 (9.5.4)

The velocity of reaction v, which is simply the difference between the forward and 
reverse reaction rates, is related to dx/dt as shown in (9.2.6). The reaction rates Rf 
and Rr can themselves be expressed as functions of the extent of reaction x, as was 
shown in Section 9.2:
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R R
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f r
ξ ξ ξ= −[ ( ) ( )]  (9.5.5)

To obtain the velocity of reaction as a function of time, this differential equation 
has to be solved. An example is presented below.

Turning now to the affi nity A, we can relate it to the reaction rates in the follow-
ing manner. By defi nition, the affi nity of the reaction (9.5.2) is

A
T RT a T RT a T RT

= + −
= + + + − +
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µ µ µ
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20 0 0( ) ln( ) ( ) ln( ) [ ( ) ln(aa

T T T RT a RT a RT a
Z

X Y Z X Y Z

)]
[ ( ) ( ) ( )] ln( ) ln( ) ln( )= + − + + −µ µ µ0 0 02 2  

(9.5.6)

Since [m0
X(T) + m0

Y(T) − 2m0
Z(T)] = −∆G0

r = RT lnK(T), the above equation can be 
written as

 A RT K T RT
a a

a
= + 



ln ( ) ln X Y

Z
2

 (9.5.7)

This is an alternative way of writing the affi nity. At equilibrium, A = 0. To relate A 
to the reaction rates, we use (9.5.4) and combine the two logarithm terms:
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 (9.5.8)

This leads us to the relations we are seeking if we use the expressions in (9.5.3) to 
write this expression in terms of the reaction rates:

 A RT
R
R

= 



ln f

r

 (9.5.9)

Clearly, this equation is valid for any elementary step because the rates of elemen-
tary steps are directly related to the stoichiometry. Now we can substitute (9.5.5) 
and (9.5.9) in the expression for the entropy production rate (9.5.1) and obtain
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T t

R R R R Rid
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d
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/f r f r= = − ≥ξ
( ) ln( )  (9.5.10)

which is an expression that relates entropy production rate per unit volume to the 
reaction rates. (Note that R is the gas constant.) Also, as required by the Second 
Law, the right-hand side of this equation is positive, whether Rf > Rr or Rf < Rr. 
Another point to note is that in (9.5.10) the forward and reverse rates Rf and Rr can 
be expressed in terms of concentrations, partial pressures or any other convenient 
variables of the reactants; the reaction rates need not be expressed only in terms of 
activities, as in (9.5.3).

The above equation can be generalized to several simultaneous reactions, each 
indexed by the subscript k. The rate of total entropy production per unit volume is 
the sum of the rates at which entropy is produced in each reaction:
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in which Rkf and Rkr are the forward and reverse reaction rates of the kth reaction. 
This expression is useful for computing the entropy production in terms of the reac-
tion rates, but it is valid only for elementary steps whose reaction rates are specifi ed 
by the stoichiometry. This is not a serious limitation, however, because every reaction 
is ultimately the result of many elementary steps. If the detailed mechanism of a 
reaction is known, then an expression for the entropy production can be written for 
any chemical reaction.

AN EXAMPLE

As an example of entropy production due to an irreversible chemical reaction, con-
sider the simple reaction:

 L D�  (9.5.12)



which is the interconversion or ‘racemization’ of molecules with mirror-image struc-
tures. Molecules that are not identical to their mirror image are said to be chiral and 
the two mirror-image forms are called enantiomers. Let [] and [] be the concentra-
tions of the enantiomers of a chiral molecule. If at time t = 0 the concentrations are 
[] = L0 and [] = D0, and x(0) = 0, then we have the following relations:
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 (9.5.13)

 [ ] ( ) [ ] ( )L D/ /= − = +L V D V0 0ξ ξ  (9.5.14)

Relations (9.5.14) are obtained by integrating (9.5.13) and using the initial condi-
tions. For notational convenience we shall assume V = 1. At the end of the calcula-
tion we can reintroduce the V factor. Racemization can be an elementary fi rst-order 
reaction for which the forward and reverse reactions are

 R k k L R k k Df rL D= = − = = +[ ] ( ) [ ] ( )0 0ξ ξ  (9.5.15)

Note that the rate constants for the forward and reverse reactions are the same due 
to symmetry:  must convert to  with the same rate constant as  to . Also, from 
(9.5.15) and (9.5.9) one can see that the affi nity is a function of the state variable x 
for a given set of initial concentrations.

To obtain the entropy production as an explicit function of time, we must obtain 
Rf and Rr as functions of time. This can be done by solving the differential equation 
defi ning the velocity of this reaction:
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2

2
0 0  (9.5.16)

This fi rst-order differential equation can be easily solved by defi ning x = [(L0 − D0) 
/2] − x so that the equation reduces to dx/dt = −2kx. The solution is

 ξ( ) ( e )t
L D kt= − − −0 0 2

2
1  (9.5.17)

With this expression for x(t), the rates (9.5.15) can be written as explicit functions 
of time:

 R
k L D k L D kt

f = + + − −( ) ( )
e0 0 0 0 2

2 2
 (9.5.18)
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 R
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 (9.5.19)

With (9.5.18) and (9.5.19), we can now also write the rate of entropy production 
(9.5.10) as an explicit function of time:
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As t → ∞, the system reaches equilibrium, at which

 ξeq eq eqand L D= − = = +L D L D0 0 0 0

2 2
[ ] [ ]  (9.5.21)

The volume term can be reintroduced by replacing xeq by xeq/V.

[
[
L] = L0

D] = D0

L D

t = 0

[L] = [D] = (L0 + D0)/2 

L D

t = ∞

diS/dt

t

A

t

(a) (b)

0
ξeq 

A

ξ

G(c) (d) 

ξξeq 

Figure 9.2 Racemization of enantiomers as an example of 
a chemical reaction. The associated entropy production, the 
time variation of A are shown in (a) and (b). State functions 
A and G as functions of x are shown in (c) and (d)



In Chapter 5 (see (5.1.12)) we noted the relation between affi nity A and the Gibbs 
energy G: A = −(∂G/∂x)p,T. Both A and G are functions of state, which can be 
expressed as functions of x and the initial molar amounts of reactants and products. 
As x approaches its equilibrium value xeq, the Gibbs energy reaches its minimum 
value and the affi nity A goes to zero, as shown in Figure 9.2.

The entropy production for more complex reactions can be obtained numerically 
using computers. Mathematica code for the above example is given in Appendix 
9.1. The student is encouraged to alter this code to develop codes for more complex 
reactions.

9.6 Elementary Theory of Chemical Reaction Rates

The rates of chemical reactions depend on several factors. In previous sections we 
discussed the dependence of rates on concentrations and introduced the Arrhenius 
and transition-state rate constants. According to the Arrhenius theory, the rate 
constant has the form k0 exp(−Ea/RT), whereas transition-state theory gives a rate 
constant of the form k0 exp(−∆G†/RT). In this section we will introduce the reader 
to the theoretical basis that leads to these expressions.

ARRHENIUS THEORY OF RATES

When the molecular nature of compounds became established, theories of rates of 
chemical reactions began to emerge. That molecules were in incessant and rapid 
chaotic motion was established by the kinetic theory of gases. A natural consequence 
was a view that chemical reactions were a consequence of molecular collisions. When 
molecules collide somehow, an atomic rearrangement occurs and the products are 
formed. But not every collision between reacting molecules results in the formation 
of products. In fact, quantitative estimates indicated that only a very small fraction 
of the collisions were ‘reactive collisions’. This naturally raised the question as to 
why only certain collisions between reactant molecules resulted in the formation of 
products.

One of the fi rst successful theories of reaction rates is due to the Swedish chemist 
Svante Arrhenius (1859–1927), but it is noted that others, especially van’t Hoff, also 
made important contributions to this theory [5,6]. The success of Arrhenius theory 
is mainly in explaining the temperature dependence of reaction rates. To explain 
why only a small fraction of molecular collisions resulted in reactions, the concept 
of ‘activation energy’ was introduced. This is the idea that the colliding molecules 
must have suffi cient energy to activate the reaction, i.e. the breaking of bonds and 
formation of new bonds. Only a small fraction of molecules have the required acti-
vation energy (an idea proposed by the German chemist L. Pfundler). To compute 
the probability that the collision has the required activation energy, the Boltzmann 
principle is taken as a guide. We recall that, according to the Maxwell–Boltzmann 
probability distribution, the probability that a molecule has energy E is proportional 
to exp(−E/RT). Using this principle, it could be argued that if a certain activation 
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energy Ea is required in a collision between reacting molecules to generate the 
product, this will happen with a probability proportional to exp(−Ea/RT). Thus, the 
reaction rate must be proportional to a factor exp(−Ea/RT); that is, of all the colli-
sions that occur in a unit volume in unit time, a fraction k0exp(− Ea/RT) will be 
reactive collisions. Thus, the Arrhenius rate constant

k = k0e−Ea / RT

where k0 is called the pre-exponential factor.
The next step is to compute the number of collisions that occur in unit time in a 

unit volume. For gases, this can be done using the Maxwell–Boltzmann distribution 
(Section 1.6). Let us consider the reaction A + B → (products). Let rA and rB be the 
radii of the A and B molecules respectively. For small molecules, radii can be esti-
mated from tabulated bond lengths. Figure 9.3 shows the path of a molecule of A 
as it undergoes collisions with molecules in its path. An observer located on the 
molecule A will observe a stream of molecules; collisions with molecules of B occur 
when the distance between the center of A and the center of a streaming B is equal 
to or less than the sum rA + rB. Consider a cylinder of radius rA + rB with the path 
of the molecule A as its axis. Molecule A will collide with all B molecules in such a 
cylinder. From the viewpoint of an observer on A, molecules will be streaming at 
an average speed vr, which is equal to the average relative velocity between A and 
B molecules. Thus, in unit time, on the average, a molecule of A will collide with 

rB

rA

rA + rB
A

B

Figure 9.3 The elementary bimolecular reaction A + B → 
(products) is a result of collisions between the molecules of 
A and B. Approximating the molecule’s shape to be spheri-
cal, we assume the radii of molecules of A and B are rA and 
rB respectively. As shown, on average, in unit time, a mole-
cule of A (fi lled sphere) will collide with all molecules in the 
cylinder of cross-section p(rA + rB)2 and length nr



all B molecule in the volume p(rA + rB)2vr. The term p(rA + rB)2 is called the collision 
cross-section. If nB is the moles of B molecules per unit volume, then a single A mole-
cule will collide with p(rA + rB)2vrnBNA vrmolecules of B (NA is the Avogadro number). 
Thus, the average total number of collisions between A and B molecules per unit 
volume per unit time, called the collision frequency zAB, equals

 z r r v n n NAB A B r B A A= +π ( )2 2  (9.6.1)

in which nA is the moles of A molecules per unit volume. Using the Maxwell–
Boltzmann distribution it can be shown that the average relative velocity between 
A and B molecules is given by
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where mA and mB are the masses of molecules A and B respectively. The factor m is 
called the reduced mass. Of all the collisions, only a fraction exp(−Ea/RT) are reactive 
collisions that result in the formation of products. Hence, the reaction rate (number 
of reactive collisions per unit time per unit volume) equals
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If the rate measured in moles per unit volume per unit time, then
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in which all quantities are in SI units. If the unit of length is taken to be decimeters, 
then the concentrations will be molarities [A] and [B] and the rate will be in the units 
of moles per liter. We can now identify the pre-exponential factor k0 in the Arrhenius 
rate:

 k N r r
k T

0
2

1 2
8= + 





A A B
B( )

/π
µ

 (9.6.5)

At T = 300 K, the value of k0 is of the order of 108 m3 mol−1 s−1 = 1011 L mol−1 s−1. The 
changes in k0 due to changes in T are small compared with the corresponding 
changes in the exponential factor in the rate constant.

A number of other expressions were also suggested to explain the temperature 
dependence of reaction rates, as Laidler notes [6], but they found less and 
less support as experimental data were gathered. In addition, the expression sug-
gested by Arrhenius had a strong theoretical basis that the other expressions 
lacked.

ELEMENTARY THEORY OF CHEMICAL REACTION RATES 287



288 THERMODYNAMICS OF CHEMICAL TRANSFORMATIONS

TRANSITION STATE THEORY

Transition state theory postulates the existence of a transition state which is in 
equilibrium with the reactants. The transition state has an unstable mode which 
results in a conversion to products. For a reaction X + Y → Z + W, the mechanism 
is

 X Y XY Z Wf

r

f+  →←   → +k

k
k1

1

2 ( )†  (9.6.6)

The rate of product formation is k2f[XY†]. The assumption that the transition state 
is in equilibrium with the reactants implies that

 [(XY) ]/[X][Y] = k /k K ( ) = exp( G / )1f 1r 1
† †= −T RT∆  (9.6.7)

in which K1(T) is the equilibrium constant and ∆G† is the Gibbs energy of reaction. 
The reaction rate can be written as:

 Rate K ( )[X][Y]2f 1= k T  (9.6.8)

The use of statistical thermodynamics to calculate the rate constant gives k2f = 
k(kBT/h), in which k is a term of the order of unity. Therefore, the rate constant has 
the form

 k
k T

h
G RT= 





−κ B exp( /∆ † )  (9.6.9)

In contrast to Arrhenius theory, the transition state theory has a thermodynamic 
basis and predicts the existence of a transition state. The pre-exponential factor it 
predicts is proportional to T; this is in contrast to Arrhenius theory, which predicts 
a T1/2 dependence. Transition state theory predicts a change in the rate of reaction 
due to a factor that might change ∆G†. One such factor is the effect of solvents. In 
solutions, if the reactants are ionic then it is observed that the reaction rate depends 
on the dielectric constant of the solvent. This effect, called the ‘solvent effect’, can 
be explained by noting that a change in dielectric constant changes the value of ∆G†. 
In general, transition state theory gives more insight into the nature of a chemical 
reaction than Arrhenius theory does and it is widely used.

9.7 Coupled Reactions and Flow Reactors

In the previous sections we discussed some basic aspects of chemical kinetics. In this 
supplementary section we shall look at more complex reactions. Box 9.4 summarizes 
the main aspects of fi rst- and second-order reactions. In these cases, the reverse 
reactions were not considered, but in many cases the reverse reaction cannot be 
ignored. We shall now consider some examples below.



ZERO-ORDER REACTIONS

In certain conditions, the rate of a reaction can be essentially independent of the 
concentration of the initial reactants. For example, a reaction such as

 X Y→  (9.7.1)

could have a rate of product formation such as

 
d Y

d
[ ]

t
k=  (9.7.2)

in which k is a constant. Such a reaction may be said to be of zero order in the 
reactant X. Such a rate law clearly indicates that the reaction mechanism that con-
trols the conversion of X to Y depends on the concentration of another compound 
and that increasing the amount of X does not increase the rate of conversion to Y. 
For example, let us assume the formation of Y depends on X binding to a catalyst 
C to form a complex CX and that the complex CX converts to C and Y:

 X C CX Y Cf f+  →  → +k k1 2  (9.7.3)

The rate of product formation depends on the amount of the complex CX. If all the 
catalyst is bound to the reactant X, then increasing the amount of X does not 
increase the rate of product formation. [C]T is the total amount of C, then the rate 
of reaction when the complex is saturated is

 
d Y

d
Cf T

[ ]
[ ]

t
k= 2  (9.7.4)

Such rates can be observed in reactions catalyzed by solid catalysts and in enzymes. 
The solution to Equation (9.7.2) is [Y] = [Y]0 + kt.

REVERSIBLE FIRST-ORDER REACTION

In general, if the forward and the reverse rate constants are not equal, then rate 
equations are of the form

 A Bf

rk

k →←    (9.7.5)

 
d A

d
A Bf r f r

[ ]
[ ] [ ]

t
R R k k= − + = − +  (9.7.6)

in which Rf and Rr are the forward and reverse reactions rates. Let [A]0 and [B]0 be 
the initial concentrations. In the above reaction, the total concentration, which we 
shall denote as T = [A] + [B] = [A]0 + [B]0 remains constant. Hence, the above rate 
equation can be rewritten as
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The solution to this equation is
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The reaction could also be described in terms of the extent of reaction x, as was 
done in Section 9.5 for the racemization reaction L � D. This is left as an exercise 
for the student.

CONSECUTIVE FIRST-ORDER REACTIONS

Sequential conversion of compounds is quite common in natural and industrial 
processes. Sequential transformations in nature more often than not are cyclical. 
Let us consider a very simple example: conversion of A to B to C, in which we ignore 
the reverse reactions.

 A B Cf f    k k1 2 →  →  (9.7.9)

We assume that all the rates are fi rst order and that, at t = 0, [A] = [A]0, [B] = 0 and 
[C] = 0. The kinetic equations for the concentrations of A, B and C are

 R1f = k1f[A] R2f = k2f[B] (9.7.10)
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R k= =2 2  (9.7.13)

This set of coupled equation can be solved analytically. The solution to (9.7.11) is

 [ ] [ ] exp( )A A f= −0 1k t  (9.7.14)

This solution can be substituted into the equation for [B], (9.7.12); we get
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This is a fi rst-order differential equation of the form (dX/dt) + cX = f(t) in which 
c is a constant and f(t) is a function of time. The general solution to such an 
equation is



 X t X f t tct ct ct
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Using this general solution we can write the solution to (9.7.15) and show that
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in which we have used [B]0 = 0. If the initial concentration [C]0 = 0, then the total 
amount [A] + [B] + [C] = [A]0. Using this relation, one can obtain the time variation 
of [C]:
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 (9.7.18)

Alternatively, the rate equations can be written and solved in terms of the extents 
of reaction x1 and x2 of the two reactions (9.7.9). For simplicity, and without loss 
of generality, we shall assume the system volume V = 1 so that concentrations and 
x values could be related without explicitly including V. The extent of reaction for 
the two reactions and the corresponding changes in concentrations are related by

 d A d B
d

d B d C
d

[ ] [ ] [ ] [ ]1 1
1

2 2
2

1 1 1 1−
=

+
=

−
=

+
=ξ ξ  (9.7.19)

in which the subscripts indicate changes due to the fi rst and second reactions in 
(9.7.9). The total change in the concentration of A is only due to the reaction A → 
B and that of C is only due to B → C, i.e.

 d[A] d[A ] d or [A] [A]1 1 0 1= = − = −ξ ξ  (9.7.20)

and

 d[C] d[C ] d or [C] [C]2 2 0 2= = + = +ξ ξ  (9.7.21)

where we have assumed x = 0 at t = 0 (the subscript 0 indicates values at t = 0). Since 
the change in the intermediate [B] is due to both reactions, we write:

 d[B] d[B ] d[B ] d d or [B] [B]1 2 1 2 0 1 2= + = − = + −ξ ξ ξ ξ  (9.7.22)

The velocities of the two reactions are

 d
d

A Af r f f
ξ ξ1

1 1 1 1 0 1
t

R R k k= − = = −[ ] ([ ] )  (9.7.23)
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 d
d

B Bf r f f
ξ ξ ξ2

2 2 2 2 0 1 2
t

R R k k= − = = + −[ ] ([ ] )  (9.7.24)

These two fi rst-order linear differential equations could be solved using the methods 
outlined above. By substituting the solutions x1(t) and x2(t) into (9.7.20)–(9.7.22), 
the time variation of concentrations [A], [B] and [C] can be obtained (Exercise 9.20). 
Describing the kinetics of reactions using extents of reaction has some notable 
aspects:

• Each extent of reaction is an independent variable and the number of independent 
variables in a set of reactions is equal to the number of extents of reaction. The 
time variations of all reacting species are expressed in terms of these independent 
variables.

• The initial values of all reactants appear explicitly in the equations and the initial 
values of all extents of reaction may be assumed to be zero.

• The rate of entropy production is expressed in terms of the velocities dxk/dt and 
the chemical potentials of the reacting species.

THE STEADY-STATE ASSUMPTION

In many chemical reactions, the concentration of an intermediate compound or 
complex may be approximated to be constant. Take, for example, the following 
Michaelis–Menten mechanism, which describes enzyme reactions:

 E S P Ef

r

f+  →←   → +
k

k

kES1

1

2  (9.7.25)

Enzyme E complexes with the substrate S to form the complex ES, which in turn 
transforms to product P and the enzyme. The complexation of E and S to form ES 
occurs very rapidly and reversibly. In contrast, the conversion of ES to P and E 
happens relatively slowly. The rapidity of the reaction E + S � ES keeps the con-
centration of ES essentially a constant close to its equilibrium value; any decrease 
in [ES] due to product formation is quickly compensated by the production of ES. 
Hence, we can assume that [ES] is in a steady state, i.e. its time derivative is zero. 
Taking the two steps of the reaction (9.7.19), the steady state assumption can be 
expressed as

 d ES
d

E S ES ESf r f
[ ]

[ ][ ] [ ] [ ]
t

k k k= − − =1 1 2 0  (9.7.26)

In the above reaction, the total concentration of enzyme [E0] in the free and complex 
form is a constant:

 [E] [ES] [E ]0+ =  (9.7.27)



Combining (9.7.26) and (9.7.27) we can write k1f([E0] − [ES])[S] − k1r[ES] − k2f[ES] = 
0. From this, it follows that

 [ ]
[ ][ ]

[ ] ( )
ES

E S
S

f

f r f

=
+ +

k
k k k

1 0

1 1 2
 (9.7.28)

The rate of formation of the product P is k2f[ES] and is usually written in the fol-
lowing form:

 R
t

k
k

k k k
R

K
= = =

+ +
=

+
d P
d

ES
E S

S
S

S
f

f

r r f m

[ ]
[ ]

[ ][ ]
[ ] ( ) /

[ ]
[ ]

max
2

2 0

1 2 1
 (9.7.29)

in which Rmax = k2f[E0] is the maximum rate of product formation and Km = (k1r + 
k2r)/k1f. It can be seen from (9.7.29) that the rate at which the P is generated has the 
following properties:

• when [S] << Km, the rate is proportional to [S];
• when [S] >> Km, the rate reaches its maximum value and is independent of [S];
• when [S] = Km, that rate reaches half the maximum value.

FLOW REACTORS

Many industrial chemical reactions take place in a fl ow reactor into which reactants 
fl ow and from which products are removed. The kinetic equations for such systems 
must consider the infl ow and outfl ow. To see how the kinetic equations are written 
for a fl ow reactor, let us consider the following reaction, which we assume requires 
a catalyst:

 A B Cf f    k k1 2 →  →  (9.7.30)

We assume that the reaction takes place in a solution. The solution containing A 
fl ows into the reactor (Figure 9.4) of volume V. In the reactor, activated by a cata-
lyst, the conversion A to B and C takes place. The fl uid in the reactor is 
rapidly stirred so that we may assume that it is homogeneous. The outfl ow is a solu-
tion containing B, C and unconverted A. If the objective is to produce B and C, 
then the reaction should be rapid enough so that very little A is in the outfl ow. We 
consider a fl ow rate of f liters per second of a solution of concentration [A]in in mol 
L−1. The amount of A fl owing into the reactor per second equals [A]inf. Hence, the 
rate at which the concentration of A increases due to the infl ow into the reactor of 
volume V is [A]inf/V. Similarly, the rate of decrease in concentrations of A, B and 
C due to the outfl ow are [A]f/V, [B]f/V and [C]f/V respectively. The term f/V has 
units of s−1. Its inverse, V/f ≡ t, is called the residence time (because it roughly cor-
responds to the time the fl owing fl uid resides in the reactor before it fl ows out). 
Taking the fl ow into consideration, the kinetic equations for the reactor can be 
written as

COUPLED REACTIONS AND FLOW REACTORS 293



294 THERMODYNAMICS OF CHEMICAL TRANSFORMATIONS

 d A
d

A / A A /in f
[ ]

[ ] ( ) [ ] [ ]( )
t

f V k f V= − −1  (9.7.31)

 d B
d

A B B /f f
[ ]

[ ] [ ] [ ]( )
t

k k f V= − −1 2  (9.7.32)

 d C
d

B C /f
[ ]

[ ] [ ]( )
t

k f V= −2  (9.7.33)

This set of linear coupled equations can be solved for steady states by setting d[A]/dt 
= d[B]/dt = d[C]/dt = 0. If, initially, the reactor contains no A, B or C, then the fl ow 
will result in an initial increase in the concentration of the three reactants and then 
the reactor will approach a steady state in which the concentrations are constant. 
The steady states, which we identify with a subscript ‘s’, are easily calculated:

 [ ]
[ ] ( )

( )
A

A /
/

s
in

f

=
+

f V
k f V1

 (9.7.34)

 [ ]
[ ]
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=
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k
k f V

1

2
 (9.7.35)

 [ ]
[ ]

C
B

/
s

f s= k
f V
2

 (9.7.36)

If the rate constants k1f and k2f are large compared with f/V, then the steady-state 
concentrations [A]s and [B]s will be small and [C]s will be large. This corresponds to 
almost complete conversion of A into product C, which will fl ow out of the reactor. 
On the other hand, if the fl ow rate is high, then the conversion in the reactor will 
only be partial. Because they are coupled linear equations, (9.7.31)–(9.7.33) can also 
be solved analytically; generally, however, chemical kinetics leads to coupled non-
linear equations, which cannot be solved analytically. They can, of course, be inves-
tigated numerically.

f

f

A

A, B, C 

A B C→ →

V

Figure 9.4 A fl ow reactor into which fl uid containing A 
fl ows. Owing to a catalyst in the reactor, conversion of A 
→ B → C take place in the reactor. The outfl ow consists of 
unconverted A and the products B and C. The amount of 
fl uid fl owing into the reactor per unit time is f. Infl ow rate 
equals the outfl ow rate at steady state



The above simple example illustrates how kinetic equations for a reactor can be 
written. Generalizing it to reactions more complex than (9.7.30) is straightforward. 
The purpose of some reactors is to combust fuel and generate heat. At the steady 
state, heat is generated at a constant rate. If the enthalpies of the reactions are 
known, then at a steady state, the rate at which heat is generated in the reactor can 
be calculated.

Appendix 9.1 Mathematica Codes

In Mathematica, numerical solutions to the rate equation can be obtained using the 
‘NDSolve’ command. Examples of the use of this command in solving simple rate 
equations are given below. The results can be plotted using the ‘Plot’ command. 
Numerical output can be exported to graphing software using the ‘Export’ 
command.

CODE A: LINEAR KINETICS X → PRODUCTS

(* Linear Kinetics *)

k=0.12;

Soln1=NDSolve[{X’[t]== −k*X[t], X[0]==2.0},X,{t,0,10}]

{{X→InterpolatingFunction[{{0.,10.}},<>]}}

The above output indicates that the solution has been generated as an interpolating 
function.

The solution can be plotted using the following command. Here, ‘/.Soln1’ specifi es 
that the values of X[t] are to be calculated using the interpolation function generated 
by Soln1.

Plot[Evaluate[X[t]/.Soln1],{t,0,10}]
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To write output fi les for spreadsheets use the ‘Export’ command and the fi le format 
‘List’. For more detail see the Mathematica help fi le for the ‘Export’ command. In 
the command below, the output fi lename is data1.txt. This fi le can be read by most 
spreadsheets and graphing software.

The command ‘X[t]/.Soln1’ specifi es that X[t] is to be evaluated using Soln1 
defi ned above. TableForm outputs data in a convenient form.

Export[“data1.txt”,

  Table[{t,X[t] /.Soln1}, {t,1,10}] //TableForm, “List”]

  data1.txt

To obtain a table of t and X[t], the following command can be used:

Table[{t,X[t] /.Soln1},{t,1,5}] //TableFrom

 1 1.77384

 2 1.57326

 3 1.39536

 4 1.23757

 5 1.09763

CODE B: MATHEMATICA CODE FOR THE REACTION X + 2Y �  2Z

In writing codes for kinetic equations, we shall defi ne the forward and reverse rates, 
Rf and Rr respectively, and use these in the rate equations. Thus, we avoid typing 
the same expression many times.

(* Reaction X+2Y � 2Z *)

kf=0.5;kr=0.05;

Rf:=kf*X[t]*(Y[t]^2); Rr:=kr*Z[t]^2;

Soln2=NDSolve[{ X’[t]== −Rf+Rr,

 Y’[t]== 2*(−Rf+Rr),

 Z’[t]== 2*(Rf−Rr),

 X[0]==2.0,Y[0]==3.0,Z[0]==0.0},

 {X,Y,Z},{t,0,3}]

{{X → InterpolatingFunction[{{0.,3.}},<>],

 Y → InterpolatingFunction[{{0.,3.}},<>],

 Z → InterpolatingFunction[{{0.,3.}},<>]}}

The above output indicates that the solution as an interpolating function has been 
generated. The solution can be plotted using the following command:



Plot[Evaluate[{X[t],Y[t],Z[t]}/.Soln2],{t,0,3}]
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As shown in Code A, the data could be written to an output fi le that graphing soft-
ware can read the Export command.

CODE C: MATHEMATICA CODE FOR RACEMIZATION REACTION  �  
AND CONSEQUENT ENTROPY PRODUCTION

(* Racemization Kinetics:L � D *)

kf=1.0;kr=1.0;

Rf:=kf*XL[t]; Rr:=kr*XD[t];

Soln3=NDSolve[{ XL’[t]== −Rf+Rr,

 XD’[t]== Rf−Rr,

 XL[0]==2.0,XD[0]==0.001},

 {XL,XD},{t,0,3}]

{{XL → InterpolatingFunction[{{0.,3.}},<>],

 XD → InterpolatingFunction[{{0.,3.}},<>]}}

The output indicates an interpolating function has been generated. As before, the 
solution can be plotted.

Plot[Evaluate[XL[t],XD[t]}/.Soln3],{t,0,3}]
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The rate of entropy production can be obtained from the interpolating functions 
and expression (9.5.20). Note: in Mathematica, Log is ln.

(*Calculation of entropy production “sigma”*)

R=8.1314; sigma=R*(Rf−Rr)*Log[Rf/Rr];

Plot[Evaluate[sigma/.Soln3],{t,0,0.5}]
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Examples

Example 9.1 At a temperature T, the average energy hn of a thermal photon is 
roughly equal to kT. As discussed in Chapter 2, at high temperatures electron-posi-
tron pairs will be spontaneously produced when the energy of photons is larger than 
rest energy 2 mc2 of an electron positron pair (where m is the mass of the electron). 
Calculate temperature at which electron-positron pair production occurs.
Solution For pair production:

hn = kBT = 2 mc2 = (2 × 9.10 × 10−31 kg)(3.0 × 108 m s−1)2 = 1.64 × 10−13 J

Hence, the corresponding T = (1.64 × 10−13 J)/(1.38 × 10−23 J K−1) = 1.19 × 1010 K.



Example 9.2 Consider a second-order reaction 2X → (products) whose rate 
equation is d[X] / dt = −2kf[X]2 = −k[X]2 in which we set k = 2kf. (a) Show that the 
half-life t1/2 for this reaction depends on the initial value of [X] and is equal to 
1/([X]0k). (b) Assume that k = 2.3 × 10−1 −1 s−1 and obtain the value of [X] at a time 
t = 60.0 s if the initial concentration [X]0 = 0.50 .
Solution (a) As shown in Box 9.4, the solution to the rate equation is

1 1

0[ ] [ ]X X
− = kt

Multiplying both sides by [X]0 we obtain

[ ]
[ ]

[ ]
X
X

X0
01= + kt

Since at t = t1/2 the ratio [X]0/[X] = 2, we must have [X]0kt1/2 = 1 or t1/2 = 1/([X]0k).

(b) If the initial concentration [X]0 = 0.50 , k = 0.23 −1 s−1 and t = 60.0 s we 
have:

1 1
0 50

0 23 60 1

[ ] .
.

X
molL− = × −

Solving for [X] we get [X] = 0.063 mol L−1.

Example 9.3 For the water dissociation reaction H2O �  OH− + H+ the enthalpy 
of reaction ∆Hr = 55.84 kJ mol−1. At 25 °C, the value of the equilibrium constant K 
= 1.00 × 10−14 and pH is 7.0. At 50 °C, what will the pH be?
Solution Given K(T) at one temperature T1, its value at another temperature T2 
can be obtained using the van’t Hoff equation (9.3.19):

ln ( ) ln ( )K T K T
H

R T T
1 2

1 2

1 1− = − −





∆ r

For this example, we have

ln ln( . )
.

.
.K = × − × −



 = −−1 0 10

55 84 10
8 314

1
323

1
298

30 4914
3

Hence, K at 50 °C is equal to exp(−30.49) = 5.73 × 10−14. Since the equilibrium con-
stant K = [OH−][H+] and because [OH−] = [H+], we have

pH H= − = − = − × =+ −log[ ] log[ ] log[ . ] .K
1
2

5 73 10 6 6214
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Exercises

9.1 When the average kinetic energy of molecules is nearly equal to the bond 
energy, molecular collisions will begin to break the bonds. (a) The C—H bond 
energy is about 414 kJ mol−1. At what temperature will the C—H bonds in 
methane begin to break? The average binding energy per nucleon (neutron 
or proton) is in the range (6.0–9.0) × 106 eV or (6.0–9.0) × 108 kJ mol−1. At 
what temperature do you expect nuclear reactions to take place?

9.2 For the reaction Cl + H2 → HCl + H, the activation energy Ea = 23.0 kJ mol−1 
and k0 = 7.9 × 1010 mol−1 L s−1. What is the value of rate constant at T = 
300.0 K? If [Cl] = 1.5 × 10−4 mol L−1 and [H2] = 1.0 × 10−5 mol L−1, what is the 
forward reaction rate at T = 350.0 K?

9.3 For the decomposition of urea in an acidic medium, the following data were 
obtained for rate constants at various temperatures:

Temperature/°C 50 55 60 65 70
Rate constant k/10−8s−1  2.29  4.63  9.52 18.7 37.2

(a) Using an Arrhenius plot, obtain the activation energy Ea and the pre-exponential 
factor k0.
(b) Apply the transition state theory to the same data, plot ln(k/T) versus 1/T and 
obtain ∆H† and ∆S† of the transition state.

9.4 Consider the dimerization of the triphenylmethyl radical Ph3C⋅, which can be 
written as the reaction

A �  2B

The forward and reverse rate constants for this reaction at 300 K are found 
to be kf = 0.406 s−1 and kr = 3.83 × 102 mol−1 L s−1. Assume that this reaction is 
an elementary step. At t = 0 the initial concentration of A and B are [A]0 = 
0.041  and [B]0 = 0.015 .

(a) What is the velocity of the reaction at t = 0?
(b) If xeq is the extent of reaction at equilibrium (x = 0 at t = 0), write the 
equilibrium concentrations of A and B in terms of [A]0, [B]0 and xeq.
(c) Use (b) to obtain the value of xeq by solving the appropriate quadratic 
equation (you may use Maple) and obtain the equilibrium concentrations of 
[A] and [B].

9.5 (a) Write the rate equations for the concentrations of X, Y and Z in the fol-
lowing reaction:

X + Y �  2Z



(b)  Write the rate equation for the extent of reaction x.
(c) When the system reaches thermal equilibrium, x = xeq. If [X]0, [Y]0 and 
[Z]0 are the initial concentrations, write the equilibrium concentrations in 
terms of the initial concentrations and xeq.

9.6 Radioactive decay is a fi rst-order reaction. If N is the number of radioactive 
nuclei at any time, then dN/dt = −kN. 14C is radioactive with a half-life of 
5730 yrs. What is the value of k? For this process, do you expect k to change 
with temperature?

9.7 If d[A]/dt = −k[A]a, show that the half-life is

t
k

1 2

1

0
1

2 1
1

/
( ) [ ]

= −
−

−

−

α

αα A

9.8 Find an analytical solution to the reversible reaction [ ] [ ] 
k

k

f

r

 →←  , in which 
 and  are enantiomers. Enantiomeric excess (EE) is defi ned as

EE
L D

L D
≡ −

+
[ ] [ ]
[ ] [ ]

If the initial EE = 1.0, how long does it take for it to reach 0.5? (Amino acid 
racemization is used in dating of biological samples.)

9.9 (a) For the bimolecular reaction A B Pkf+  →  the rate equation is

d A
d

A Bf
[ ]

[ ][ ]
t

k= −

Show that

1

0 0

0

0[ ] [ ]
ln

[ ][ ]
[ ][ ]B A
A B
B A

f−






= −k t

(b) Write the above rate equation in terms of the extent of reaction x and 
solve it.

9.10 The chirping rate of crickets depends on temperature. When the chirping 
rate is plotted against 1/T it is observed to follow the Arrhenius law (see 
K.J. Laidler, J. Chem. Ed., 49 (1972) 343). How would you explain this 
observation?

9.11 Consider the reaction X + Y �  2Z in the gas phase. Write the reaction rates 
in terms of the concentrations [X], [Y] and [Z] as well as in terms of the activi-
ties. Find the relation between the rate constants in the two ways of writing 
the reaction rates.
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9.12 When atmospheric CO2 dissolves in water it produces carbonic acid H2CO3 
(which causes natural rain to be slightly acidic). At 25.0 °C the equilibrium 
constant Ka for the reaction H2CO3 �  HCO−

3 + H+ is specifi ed by pKa = 6.63. 
The enthalpy of this reaction ∆Hr = 7.66 kJ mol−1. Calculate the pH at 25 °C 
and at 35 °C. (Use Henry’s law to obtain [H2CO3].)

9.13 Equilibrium constants can vary over an extraordinary range, as the following 
examples demonstrate. Obtain the equilibrium constants for the following 
reactions at T = 298.15 K, using the tables for m(p0,T0) = ∆Gf

0:
(a) 2NO2(g) �  N2O4 (g)
(b) 2CO(g) + O2(g) �  2CO2(g)
(c) N2(g) + O2(g) �  2NO(g)

9.14 (a) For a reaction of the form aX + bY �  cZ, show that the equilibrium 
constants Kc and Kp are related by Kc = (RT)aKp where a = a + b − c.
(b) Using the defi nition of enthalpy H = U + pV, show that the van’t Hoff 
equation for a gas-phase reaction can also be written as

d
d

c rln K
T

U
RT

= ∆
2

in which Kc is the equilibrium constant expressed in terms of 
concentrations.

9.15 Ammonia may be produced through the reaction of N2(g) with H2(g):

N2(g) + 3H2(g) �  2NH3(g)

(a) Calculate the equilibrium constant of this reaction at 25 °C using the 
thermodynamic tables.
(b) Assuming that there is no signifi cant change in the enthalpy of reaction 
∆Hr, use the van’t Hoff equation to obtain the approximate ∆Gr and the 
equilibrium constant at 400 °C.

9.16 2-Butene is a gas that has two isomeric forms, cis and trans. For the 
reaction:

cis-2-butene �  trans-2-butene ∆G0
r = −2.41 kJ mol−1

calculate the equilibrium constant at T = 298.15 K. If the total amount of 
butene is 2.5 mol, then, assuming ideal gas behavior, determine the number 
of moles of each isomer.

9.17 Determine if the introduction of a catalyst will alter the affi nity of a reaction 
or not.



9.18 For the reaction A Bf

r

k

k
 →←  , write the equation for the velocity of reaction 

dx/dt in terms of the initial values [A0] and [B0].

9.19 For the reaction X + 2Y �  2Z, write explicitly the expression for the entropy 
production in terms of the rates and as a function of x.

9.20 As shown in Section 9.7, for the reaction A B C1f 2fk k →  →  the extents of 
reaction obey the equations

d
d

A Af r f f
ξ ξ1

1 1 1 1 0 1
t

R R k k= − = = −[ ] ([ ] )

d
d

B Bf r f f
ξ ξ ξ2

2 2 2 2 0 1 2
t

R R k k= − = = + −[ ] ([ ] )

Solve these equations with initial conditions x1 = x2 = 0 at t = 0. Assume [A] 
= [A]0, [B] = 0 and [C] = 0 and show that

[ ] [ ] e (e e )C A f f ff

f f

= − −
−

−





− − −
0

1

2 1

1 1 1 2k t k t k tk
k k

9.21 Write the complete set of rate equations for all the species in the Michaelis–
Menten reaction mechanism:

E S ES P Ef

r

f+  →←   → +k

k

k1

1

2

Write Mathematica/Maple code to solve them numerically with the following 
numerical values for the rate constants and initial values (assuming all quanti-
ties are in appropriate units): k1f = 1.0 × 102, k1r = 5.0 × 103, k2f = 2.0 × 103; 
and at t = 0, [E] = 3.0 × 10−4, [S] = 2× 10−2, [ES] = 0, [P] = 0. Using the numeri-
cal solutions, check the validity of the steady-state assumption.

9.22 Calculate k0 for the reaction between H2 and O2 at T = 298 K using the bond 
lengths 74 pm for H—H and 121 pm for O——O.
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10  FIELDS AND INTERNAL DEGREES 
OF FREEDOM

The Many Faces of Chemical Potential

The concept of chemical potential is very general, applicable to almost any trans-
formation of matter as long as there is a well-defi ned temperature. We have already 
seen how the condition for thermodynamic equilibrium for chemical reactions leads 
to the law of mass action. We shall now see how particles in a gravitational or electric 
fi eld, electrochemical reactions, and transport of matter through diffusion can all 
be viewed as ‘chemical transformations’ with associated chemical potential and 
affi nity.

10.1 Chemical Potential in a Field

The formalism for the chemical potential presented in Chapter 9 can be extended 
to electrochemical reactions and to systems in a fi eld, such as a gravitational fi eld. 
When a fi eld is present, the energy due to a fi eld must be included in the expression 
for a change in energy. As a result, the energy of a constituent depends on it 
location.

We start with a simple system: the transport of chemical species which carry 
electrical charge from a position where the potential is f1 to a position where the 
potential is f2. For simplicity, we shall assume that our system consists of two parts, 
each with a well-defi ned potential, while the system as a whole is closed (see Figure 
10.1). The situation is as if the system consists of two phases and transport of par-
ticles dNk is a ‘chemical reaction’. For the corresponding extent of reaction dxk we 
have

 − = =d d dN Nk k k1 2 ξ  (10.1.1)

in which dN1k and dN2k are the changes in the molar amount in each part. The 
change in energy due to the transport of the ions is given by

d d d d d d dU T S p V F z N F z N N Nk
k

k k
k

k k
k

k k
k

k= − + + + +∑ ∑ ∑ ∑φ φ µ µ1 1 2 2 1 1 2 2  (10.1.2)

in which zk is the charge of ion k and F is the Faraday constant (the product of the 
electronic charge e and the Avogadro number NA: F = eNA = 9.6485 × 104 C mol−1). 
Using (10.1.1), the change in the entropy dS can now be written as

Introduction to Modern Thermodynamics Dilip Kondepudi
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 T S U p V F z F zk k k k
k

kd d d d= + − + − +∑[( ) ( )]φ µ φ µ ξ1 1 2 2  (10.1.3)

Thus, we see that the introduction of a potential f associated with a fi eld is equiva-
lent to adding a term to the chemical potential. This makes it possible to extend the 
defi nition of the chemical potential to include the fi eld. Thus, the electrochemical 
potential m̃, which was introduced by Guggenheim [1] in 1929 is defi ned as

 �µ µ φk k kFz= +  (10.1.4)

Clearly, this formalism can be extended to any fi eld to which a potential may be 
associated. If y is the potential associated with the fi eld, then the energy of interac-
tion per mole of the component k may be written in the form tky. For the electric 
fi eld tk = Fzk; for the gravitational fi eld, tk = Mk, where Mk is the molar mass. The 
corresponding chemical potential which includes the potential is

 �µ µ τ ψk k k= +  (10.1.5)

The affi nity  Ãk for electrochemical reactions can be written just as was done for 
other chemical reactions:

 � � �A F z F zk k k k k k k= − = + − +µ µ φ µ φ µ1 2 1 1 2 2[( ) ( )]  (10.1.6)

The increase in the entropy due to transfer of charged particles from one potential 
to another can now be written as

 d diS
A
T

k
k

k

= ∑
�

ξ  (10.1.7)

φ1 µ1 φ1 µ1

Nk

Figure 10.1 A simple situation 
illustrating the thermodynamics of 
a system in the presence of an elec-
tric fi eld. We consider two compart-
ments, one with associated potential 
f1 and the other f2. It is as if there 
are two phases; ions will be trans-
ported from one to the other until 
the electrochemical potentials are 
equal



At equilibrium:

 �A z Fk k k k= − = − −0 1 2 1 2or µ µ φ φ( )  (10.1.8)

The basic equations of equilibrium electrochemistry follow from (10.1.8).
Because electrical forces are very strong, in ionic solutions the electrical fi eld 

produced by even small changes in charge density results in very strong forces 
between the ions. Consequently, in most cases the concentrations of positive and 
negative ions are such that net charge density is virtually zero, i.e. electroneutrality 
is maintained to a high degree. In a typical electrochemical cell, most of the potential 
difference applied to the electrodes appears in the vicinity of the electrodes and only 
a small fraction of the total potential difference occurs across the bulk of the solu-
tion. The solution is electrically neutral to an excellent approximation. As a result, 
an applied electric fi eld does not separate positive and negative charges and so does 
not create an appreciable concentration gradient.

When we consider the much weaker gravitational fi eld, however, an external fi eld 
can produce a concentration gradient. As noted above, for a gravitational fi eld, the 
coupling constant tk is the molar mass Mk. For a gas in a uniform gravitational fi eld, 
for example, y = gh, where g is the strength of the fi eld and h is the height; from 
(10.1.8) we see that

 µ µk k kh M gh( ) ( )= −0  (10.1.9)

For an ideal-gas mixture, using mk(h) = m0
k(T) + RT ln[pk(h)/p0] in the above equation 

we obtain the well-known barometric formula:

 p h pk k
M gh RTk( ) ( )= −0 e /  (10.1.10)

Note how this formula is derived assuming that the temperature T is uniform, i.e. 
the system is assumed to be in thermal equilibrium. The temperature of the Earth’s 
atmosphere is not uniform; in fact, as shown in Figure 10.2, it varies between −60 °C 
and +20 °C in the troposphere and stratosphere, the two layers in which almost all 
of the atmospheric gases reside.

ENTROPY PRODUCTION IN CONTINUOUS SYSTEM

In considering thermodynamic systems in a fi eld, we often have to consider continu-
ous variation of the thermodynamic fi elds. In this case, m̃ is a function of position 
and entropy has to be expressed in terms of entropy density s(r), i.e. entropy per 
unit volume, which depends on position r. For simplicity, let us consider a one-
dimensional system, i.e. a system in which the entropy and all other variables, such 
as m, change only along one direction, say x (Figure 10.3). Let s(x) be the entropy 
density per unit length. We shall assume that the temperature is constant throughout 
the system. Then the entropy in a small volume element between x and x + d is equal 
to s(x)d. An expression for affi nity in this small volume element can be written as
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Figure 10.2 The actual state of the Earth’s atmosphere is not in thermal equilibrium. The 
temperature varies with height as shown. At thermal equilibrium, the concept of a chemical 
potential that includes a fi eld leads to the well-known barometric formula p(h) = p(0)e−Mgh/RT
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The velocity of the reaction dxk / dt for this elemental volume is the fl ow of particles 
of component k, i.e. the particle current of k. We shall denote this particle current 
of k by JNk. Then by writing expression (10.1.7) for this elemental volume we 
obtain
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Simplifying this expression, and using the defi nition JNk = dxk / dt, the following 
expression for entropy production per unit length due to particle fl ow is obtained:
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 (10.1.13)

ENTROPY PRODUCTION DUE TO ELECTRICAL CONDUCTION AND 
OHM’S LAW

To understand the physical meaning of expression (10.1.13), let us consider the fl ow 
of electrons in a conductor. In a conductor in which the electron density and tem-
perature are uniform, the chemical potential of the electron me (which is a function 
of the electron density and T) is constant. Therefore, the derivative of the electro-
chemical potential is

 ∂
∂

= ∂
∂

− = − ∂
∂

�µ µ φ φe
e

x x
Fe

x
Fe( ) ( )  (10.1.14)

Since the electric fi eld E = −∂f / ∂x and the conventional electric current I = −eFJe, 
using (10.1.14) in expression (10.1.13) we obtain the following expression for the 
entropy production:
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µ(x) µ(x + δ )

x x + δ
Figure 10.3 An expression for the 
entropy production in a continuous 
system can be obtained by consider-
ing two adjacent cell separated by a 
small distance d. The entropy in the 
region between x and x + d is equal 
to s(x)d. The affi nity, which is the 
difference in the chemical potential 
is given by (10.1.11)
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Since the electric fi eld is the change of potential per unit length, it follows that the 
integral of E over the entire length L of the system is the potential difference V 
across the entire system. The total entropy production from x = 0 to x = L is
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 (10.1.16)

Now it is well known that the product VI, of potential difference and the current, 
is the heat generated per unit time, called the ohmic heat. The fl ow of an electric 
current through a resistor is a dissipative process that converts electrical energy into 
heat. For this reason we may write VI = dQ / dt. Thus, for a fl ow of electric current, 
we have

 d
d

d
d

iS
t

VI
T T

Q
t

= = 1  (10.1.17)

This shows that the entropy production is equal to the dissipative heat divided by 
the temperature.

We noted in Chapter 3 that the entropy production due to each irreversible 
process is a product of a thermodynamic force and the fl ow which it drives (see 
(3.4.7)). In the above case, the fl ow is the electric current; the corresponding force 
is the term V/T. Now it is generally true that, when a system is close to thermody-
namic equilibrium, the fl ow is proportional to the force. Hence, based on thermo-
dynamic reasoning, we arrive at the conclusion

 I L
V
T

= e  (10.1.18)

in which Le is a constant of proportionality for the electron current. Le is called the 
linear phenomenological coeffi cient. Relations such as (10.1.18) are the basis of linear 
nonequilibrium thermodynamics, which we shall consider in more detail in Chapter 
11. We see at once that this corresponds to the familiar Ohm’s law, V = IR, where 
R is the resistance, if we identify

 L
T
R

e =  (10.1.19)

This is an elementary example of how the expression for entropy production can be 
used to obtain linear relations between thermodynamic forces and fl ows, which often 
turn out to be empirically discovered laws such as Ohm’s law. In Section 10.3 we 
shall see that a similar consideration of entropy production due to diffusion leads 
to another empirically discovered law called Fick’s law of diffusion. Modern ther-
modynamics enables us to incorporate many such phenomenological laws into one 
unifi ed formalism.



10.2 Membranes and Electrochemical Cells

MEMBRANE POTENTIALS

Just as equilibrium with a semi-permeable membrane resulted in a difference in 
pressure (the osmotic pressure) between the two sides of the membrane, equilibrium 
of ions across a membrane that is permeable to one ion but not another results in 
an electric potential difference. As an example, consider a membrane separating two 
solutions of KCl of unequal concentrations (Figure 10.4). We assume that the mem-
brane is permeable to K+ ions but is impermeable to the larger Cl− ions. Since the 
concentrations of the K+ ions on the two sides of the membrane are unequal, K+ 
ions will begin to fl ow to the region of lower concentration from the region of higher 
concentration. Such a fl ow of positive charge, without a counterbalancing fl ow of 
negative charge, will cause a build up in a potential difference that will oppose the 
fl ow. Equilibrium is reached when the electrochemical potentials of K+ on the two 
sides become equal, at which point the fl ow will stop. We shall denote the two sides 
with superscripts a and b. Then the equilibrium of the K+ ion is established when

 � �µ µ
K K+ +=α β  (10.2.1)

Since the electrochemical potential of an ion k is m̃k = mk + zkFf = m0
k + RT ln ak + 

zkFf, in which ak is the activity and zk the ion number (which is +1 for K+), the above 
equation can be written as

 µ φ µ φα α β β
K K K K+ + + ++ + = + +0 0RT a F RT a Fln ln  (10.2.2)

From this equation it follows that the potential difference, i.e. the membrane poten-
tial fa − fb across the membrane, can now be written as

 φ φα β
β
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 (10.2.3)

10.1 mol kg− 11.0 mol kg−

  Cl Cl– –

K+ K+

α β

Figure 10.4 A membrane potential 
is generated when a membrane 
permeable to K+ but not to Cl− 
separates two solutions of KCl of 
unequal concentrations. In this 
case, the fl ow of the permeable K+ 
ions is counterbalanced by the 
membrane potential
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In electrochemistry, the concentrations are generally measured using the molality 
scale, as was discussed in Chapter 8. In the simplest approximation, the activities 
may be replaced by molalities mK+, i.e. the activity coeffi cients are assumed to be 
unity. Hence, one may estimate the membrane potential with the formula fa − fb = 
(RT/F)ln(mb

K+/ma
K+).

ELECTROCHEMICAL AFFINITY AND ELECTROMOTIVE FORCE

In an electrochemical cell, the reactions at the electrodes that transfer electrons can 
generate an electromotive force (EMF). An electrochemical cell generally has dif-
ferent phases that separate the two electrodes (Figure 10.5). By considering entropy 
production due to the overall reaction and the electric current fl owing through 
the system we can derive a relationship between the activities and the EMF. In 
an electrochemical cell, the reactions at the two electrodes can be generally 
written as:

 X e X reductionred+ →−n ’  (10.2.4)

‘

‘

 Y Y e oxidationox→ + −n ’  (10.2.5)

each is called a half-reaction; the overall reaction is

 X Y X Yred ox+ → +  (10.2.6)

e−

Oxidation              Reduction 

Figure 10.5 An electrochemical cell consisting of many 
phases that generate an EMF due to half-reactions at the 
electrodes. The electrode reactions are as given in (10.2.4) 
and (10.2.5). Upon closing the circuit, chemical reactions 
occurring within the cell will generate an EMF that will 
drive a current. Cells such as this are represented by a cell 
diagram denoting the various phases and junctions. In a 
cell diagram, the reduction reaction is on the right:

Electrode|Y|.  .  .|.  .  .|.  .  .|X|Electrode



For example, the half-reactions

Cu2+ + 2e− → Cu(s)

Zn(s) → Zn2+ + 2e−

at the two electrodes results in the overall reaction

Cu2+ + Zn(s) → Zn2+ + Cu(s)

(Thus, a zinc rod placed in an aqueous solution of CuSO4 will dissolve and metallic 
copper will be deposited.)

Reactions at the electrodes may be more complicated than those indicated 
above, but the main idea is the same: at one electrode, electrons are transferred 
from the electrode; at the other electrode, electrons are transferred to the 
electrode. In representing electrochemical cells diagramatically, it has become 
a convention to place the ‘reduction’ half-reaction on the right. Thus, the electrode 
on the right-hand side of the diagram supplies the electrons that reduce the 
reactants.

Since the reactions at the electrodes may occur at different electrical potentials, 
we must use the electrochemical affi nity to formulate the thermodynamics of an 
electrochemical cell. If Ã is the electrochemical affi nity and x is the extent of reac-
tion, the entropy production due to such reaction is

 d
d

d
d

iS
t

A
T t

=
� ξ  (10.2.7)

Since each mole of reacting X transfers n moles of electrons (see (10.2.4)), and since 
dx/dt is the velocity of the reaction, the relation between the current I (which is the 
amount of charge transferred per second) is

 I nF
t

= d
d
ξ  (10.2.8)

in which F is the Faraday constant, i.e. the amount of charge carried by a mole of 
electrons. Substituting (10.2.8) in (10.2.7) we fi nd

 d
d

iS
t T

A
nF

I= 1 �
 (10.2.9)

Comparing this expression with (10.1.17) we obtain the following relation between 
the voltage and the associated electrochemical affi nity:

 V
A

nF
=
�

 (10.2.10)
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in which n is the number of electrons transferred in the oxidation–reduction reac-
tion. For a given Ã, the larger the number of electrons transferred, the smaller the 
potential difference.

Using the electrode reactions (10.2.4) and (10.2.5), the above expression can be 
more explicitly written in terms of the chemical potentials:

 X e rightred
R

X
R

e
R R

X
R

red
+ → = + − −−n X A n nF( ) ( )� µ µ φ µ  (10.2.11)

 Y Y e leftox
L

Y
L

e
L L

Y
L

ox→ + = − − +−n A n nF( ) ( )� µ µ φ µ  (10.2.12)

in which the superscripts indicate the reactions at the right and left electrodes. The 
electrochemical affi nity of the electron in the left electrode is written as m̃e = me

L − FfL, 
and similarly for the electrons in the right electrode. The overall electrochemical 
affi nity Ã, which is the sum of the two affi nities, can now be written as

 � � �A A A n nF= + = + − − + − − −R L
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e
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e
L R L

red ox
( ) ( ) ( )µ µ µ µ µ µ φ φ  (10.2.13)

If the two electrodes are identical, then me
R = me

L and the only difference between the 
two electrodes is in their electrical potential f. By virtue of (10.2.10), we can now 
write the voltage V associated with the electrochemical affi nity as
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nF nF
= = + − − − −
� 1
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Y
L R L

red ox
 (10.2.14)

Now let us consider the ‘terminal voltage’ Vcell = fR − fL, the potential difference 
between the terminals for which Ã = 0. It is the open-circuit condition with zero 
current, similar to the osmotic pressure difference at zero affi nity. This terminal 
voltage Vcell is called the EMF of the cell. From (10.2.14) we see that

 V
nF

cell X
R

Y
L

X
R

Y
L

red ox= + − −1
( )µ µ µ µ  (10.2.15)

For a nonzero  Ã, i.e. for nonzero current, the terminal voltage is less than the EMF. 
On the other hand, if the potentials of the two electrodes are equalized by shorting 
the two terminals, then the fl ow of current I = nF(dx/dt) is limited only by the rate 
of electron transfer at the electrodes. Under these conditions the voltage V = Ã/nF 
is also equal to the right-hand side of (10.2.15).

It is more convenient to write cell EMF (10.2.15) in terms of the activities by using 
the general expression mk = m0

k + RT ln ak for the reactants and products. This leads 
to

 V V
RT
nF

a a
a a

= − 



0 ln X

R
Y
L

X
R

Y
L

red ox  (10.2.16)

where
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Equation (10.2.16) relates the cell potential to the activities of the reactants; it is 
called the Nernst equation. As we expect, V is zero at equilibrium and the equilibrium 
constant of the electrochemical reaction can be written as

 ln K
G

RT
nFV
RT

= − =∆ rxn
0

0  (10.2.18)
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Box. 10.1 Electrochemical Cells and Cell Diagrams.

When there is an external fl ow of current, there must be a compensating current within 
the cell. This can be accomplished in many ways, each defi ning a type of electrochemi-
cal cell. The choice of electrodes is also decided by the experimental conditions and 
the need to use an electrode without undesirable side reactions. Electrochemical cells 
often incorporate salt bridges and liquid junctions.

Liquid junctions. When two different liquids are in contact, usually through a porous 
wall, it is called a liquid junction. The concentrations of ions and their electrochemical 
potentials on either side of a liquid junction are generally not equal; the electrochemical 
potential difference causes a diffusional fl ow of ions. If the rates of fl ow of the different 
ions are unequal, then a potential difference will be generated across the liquid junc-
tion. Such a potential is called the liquid junction potential. The liquid junction potential 
may be reduced by the use of a salt bridge, in which the fl ows of the positive and nega-
tive ions are nearly equal.

Salt bridge. A commonly used salt bridge consists of a solution of KCl in agarose jelly. 
In this medium, the fl ow of K+ and Cl− are nearly equal.

Cell diagrams. An electrochemical cell diagram is drawn adopting the following 
conventions:

• Reduction reaction occurs at the electrode on the right.
• The symbol ‘|’ indicates a phase boundary, such as the boundary between a solid 

electrode and a solution.
• The symbol ‘�’ indicates a liquid junction, such as a porous wall separating a solu-

tion of CuSO4 and CuCl.
• The symbol ‘||’ or ‘��’ indicates a salt bridge, such as KCl in agarose jelly.

For example, the cell in Figure 10.6 is represented by the followingcell diagram:

Zn(s)|Zn2+||H+|Pt(s)



316 FIELDS AND INTERNAL DEGREES OF FREEDOM

Figure 10.6 An example of a galvanic cell that is driven by 
the reaction Zn(s) + 2H+ → Zn2+ + H2. The two electrode 
chambers are connected through a salt bridge that allows 
for the fl ow of current without introducing a liquid junction 
potential

GALVANIC AND ELECTROLYTIC CELLS

A cell in which a chemical reaction generates an electric potential difference is called 
a galvanic cell; if an external source of electric voltage drives a chemical reaction, 
then it is called an electrolytic cell.

Let us consider a simple reaction. When Zn reacts with an acid, H2 is evolved. 
This reaction is a simple electron-transfer reaction:

 Zn s H Zn H( ) + → ++ +2 2
2  (10.2.19)

The reason why the electrons migrate from one atom to another is a difference in 
electrical potential; that is, in the above reaction, when an electron moves from a 
Zn atom to an H+ ion, it is moving to a location of lower potential energy. An 
interesting possibility now arises: if the reactants are placed in a ‘cell’ such that the 
only way an electron transfer can occur is through a conducting wire, then we have 
a situation in which a chemical affi nity drives an electric current. Such a cell would 
be a galvanic cell, as shown in Figure 10.6, in which the sum of the electrode reac-
tions’ half-reactions is (10.2.19) and the fl ow of electrons occurs through an external 
circuit. Conversely, through an external EMF, the electron transfer can be reversed, 
which is the case in an electrolytic cell.

The EMF generated by a galvanic cell, as shown above, is given by the Nernst 
equation. In the above example the cell EMF is given by
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CONCENTRATION CELL

The affi nity generated by a concentration difference can also generate an EMF. A 
simple example of an AgNO3 concentration cell in which a concentration-driven 
EMF can be realized is shown in Figure 10.7. The two beakers linked by KNO3 salt 
bridge (a gel containing KNO3 solution). A silver electrode is placed in each beaker. 
If the two electrodes are connected by a wire, the difference in electrochemical 
potential of Ag+ ions causes a fl ow of electrons from one silver electrode to another, 
absorbing Ag+ in the beaker that has a higher concentration and releasing them in 
the beaker that has lower concentration.

The reactions at the two electrodes are

 Ag e Ag s and Ag s Ag e+ − + −+ → → +( ) ( ) ( ) ( )β α  (10.2.21)

which amounts to transfer of Ag+ ions from a higher concentration to a lower con-
centration. The electroneutrality is maintained in both beakers by the migration of 
K+ and NO3

− ions through the salt bridge. For such a cell V0 in the Nernst equation 
equals zero because the reaction at one electrode is the reverse of the reaction at the 
other and the standard states of reactants and products are the same. Thus, for a 
concentration cell:
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a
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Ag
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+
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β
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 (10.2.22)

Figure 10.7 A concentration difference can generate an 
EMF. Two beakers containing AgNO3 solutions at different 
concentrations are connected by a KNO3 salt bridge. A 
silver electrode is placed in each cell. The difference in con-
centrations generates an EMF
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Table 10.1 Standard electrode potentials

Electrode reaction V0/V Electrode

1
3

Au3+ + e− → 
1
3

Au 1.50 Au3+|Au

1
2 Cl2(g) + e− → Cl− 1.360 Cl−|Cl2(g)|Pt

Ag+ + e− → Ag(s) 0.799 Ag+|Ag
Cu+ + e− → Cu(s) 0.521 Cu+|Cu
1
2 Cu2+ + e− →

 

1
2Cu(s) 0.339 Cu2+|Cu

AgCl + e− → Ag + Cl− 0.222 Cl−|AgCl(s)|Ag
Cu2+ + e− → Cu+ 0.153 Cu2+,Cu+|Pt

H+ + e− → 
1
2H2(g) 0.0 H+|H2|Pt

1
2Pb2+ + e− →

 

1
2Pb(s) −0.126 Pb2+|Pb(s)

1
2Sn2+ + e− → 

1
2Sn(s) −0.140 Sn2+|Sn(s)

1
2Ni2+ + e− →

 

1
2Ni(s) −0.250 Ni2+|Ni(s)

1
2Cd2+ + e− → 

1
2Cd(s) −0.402 Cd2+|Cd(s)

1
2Zn2+ + e− →

 

1
2Zn(s) −0.763 Zn2+|Zn(s)

Na+ + e− → Na(s) −2.714 Na+|Na(s)
Li+ + e− → Li(s) −3.045 Li+|Li(s)

Note. (a) Changing the stoichiometry does not change V0. (b) If the reaction is reversed, 
the sign of V0 also reverses.

STANDARD ELECTRODE POTENTIALS

Just as the tabulation of the Gibbs energies of formation facilitates the computation 
of equilibrium constants, the tabulation of ‘standard electrode potentials’ facilitates 
the computation of equilibrium constants for electrochemical reactions. A voltage 
is assigned to each electrode half-reaction with the convention that the voltage of 
the hydrogen-platinum electrode, H+|Pt, is zero. That is, the electrode reaction H+ 
+ e− → ½H2(g) at a Pt electrode is taken to be the reference and the voltages associ-
ated with all other electrode reactions are measured with respect to it. The standard 
electrode potentials are the potentials when activities of all the reactants and products 
equal one at T = 298.15 K. For any cell, the voltages of the corresponding standard 
potentials are added to obtain the cell potentials. Since these potential correspond 
to the situation when all the activities are equal to one, it follows from the Nernst 
equation that the standard cell voltage is equal to V0.

Example 10.3 shows how an equilibrium constant may be computed using the 
standard electrode potentials. A list of some of the commonly used standard elec-
trode potentials is given in Table 10.1. In using the standard potentials, one must 
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note that: (a) changing the stoichiometry does not change V0 (b) if the reaction is 
reversed, then the sign of V0 also reverses.

10.3 Isothermal Diffusion

We have already seen in Section 4.3 that the fl ow of particles from a region of high 
concentration to a region of lower concentration is a fl ow driven by unequal chemi-
cal potentials. For a discrete system consisting of two parts of equal temperature T, 
one with chemical potential m1 and molar amount N1 and the other with chemical 
potential m2 and molar amount N2 we have the following relation:

 − = =d d dN N1 2 ξ  (10.3.1)

The entropy production that results from unequal chemical potentials is

 d d diS
A
T

= − −



 = >µ µ ξ ξ2 1 0

Τ  (10.3.2)

The positivity of this quantity, required by the Second Law, implies that particle 
transport is from a region of higher chemical potential to a region of lower chemical 
potential. It is the diffusion of particles from a region of higher chemical potential 
to a region of lower chemical potential. In many situations this is a fl ow of a com-
ponent from a higher concentration to a lower concentration. At equilibrium the 
concentrations become uniform, but this need not be so in every case. For example, 
when a liquid is in equilibrium with its vapor or when a gas reaches equilibrium in 
the presence of a gravitational fi eld, the chemical potentials becomes uniform, not 
the concentrations. The tendency of the thermodynamic forces that drive matter fl ow 
is to equalize the chemical potential, not the concentrations.

DIFFUSION IN A CONTINUOUS SYSTEM AND FICK’S LAW

Expression (10.3.2) can be generalized to describe a continuous system as was done 
for the general case of a fi eld in Section 10.1 (Figure 10.3). Let us consider a system 
in which the variation of the chemical potential is along one direction only, say x. 
We shall also assume that T is uniform and does not change with position. Then, 
as in Equation (10.1.13), we have for diffusion that
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For simplicity, let us consider the fl ow of a single component k:
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We note, once again, that the entropy production is the product of a thermodynamic 
fl ow JNk and the force, −(1/T)(∂mk/∂x), that drives it. The identifi cation of a thermo-
dynamic force and the corresponding fl ow enables us to relate the two. Near 
equilibrium, the fl ow is linearly proportional to the force. In the above case we can 
write this linear relation as

 J L
T x

Nk k
k= − ∂

∂






1 µ
  (10.3.5)

The constant of proportionality, Lk, is the linear phenomenological coeffi cient for 
diffusional fl ow. We saw earlier that in an ideal fl uid mixture the chemical potential 
can be written as m( p,T,xk) = m( p,T ) + RTln xk, in which xk is the mole fraction, 
which in general is a function of position. If ntot is the total molar density and nk is 
the molar density of component k, then the mole fraction xk = nk/ntot. We shall assume 
that the change of ntot due to diffusion is insignifi cant, so that ∂lnxk/∂x = ∂lnnk/∂x. 
Then, substituting m( p,T,xk) = m( p,T) + RT ln xk into (10.3.5), we obtain the 
following thermodynamic relation between the diffusion current JNk and the 
concentration:
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Empirical studies of diffusion have led to what is called Fick’s law. According to 
Fick’s law:

 J D
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in which Dk is the diffusion coeffi cient of the diffusing component k. Typical values 
of the diffusion coeffi cients for gases and liquids are given in Table 10.2. Clearly, 
this expression is the same as (10.3.6) if we make the identifi cation
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Table 10.2 Diffusion coeffi cients of molecules in gases and liquids

Compound, in air
(p = 101.325  kPa, T = 293.15  K)

D/10−4  m2  s−1 Solute, in water
(T = 298.15  K)

D/10−9  m2  s−1

CH4 0.106 Sucrose 0.52
Ar 0.148 Glucose 0.67
CO2 0.160 Alanine 0.91
CO 0.208 Ethylene glycol 1.16
H2O 0.242 Ethanol 1.24
He 0.580 Acetone 1.28
H2 0.627

Source: D.R. Lide (ed.) CRC Handbook of Chemistry and Physics, 75th edition. 1994, CRC Press: Ann 
Arbor.



This gives us a relation between the thermodynamic phenomenological coeffi cient 
Lk and the empirical diffusion coeffi cient.

An important point to note is that the thermodynamic relation (10.3.5) is valid 
in all cases, whereas Fick’s law (10.3.7) is not. For example, in the case of a liquid 
in equilibrium with its vapor, since the chemical potential is uniform, (∂mk/∂x) = 0 
and (10.3.5) correctly predicts JNk = 0; but (10.3.7) does not predict JNk = 0 because 
(∂nk/∂x) ≠ 0. In general, if we write (10.3.5) as JNk = −(Lk/T)(∂mk/∂nk)(∂nk/∂x), then 
we see that, depending on the sign of (∂mk/∂nk), JNk can be positive or negative when 
(∂nk/∂x) > 0. Thus, the fl ow is toward the region of lower concentration when 
(∂mk/∂nk) > 0, but the fl ow can be to the region of higher concentration when (∂mk/∂nk) 
< 0. The latter situation arises when a mixture of two components is separating into 
two phases: each component fl ows from a region of lower concentration to a region 
of higher concentration. As we shall see in later chapters, the system is ‘unstable’when 
(∂mk/∂nk) < 0.

THE DIFFUSION EQUATION

In the absence of chemical reactions, the only way the molar density nk(x, t) can 
change with time is due to the fl ow JNk. Consider a small cell of size d at a location 
x (Figure 10.8). The molar amount in this cell is equal to nk(x, t)d. The rate of change 
of the molar amount in this cell is ∂(nk(x,t)d)/∂t. This change is due the net fl ow, i.e. 

JNk(x) JNk(x + δ )

nk(x)

x x + δ
Figure 10.8 In the absence of 
chemical reactions, the change in 
the molar amount of a substance in 
a small cell of size d, at a location x, 
equals the net fl ow, the difference in 
the fl ow JNk into and out of the cell. 
The number of moles in the cell of 
size d is nkd. The net fl ow into the 
cell of size d is given by (10.3.9). 
This difference in the fl ow will cause 
a net rate of change in the mole 
amount ∂(nk(x,t)d)/∂t. On equating 
the net fl ow to the rate of change of 
the molar amount, we obtain the 
equation ∂nk(x,t)/∂ = −∂JNk/∂x
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the difference between the infl ow and the outfl ow of component k in the cell. The 
net fl ow into the cell of size d is equal to

 J x J x J x J x
J
x

J
x

Nk Nk Nk Nk
Nk Nk( ) ( ) ( ) ( )− + = − + ∂
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 = − ∂
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δ δ δ  (10.3.9)

Equating the net fl ow to the rate of change of the molar amount, we obtain the 
equation
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Using Fick’s law (10.3.7), we can write this equation entirely in terms of nk(x, t) 
as
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This partial differential equation for nk(x) is the diffusion equation for the component 
k. It is valid in a homogeneous system. In a homogeneous system, diffusion tends 
to eliminate concentration differences and equalize the concentrations throughout 
the system. But it must be borne in mind that, in general, the thermodynamic force 
tends to equalize the chemical potential, not the concentrations.

THE STOKES–EINSTEIN RELATION

The viscous force on a particle in a fl uid and its diffusive motion are both results of 
random molecular collisions. A particle diffuses due to random collisions it under-
goes with the fl uid molecules, and it can also transfer its momentum to the fl uid 
molecules during these collisions. The latter process appears as the viscous force on 
a macro level. Through thermodynamics one can see that the diffusion coeffi cient 
and the coeffi cient of viscous force or ‘friction’ must be related – a refl ection of the 
fact that both are the result molecular collisions. This relation is called the Stokes–
Einstein relation.

Fick’s law gives us the diffusion current in the presence of a concentration gradi-
ent. In the presence of a fi eld, there is also a current which is proportional to the 
strength of the fi eld. For example, in the presence of an electric fi eld E, an ion car-
rying a charge ezk will drift at constant speed proportional to the magnitude of the 
force ezk|E|. This happens because the force due to the fi eld Ffi eld (whose magnitude 
equals ezk|E| for ions) accelerates the ion till the opposing viscous or frictional force, 
which is proportional to the velocity, balances Ffi eld. When the ion moves at a speed 
v, the viscous force equals gkv, in which gk is the coeffi cient of viscous force. When 
the two forces balance, gkv = Ffi eld and the ion will drift with a terminal velocity v. 
Hence, the terminal or drift velocity can be written as
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Since the number of ions that drift is proportional to the concentration nk, the ionic 
drift gives rise to the following particle current density Ik due to the component k:
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in which the constant Γk = ezk/gk is called the ionic mobility of the ion k. (Note that 
the total electric current density due to all the ions I ez Ik k k= ∑ . ) Similarly, a mole-
cule of mass mk, falling freely in the atmosphere, or any fl uid, will reach a ‘terminal 
velocity’ v = gmk/gk, where g is the acceleration due to gravity. In general, for any 
potential y associated with a conservative fi eld, the mobility a component k is 
defi ned by
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x
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Linear phenomenological laws of nonequilibrium thermodynamics lead to a general 
relation between mobility Γk and the diffusion coeffi cient Dk, This relation can be 
obtained as follows. The general expression for the chemical potential in a fi eld with 
potential y is given by m̃k = mk + tky, in which tk is the interaction energy per mole 
due to the fi eld (10.1.5). In the simplest approximation of an ideal system, if we write 
the chemical potential in terms of the concentration nk, then we have

 �µ µ τ ψk k k kRT n= + +0 ln( )  (10.3.15)

A gradient in this chemical potential will result in a thermodynamic fl ow
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where we have used ∂ ln xk/∂x = ∂ ln nk/∂x. In (10.3.16), the fi rst term on the right-
hand side is the familiar diffusion current and the second term is the drift current 
due to the fi eld. Comparing this expression with Fick’s law (10.3.7) and expression 
(10.3.14) that defi nes mobility, we see that:
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From these two relations it follows that the diffusion coeffi cient Dk and the mobility 
Γk have the following general relation:

 
Γk

k

k

D RT
= τ

 (10.3.18)
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This relation was fi rst obtained by Einstein and is sometimes called the Einstein 
relation. For ionic systems, as we have seen in Section 10.1 (see (10.1.5)), tk = Fzk = 
eNAzk and Γk = ezk/gk. Since R = kBNA, in which kB is the Boltzmann constant and 
NA the Avogadro number, Equation (10.1.16) for ionic mobility Γk becomes
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which leads to the following general relation between the diffusion coeffi cient Dk 
and the friction coeffi cient gk of a molecule or ion k, called the Stokes–Einstein 
relation:

 D
k T

k
k
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γ
 (10.3.20)

Reference

1. Guggenheim, E.A., Modern Thermodynamics. 1933, London: Methuen.

Examples

Example 10.1 Use the barometric formula to estimate the pressure at an altitude 
of 3.0 km. The temperature of the atmosphere is not uniform (so it is not in equi-
librium). Assume an average temperature T = 270.0 K.
Solution The pressure at an altitude h is given by the barometric formula p(h) = 
p(0)e−gMh/RT. For the purpose of estimating, since 78% of the atmosphere consists of 
N2, we shall use the molar mass of N2 for M. The pressure at an altitude of 3.0 km 
will be
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Example 10.2 Calculate the membrane potential for the setup shown in Figure 
10.4.
Solution In this case, the expected potential difference across the membrane is
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0 0257 10
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Example 10.3 Calculate the standard cell potential V0 for the cell shown in Figure 
10.6. Also calculate the equilibrium constant for the reaction Zn(s) + 2H+ → H2(g) 
+ Zn2+.

Considering the two electrode reactions, we have

2H+ + 2e− → H2(g) 0.00 V

Zn(s) → Zn2+ + 2e− +0.763 V

The total cell potential is

V0 = 0 + 0.763 V = 0.763 V

and the equilibrium constant is
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Exercises

10.1 Use the chemical potential of an ideal gas in (10.1.9) and obtain the baro-
metric formula (10.1.10). Use the barometric formula to estimate the boiling 
point of water at an altitude of 2.50 km above sea level. Assume an average 
T = 270 K.

10.2 A heater coil is run at a voltage of 110 V and it draws 2.0 A current. If its 
temperature is equal to 200 °C, what is the rate of entropy production due to 
this coil?

10.3 Calculate the equilibrium constants at T = 25.0 °C for the following electro-
chemical reactions using the standard potentials in Table 10.1:

(i) Cl2(g) + 2Li(s) → 2Li+ + 2Cl−

(ii) Cd(s) + Cu2+ → Cd2+ + Cu(s)
(iii) 2Ag(s) + Cl2(g) → 2Ag+ + 2Cl−

(iv) 2Na(s) + Cl2(g) → Na+ + Cl−.

10.4 If the reaction Ag(s) + Fe3+ + Br− → AgBr(s) + Fe2+ is not in equilibrium it 
can be used generate a EMF. The ‘half-cell’ reactions that correspond to the 
oxidation and reduction in this cell are

Ag(s) + Br− → AgBr(s) + e− V0 = −0.071 V

Fe3+ + e− → Fe2+ V0 = 0.771 V
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(a) Calculate V0 for this reaction.
(b)  What is the EMF for the following activities at T = 298.15 K: aFe3+ = 0.98; 

aBr− = 0.30; aFe2+ = 0.01.
(c) What will be the EMF at T = 0.0 °C?

10.5 The K+ concentration inside a nerve cell is much larger than the concentration 
outside it. Assume that the potential difference across the cell membrane is 
90 mV. Assuming that the system is in equilibrium, estimate the ratio of con-
centration of K+ inside and outside the cell.

10.6 Verify that

n x
n

Dt
x Dt( )

( )
e= −0

2

2 4

π
/

is the solution of the diffusion equation (10.3.11). Using Mathematica or 
Maple, plot this solution for various values of t for one of the gases listed in 
Table 10.2, assuming n(0) = 1. This gives you an idea of how far a gas will 
diffuse in a given time. Obtain a simple expression to estimate the distance a 
molecule will diffuse in a time t, given its diffusion coeffi cient D.

10.7 Compute the diffusion current corresponding to the barometric distribution 
n(x) = n(0)e−gMx/RT.



11  INTRODUCTION TO 
NONEQUILIBRIUM SYSTEMS

Introduction

We live in a world that is not in thermodynamic equilibrium, a world that is con-
stantly evolving, a world that creates order with one hand and destroys it with 
another. The knowledge we acquired during the twentieth century makes this all too 
clear. The radiation fi lling the universe, which is at 2.73 K, is not in equilibrium with 
the matter, and matter itself has been evolving through the production of elements 
in the birth-and-death cycle of stars and planets. On our planet, the atmosphere is 
not in thermodynamic equilibrium: its nonuniform temperature, chemical composi-
tion (which includes the chemically reactive O2) and the many cycles that character-
ize its dynamic nature are all driven by the fl ux of solar energy. Nonequilibrium 
conditions are also common in industry and the laboratory. In contrast, the world 
of nineteenth-century classical thermodynamics is confi ned to equilibrium states; 
processes that occur at a fi nite rate are not a part of the theory. In classical thermo-
dynamics, changes in quantities such as entropy and Gibbs energy are calculable 
only for infi nitely slow ‘quasi-static’ processes. It is a subject that describes a static 
world, so much so that some had called it ‘thermostatics’ [1].* The birth of an 
expanded formalism of twentieth-century thermodynamics, capable of describing 
nonequilibrium systems and irreversible processes that take place at a fi nite rate, 
was an inevitability. In this chapter we present the reader with a brief overview of 
nonequilibrium thermodynamics, a subject that is still evolving with new hypotheses 
regarding rates of entropy production and nonequilibrium states [3].

Nonequilibrium systems can be broadly classifi ed as near-equilibrium systems, in 
which there is a linear relation between forces and fl ows, also called the linear regime, 
and far-from-equilibrium systems, in which the relationship between forces and 
fl ows is nonlinear, also called the nonlinear regime. In the near-equilibrium linear 
regime we will discuss Onsager reciprocal relations. In the far-from-equilibrium 
nonlinear regime, we will encounter spontaneous self-organization and the concept 
of dissipative structures.

* See also the following comment on classical thermodynamics in Ref. [2]: ‘.  .  .  in view of the emphasis 
upon equilibrium, or static, states, it is surely more appropriate to talk in this context of thermostatics 
and reserve the name thermodynamics for the  .  .  .  detailed examination of dynamic, or off-equilibrium, 
situations’.

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd
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11.1 Local Equilibrium

Though classical thermodynamics is based on equilibrium states, it remains very 
important in that it acts as the foundation for the thermodynamics of nonequilib-
rium systems. The formulation of the thermodynamics of irreversible processes is 
based on the concept of local equilibrium. It is a concept that considers a nonequi-
librium system as an ensemble of elemental cells of volume ∆V, each in equilibrium, 
exchanging energy and matter with neighboring cells (Figure 11.1). It assumes that 
each elemental cell is large enough to have a well-defi ned temperature, concentra-
tion, etc., but which is small enough to describe spatial variations of thermodynamic 
quantities. For almost every macroscopic system (whose size typically is of the order 
of a centimeter or larger) we can meaningfully assign a temperature, and other 
thermodynamic variables to every such elemental cell. The size of ∆V of a cell could 
be, for example, of the order (µm)3 = 10−15 L. Detailed studies have shown the valid-
ity of the concept of local equilibrium [4, 5] and that equilibrium thermodynamic 
relations are valid for the thermodynamic variables assigned to an elemental cell. Thus, 
all intensive thermodynamic variables T, p, m, become functions of position x and 
time t:

 T = T(x, t), p = p(x, t) m = m(x, t)

The extensive variables are replaced by densities s, u and nk which are now function 
of position x and time t:

     ∆V
T(x,t)
nk(x,t)

x

Figure 11.1 The concept of local equilib-
rium. A nonequilibrium system could be 
considered as an ensemble of elemental cells 
of volume ∆V, each in equilibrium, exchang-
ing energy and matter with the neighboring 
cells. Temperature T and molar density nk 
vary from cell to cell and in time; they are 
functions of position and time
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where the two fundamental thermodynamic quantities s and u are functions of T, 
nk and other variables that can be measured experimentally. (In some formulations, 
the extensive quantities are replaced by entropy, energy and volume per unit mass). 
The Gibbs relation dU = T dS − p dV + Σkmk dNk is assumed to be valid for small 
volume elements. With U = uV and S = sV, it follows that relations such as
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are valid for the densities in every cell at location x and time t (Exercise 11.1). In 
these equations, the volume does not appear because s, u and nk are densities.

Now let us look at the reasons which make local equilibrium a valid assumption. 
First, we must look at the concept of temperature. In Chapter 1 we saw that the 
Maxwell distribution of velocities describes a gas in equilibrium. The probability P(v) 
that a molecule has a velocity v is given by

 P v v vv( )   e
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d d3
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 β = m
k T2 B

 (11.1.4)

The temperature is identifi ed through the relation (11.1.4), in which m is the mass 
of the molecule and kB is the Boltzmann constant. For velocity distributions that 
signifi cantly deviate from the Maxwell distribution, temperature is not well defi ned. 
On a microscopic scale, in every elemental volume ∆V, we could look at the devia-
tions from the Maxwell distribution to assess the validity of the assumption that T 
is well defi ned in every elemental cell. Only under very extreme conditions do we 
fi nd signifi cant deviations from the Maxwell distribution. Any initial distribution of 
velocities quickly becomes Maxwellian due to molecular collisions. Molecular-
dynamics computer simulations have revealed that the Maxwell distribution is 
reached in less than 10 times the average collision time, which in a gas at a pressure 
of 1 atm is about 10−8 s. Consequently, physical processes that perturb the system 
signifi cantly from the Maxwell distribution have to be very rapid, on a timescale of 
10−8 s. A detailed statistical mechanical analysis of the assumption of local equilib-
rium was done by Ilya Prigogine [4] in 1949, from which one can obtain a very 
precise understanding of its wide-ranging validity.
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Chemical reactions are of particular interest to us. In almost all chemical reac-
tions, only a very small fraction of molecular collisions result in a chemical reaction, 
as we have seen in the Arrhenius theory of rates. Collisions between molecules that 
result in a chemical reaction are called reactive collisions. For a gas at a pressure of 
1 atm, the collision frequency is about 1031 L s−1. If nearly every collision resulted in 
a chemical reaction, then the resulting rate would be of the order of 108 mol L−1 s−1! 
Reaction rates that approach such a large value are extremely rare. Most of the 
reaction rates we encounter indicate that reactive collision rates are many orders of 
magnitude smaller than the collision rates. Between reactive collisions, the system 
quickly relaxes to equilibrium, redistributing the change in energy due to the chemi-
cal reaction. In other words, any perturbation of the Maxwell distribution due to a 
chemical reaction quickly relaxes back to the Maxwellian with a slightly different 
temperature. Hence, on the timescale of most chemical reactions, temperature is 
locally well defi ned. All these aspects can be seen well in molecular dynamics simula-
tions with modern computers [6].

Next, let us look at the sense in which thermodynamic variables, such as molar 
density, and quantities such as entropy that are functions of these variables, may be 
considered functions of position. Every thermodynamic quantity undergoes fl uctua-
tions. For a small elemental volume ∆V we can meaningfully associate a value for 
a thermodynamic quantity Y only when the size of the fl uctuations (root-mean-
square (RMS) value, for example) dY is very small compared with Y. Clearly, this 
condition will not be satisfi ed if ∆V is too small. The thermodynamic theory of 
fl uctuations tells us that, if Ñ is the number of particles in ∆V, the RMS value 
of the fl uctuations δ δ� �N N= . It is easy to calculate the relative value of 
fl uctuations in Ñ, dÑ/Ñ, in a cell of volume ∆V = (1 µm)3 = 10−15 L, fi lled with an ideal 
gas at T = 298 K and p = 1 atm and see that dÑ/Ñ ≈ 2 × 10−4. For liquids and solids, 
the same value of dÑ/Ñ will correspond to an even smaller volume. Hence, it is mean-
ingful to assign a molar density n(x, t) to a volume with a characteristic size of a 
micrometer. The same is generally true for other thermodynamic variables.

There is one more point to note regarding the concept of local equilibrium. 
If we are to assign a molar density to a volume ∆V, then the molar density in this 
volume should be nearly uniform. This means that the variation of molar density 
with position on the scale of micrometer should be very nearly uniform, a condition 
satisfi ed by most macroscopic systems. Thus, we see that a theory based on local 
equilibrium is applicable to a wide range of macroscopic systems. For almost all 
systems that we encounter, thermodynamics based on local equilibrium has excellent 
validity.

EXTENDED THERMODYNAMICS

In the above approach, an implicit assumption is that the thermodynamic quantities 
do not depend on the gradients in the system, i.e. it is postulated that entropy s 
is a function of the temperature T and the mole number density nk, but not their 
gradients. Nevertheless, fl ows represent a level of organization, however small. This 



implies that the local entropy in a nonequilibrium system may be a little smaller 
than the equilibrium entropy. In the recently developed formalism of extended irre-
versible thermodynamics, gradients are included in the basic formalism and small 
corrections to the local entropy due to the fl ows appear [7]. This formalism is needed 
for systems such as shock waves, where very large gradients of nk(x) are 
encountered.

11.2 Local Entropy Production, Thermodynamic Forces and Flows

As we noted in the previous section, the Second Law of thermodynamics must be a 
local law. If we divide a system into r parts, then not only is

 d d d di i i iS S S Sr= + + + ≥1 2 0. . .  (11.2.1)

in which the diSk is the entropy production in the kth part, but also

 diS k ≥ 0  (11.2.2)

for every k. Clearly, this statement that the entropy production due to irreversible 
processes is positive in every part is stronger than the classical statement of the 
Second Law that the entropy of an isolated system can only increase or remain 
unchanged.* It must also be noted that Second Law as stated by (11.2.2) does not 
require that the system be isolated. It is valid for all systems, regardless of the bound-
ary conditions.

The local increase in entropy in continuous systems can be defi ned by using the 
entropy density s(x, t). As was the case of the total entropy, ds = dis + des, with 
dis ≥ 0. We defi ne the rate of local entropy production thus:
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The total rate of entropy production in the systems is
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* One general point to note about the First and Second Laws is that both must be local laws. In fact, 
to be compatible with the principle of relativity, and to be valid regardless of the observer’s state of 
motion, these laws must be local. Nonlocal laws of conservation of energy or of entropy production are 
inadmissible because the notion of simultaneity is relative. Consider two parts of a system spatially 
separated by some nonzero distance. If changes in energy du1 and du2 occur in these two parts simultane-
ously in one frame of reference so that du1 + du2 = 0, the energy is conserved. However, in another frame 
of reference that is in motion with respect to the fi rst, the two changes in energy will not occur simultane-
ously. Thus, during the time between one change of u and the other, the law of conservation of energy 
will be violated. Similarly, the entropy changes in a system dS1 and dS2 at two spatially separated parts 
of a system must be independently positive. The simultaneous decrease of one and increase of the other 
so that their sum is positive is inadmissible.
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Modern thermodynamics formulated by De Donder, Onsager, Prigogine and others 
is founded on the explicit expression for s in terms of the irreversible processes that 
we can identify and study experimentally.

Using conservation laws, the rate of entropy production per unit volume can be 
written as a bilinear product of terms that we can identify as thermodynamic forces 
and thermodynamic fl ows. We shall not present the derivation of this result, but refer 
the reader to more detailed texts [5, 8]. We use the symbols Fk and Jk to represent 
thermodynamic forces and fl ows. Table 11.1 lists some of the most common forces 
and fl ows encountered in nonequilibrium systemsand Table 11.2 lists various empiri-
cal laws that are unifi ed under the thermodynamic formalism. The rate of entropy 
production per unit volume s can be written as

 σ = ∑F Jk
k

k  (11.2.5)

The forces drive the fl ows. In this chapter, for simplicity, we will consider systems in 
which spatial variations of thermodynamic quantities are only along the x coordinate. 

Table 11.1 Table of thermodynamic forces and fl ows

Irreversible process Force Fk
* Flow Jk Units

Heat conduction ∂
∂x T

1 Heat fl ow Jq J  m−2  s−1

Diffusion − ∂
∂x T

kµ Diffusion current Jk mol  m−2  s−1

Electrical conduction − ∂ ∂( ) =φ x
T

E
T

Electric current Ik C  m−2  s−1

Chemical reactions A
T

j Velocity of reaction

 
v

V t
j

j= 1 d
d
ξ mol  m−3  s−1

*  In three dimensions, the derivatives ∂/∂x is replaced by the gradient operator ∇ and corresponding fl ows are vectors.

Table 11.2 Empirical laws

Fourier’s law of heat conduction
J

x
T xq = −

∂
∂

( )κ k = heat conductivity

Fick’s law of diffusion
J D

x
n xk k k= − ∂

∂
( ) Dk = diffusion coeffi cient

Ohm’s law I = V/R or I = E/r I = current, V = voltage, E = electric 
fi eld, r = resistivity (resistance/unit 
length/unit cross-sectional area)

Reaction rate laws
X + Y → Products

Rate = k[X]a[Y]b [X] = concentration (mol  L−1)



The gradient of 1/T, i.e. ∂(1/T)/∂x, for example, is the force that drives the heat fl ow 
Jq; similarly, the gradient ∂(−mk/T)/∂x drives diffusion fl ow Jk (mk is the chemical 
potential of component k and Jk is its fl ow). At equilibrium, all the forces and the 
corresponding fl ows vanish, i.e. the fl ows Jk are functions of forces Fk such that they 
vanish when Fk = 0.

11.3  Linear Phenomenological Laws and Onsager 
Reciprocal Relations

At equilibrium, there are no thermodynamic fl ows because the forces that drive them 
are zero. While it is clear that the fl ows are function of the forces, there is no general 
theory that enables us to specify the fl ow for a given force. However, as is the case 
with many physical variables, we may assume that the fl ows are analytic functions 
of the forces, such that both equal zero at equilibrium. Then, when a system is close 
to the state of equilibrium, the fl ows can be expected to be linear functions of the 
forces. Accordingly, the following relation between the fl ows and the forces is pos-
tulated close to equilibrium:

 J L Fk kj
j

j= ∑  (11.3.1)

Here, Lkj are constants called phenomenological coeffi cients or Onsager coeffi cients. 
Note that (11.3.1) implies that a force such as gradient of 1/T not only can 
cause the fl ow of heat, but can also drive other fl ows, such as a fl ow of matter 
or an electrical current. The thermoelectric effect is one such cross-effect, in which 
a thermal gradient drives not only a heat fl ow but also an electrical current, 
and vice versa (Figure 11.2). The thermoelectric phenomenon was investigated in 
the 1850s by William Thomson [9] (Lord Kelvin), who gave theoretical explanations 
for the observed Seebeck and Peltier effects (Figure 11.2) (but Kelvin’s reasoning 
was later found to be incorrect). Another example is ‘cross-diffusion’, in which 
a gradient in the concentration of one compound drives a diffusion current of 
another.

Phenomenological laws and the cross-effects between the fl ows were indepen-
dently studied, but, until the formalism presented here was developed in the 1930s, 
there was no unifi ed theory of all the cross-effects. Relating the entropy production 
to the phenomenological laws ((11.2.5) and (11.3.1)) is the fi rst step in developing a 
unifi ed theory. For conditions under which the linear phenomenological laws (11.3.1) 
are valid, entropy production (11.2.5) takes the quadratic form:

 σ = >∑ L F Fjk j k
jk

0  (11.3.2)
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Here, the forces Fk can be positive or negative. The coeffi cients Ljk form a matrix. 
A matrix that satisfi es the condition (11.3.2) is said to be positive defi nite. The prop-
erties of positive defi nite matrices are well characterized. For example, a two-
dimensional matrix Lij is positive defi nite only when the following conditions are 
satisfi ed (Exercise 11.3):

 L L L L L L11 22 12 21
2

11 220 0 4> > + <( )  (11.3.3)

In general, the diagonal elements of a positive defi nite matrix must be positive. More 
general properties of positive defi nite matrices can be found in Ref. [8]. Thus, 
according to the Second Law, the ‘proper coeffi cients’ Lkk should be positive (the 
‘cross-coeffi cients’ Lik (i ≠ k) can be positive or negative).

ONSAGER RECIPROCAL RELATIONS

One of the most important results of linear nonequilibrium thermodynamics is that 
Ljk obey the Onsager reciprocal relations: Ljk = Lkj. These relations imply there is an 
equivalence between the cross-effects. The effect of heat fl ow in generating electric 
current is equal to the opposite cross-effect, but this equivalence can only be seen 
when the Onsager coeffi cients Lkj have been correctly identifi ed. This point will be 
made clear when we discuss Onsager relations for the thermoelectric effect later in 
this section. That reciprocal relations Ljk = Lkj were associated with cross-effects had 
already been noticed by Lord Kelvin and others in the nineteenth century. The early 
explanations of the reciprocal relations were based on thermodynamic reasoning 
that was not on a fi rm footing. For this reason, Kelvin and others regarded the 
reciprocal relations only as conjectures. A well-founded theoretical explanation for 
these relations was developed by Onsager in 1931 [10]. Onsager’s theory is based on 
the principle of detailed balance or microscopic reversibility that is valid for systems 
at equilibrium. Discussions of this principle and the derivation of these reciprocal 
relations are beyond the scope of this introductory chapter; they can be found in 
Refs [5] and [8].

ONSAGER RECIPROCAL RELATIONS IN 
THERMOELECTRIC PHENOMENA

As an illustration of the theory presented in the last two sections, let us consider 
thermoelectric effects, which involve the fl ow of heat Jq and electric current Ie in 
conducting wires (in which the subscript indicates that the fl ow corresponds to the 
fl ow of electrons). We shall consider a one-dimensional case in which all the gradi-
ents are along the x axis. For a one-dimensional system, such as a conducting 
wire, the vectorial aspect of Jq and Ie is unimportant and they may be treated as 
scalars. The entropy production per unit volume due to these two irreversible pro-
cesses and the associated linear phenomenological laws are



 σ = ∂
∂





 +J

x T
I E
T

q
e1

 (11.3.4)

 J L
x T

L
E
T

q qq qe= ∂
∂





 +1

 (11.3.5)

 I L
E
T

L
x T

e ee eq= + ∂
∂







1
 (11.3.6)

In the above equations, E is the electric fi eld (volts per unit length). To relate the 
coeffi cients Lqq and Lee with the heat conductivity k and resistance R, we compare 
these equations with those in Table 11.2. Fourier’s law of heat conduction of heat 
conduction is valid when the electric fi eld E = 0. Comparing the heat conduction 
term Jq = −(1/T2)Lqq(∂T/∂x) with Fourier’s law leads to the identifi cation

 κ =
L

T
qq

2
 (11.3.7)

Lars Onsager (1903–1976) (Reproduced courtesy of the AIP Emilio Segre Visual Archive)
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We can now specify more precisely what is meant by the near-equilibrium linear 
regime; by this we mean that Lqq, Lee, etc. may be treated as constants. This is a valid 
assumption only when kT2 can be treated as constant independent of position. Since 
T(x) is a function of position, such an assumption is strictly not valid. It is valid 
only in the approximation that the change in T from one end of the system to 
another is small compared with the average T, i.e. if the average temperature is Tavg, 
then |T(x) − Tavg|/Tavg << 1 for all x. Hence, we may approximate T 2 ≈ T 2

avg and use 
kT 2

avg in place of kT2.
To fi nd the relation between Lee and the resistance R, we note that V E x

l
= − = ∫∆φ d

0
,

in which l is the length of the system. The current Ie is a constant in the entire system. 
At constant temperature (∂T/∂x = 0), the current is due entirely to electrical potential 
difference. With ∂T/∂x = 0, integrating (11.3.6) over the length l of the system we 
obtain

 I x
L
T

E x I l
L
T

V
l l

e
ee

e
eed d or

0 0
∫ ∫= =  (11.3.8)

Comparing this equation with Ohm’s law (Table 11.2), we make the identifi cation

 L
T

R l
T
r

ee
/

= =  (11.3.9)

in which r is the resistance per unit length. As noted in Table 11.2, Ohm’s law can 
also be stated in general as Ie = E/r, in which r is the specifi c resistance, I is the 
current density and E the electric fi eld. Comparing this expression with (11.3.9), 
we have the general relation

 L
T

ee = ρ
 (11.3.10)

When we consider a one-dimensional system, r is replaced by r, the resistance per 
unit length.

The Seebeck effect

Let us now consider relating Lqe and Leq to experimentally measured quantities. In 
the Seebeck effect (Figure 11.2), a temperature difference between two junctions of 
dissimilar metals produces an EMF. For this system, Equations (11.3.5) and (11.3.6) 
may be used. The EMF is measured at zero current. Setting Ie = 0 in (11.3.6) we 
obtain

 0 = − ∂
∂

L ET L
x

Tee eq  (11.3.11)



This equation may be integrated to obtain a relation between the temperature dif-
ference ∆T and the EMF generated due to this temperature difference ∆φ = −∫ E x

l
d

0
.  

In doing this integration, we shall assume that the total variation dT T
l

0∫ = ∆  is 

small and make the approximation TE x T E x T
l l

d d
0 0∫ ∫≈ = − ∆φ.  This gives us the 

relation

 L L T
T I

eq ee= − 



 =

∆
∆
φ

0

 (11.3.12)

Experimentally, the ratio −(∆f/∆T)I=0, called the thermoelectric power, is measured. 
Some typical values of this quantity are shown in Table 11.3. As can be seen from 
this table, the thermoelectric power may be of either sign. Using (11.3.12), the coef-
fi cient Leq can be related to the measured quantities.

The Peltier effect

In the Peltier effect, the two junctions are maintained at a constant temperature 
while a current I is passed through the system (Figure 11.2). This causes a fl ow of 
heat from one junction to another. The two junctions are maintained at the same 
temperature only by removing heat from one of the junctions and thus maintaining 
a steady heat fl ow Jq. Under these conditions, the ratio

 Π =
J

I
q

e

 (11.3.13)

which can be measured, is called the Peltier heat. Some typical values of Π/T are 
shown in Table 11.3. The phenomenological coeffi cient Lqe can be related to the 
Peltier heat as follows. Since there is no temperature difference between the two 
junctions, ∂T/∂x = 0, and Equations (11.3.5) and (11.3.6) become

 J L
E
T

q qe=  (11.3.14)

Table 11.3 Some experimental data confi rming Onsager reciprocal relations

Thermocouple T/°C p/T /mV  K−1 −∆f/∆T /mV  K−1 Lqe/Leq

Cu–Al 15.8 2.4 3.1 0.77
CuNi 0 18.6 20.0 0.930
CuNi 14 20.2 20.7 0.976
CuFe 0 −10.16 −10.15 1.000
CuBi 20 −71 −66 1.08
FeNi 16 33.1 31.2 1.06
FeHg 18.4 16.72 16.66 1.004

Source: Miller, D.G., Chem. Rev., 60 (1960) 15–37.
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Al

Cu

V

T T + ∆Τ

Al

Cu

I

T

Jq

T

(a) Seebeck effect (b) Peltier effect 

–∆φ/∆T Π = Jq /I

Fig. 11.2 An example of a ‘cross effect’ between thermodynamic 
forces and fl ows is the thermoelectric effect. (a) In the Seebeck 
effect, two dissimilar metal wires are joined and the junctions are 
maintained at different temperatures. As a result, an EMF is 
generated. The EMF generated is generally of the order of 10−5 V 
per kelvin of temperature difference and it may vary from sample 
to sample. (b) In the Peltier effect, the two junctions are main-
tained at the same temperature and an electric current is passed 
through the system. The electric current I drives a heat fl ow Jq 
from one junction to the other. The Peltier heat current is gener-
ally of the order of 10−5 J s−1 A−1

 I L
E
T

e ee=  (11.3.15)

Dividing (11.3.14) by (11.3.15) we see Jq/Ie = Lqe/Lee. Using (11.3.13) and (11.3.9) we 
obtain

 L L
T

R l
T
r

qe ee
/

= = =Π Π Π  (11.3.16)

In this manner, all the phenomenological coeffi cients Lqe and Leq can be related to 
the experimental parameters of the cross-effects.

Having identifi ed all the linear phenomenological coeffi cients in terms of the 
experimentally measured quantities, we can now turn to the reciprocal relations 
according to which one must fi nd

 L Lqe eq=  (11.3.17)

Upon using (11.3.12) for Leq and (11.3.16) for Lqe we fi nd

 − 





= − 





=L T
T

L
T T

ee ee or
∆
∆

Π ∆
∆

Πφ φ
 (11.3.18)

Experimental data verifying this prediction for some pairs of conductors is shown in 
Table 11.3. Other reciprocal relations predicted by Onsager have also been verifi ed 
experimentally [8, 11]. Onsager reciprocal relations are excellent demonstrations of the 
usefulness of the modern formulation of thermodynamics to irreversible processes.



11.4 Symmetry-Breaking Transitions and Dissipative Structures

The increase of entropy has often been associated with increase of disorder, the 
destruction of patterns and establishment of uniformity. In many instances this is 
indeed true: diffusion destroys patterns of inhomogeneous distributions of matter, 
and heat conduction tends to make the temperature uniform. For this reason, it is 
sometimes claimed that the evolution of an organized state, such as living cells, is 
in violation of the Second Law. But it is not true that irreversible processes always 
destroy structure and order or organized states. In fact, when a system is far from 
thermodynamic equilibrium, irreversible processes can drive a system to evolve spon-
taneously to organized states. Irreversible processes that make life possible produce 
entropy just as much as those that destroy it; both are in accord with the Second 
Law. In this section we will consider some examples of nonequilibrium systems 
which spontaneously make transitions to organized states or organized structures. 
Since the nonequilibrium organized structures are a result of irreversible processes 
that dissipate free energy and produce entropy, they are called dissipative structures, 
a concept introduced by Ilya Prigogine. In open systems, dissipative structures can 
be maintained indefi nitely through a fl ow of matter and energy.

Ilya Prigogine (1917–2003) (Reproduced courtesy of the University of Texas at Austin)
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GENERAL FEATURES OF DISSIPATIVE STRUCTURES

All dissipative structures have some general features that could be seen through a 
simple example, viz., the convection patterns that were briefl y described in Chapter 
2 (Figure 11.3). These patterns arise in a fl uid placed between two horizontal plates. 
The two plates are maintained at different temperatures by appropriate heating and 

Tc
Heat flow 

Th

(a) (b)

0

Non-symmetric 
state 

λ

α

λC

Symmetric 
state 

(c) 

Figure 11.3 A simple example of a dissipative structure. A fl uid 
is placed between two plates and heated from below. The tempera-
ture difference ∆T = Th − Tc between the two plates drives a heat 
fl ow. (a) When ∆T is small, the heat fl ow is due to conduction and 
the fl uid is static. (b) When ∆T exceeds a critical value, organized 
convection patterns emerge spontaneously. (c) General features of 
dissipative structures. a is an order parameter, which for the con-
vective pattern could be the speed of convective fl ow at the center. 
l is the critical parameter, which can be taken as ∆T for the con-
vective instability. When l < l the system is in a state that has 
the symmetries of the equilibrium state, such as spatial homogene-
ity or time translation invariance. When l > l, the system makes 
a transition to a state which does not have the symmetries of the 
equilibrium state. These states are generally organized sates, such 
as the convection pattern in (b)



cooling. The lower plate is maintained at a higher temperature Th and the upper 
plate is at a lower temperature Tc. The temperature difference ∆T = Th − Tc, is a 
measure of the nonequilibrium conditions of this system. ∆T = 0 is the equilibrium 
state. When ∆T is close to zero, heat fl ow from the lower plate to the upper plate is 
through heat conduction; the fl uid is static. As ∆T increases, there comes a point at 
which the static state of the fl uid becomes unstable and convection begins; the whole 
fl uid then becomes organized into convection cells (Figure 11.3b). The convection 
cells are organized into symmetric patterns. The establishment of these symmetric 
patterns is entirely a consequence of irreversible processes in a fl uid in the presence 
of a gravitational fi eld. Entropy-producing irreversible processes create the orga-
nized convection cells.

The transition to organized states when the value of a parameter, such as ∆T, is 
above a threshold or a critical value is a general feature of all transitions to dissipa-
tive structures. It is somewhat similar to phase transitions that take place at a critical 
temperature.

There is one other general feature we can also see in this example: a change of 
symmetry of the system. Below the convection threshold, the fl uid is the same at all 
points on a horizontal plane (ignoring the obvious effects at the boundary), i.e. the 
system has a translational symmetry. Above the threshold, this symmetry is ‘broken’ 
by the convection patterns. Furthermore, there are two possible convection patterns 
(Figure 11.3b) corresponding to clockwise or counterclockwise fl ow of a particular 
convection cell. Of the two possible convection patterns, the system will evolve to 
one depending on random fl uctuations and other infl uences that might favor one 
of the two patterns. This is the phenomenon of spontaneous symmetry breaking in 
nonequilibrium systems.

To describe these features precisely, two variables are defi ned. The fi rst variable 
is the critical parameter l. It is generally a measure of distance from equilibrium. In 
many situations the critical parameter can be defi ned so that l = 0 corresponds to 
the equilibrium state; when l ≥ l, the system makes a transition to a dissipative 
structure. l is called the critical value of the parameter l. The second variable is 
called the order parameter or amplitude of the dissipative structure a. It is a measure 
of the organized state. It can be defi ned in such a way that a = 0 when l ≤ l, and 
a ≠ 0 when l ≥ l, as shown in Figure 11.3c. The two branches representing a ≠ 0 
correspond to the two possible convection patterns in Figure 11.3b. The symmetry 
of the system changes when a changes from zero to a nonzero value. Figure 11.3c 
summarizes these general features of dissipative structures.

SPONTANEOUS CHIRAL SYMMETRY BREAKING

The concept of dissipative structures and the breaking of symmetry in nonequilib-
rium systems give us insight into a very intriguing asymmetry in nature. The chem-
istry of life as we know it is founded on a remarkable asymmetry. A molecule whose 
geometrical structure cannot be superimposed on its mirror image is said to possess 
chirality, or handedness. Mirror-image structures of a chiral molecule are called 
enantiomers. Just as we distinguish the left and the right hands, the two mirror-image 
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structures are identifi ed as - and -enantiomers ( for ‘levo’ and  for ‘dextro’; R 
and S is another convention for identifying the two enantiomers). Amino acids, the 
building blocks of proteins, and sugars in DNA are chiral molecules. From bacteria 
to man, nearly all amino acids that take part in the chemistry of life are -amino 
acids and the sugars in DNA and RNA are D-sugars (Figure 11.4). As Francis Crick 
notes [12]:

The fi rst great unifying principle of biochemistry is that the key molecules have the same 
hand in all organisms.

Biomolecular asymmetry is all the more remarkable because chemical reactions 
show equal preference for the two mirror-image forms (except for very small differ-
ences due to parity nonconserving electroweak interactions [13–15]).

Biochemistry’s hidden asymmetry was discovered by Louis Pasteur in 1857. A 
century-and-half later, its true origin remains an unsolved problem, but we can see 
how such a state might be realized in the framework of dissipative structures. First, 
we note that such an asymmetry can arise only under far-from-equilibrium condi-
tions; at equilibrium, the concentrations of the two enantiomers will be equal. The 
maintenance of this asymmetry requires constant catalytic production of the pre-
ferred enantiomer in the face of interconversion between enantiomers, called race-
mization. (Racemization drives the system to the equilibrium state in which the 
concentrations of the two enantiomers will become equal.) Second, the transition 
from a symmetric state, which contains equal amounts of L- and D-enantiomers, to 
a state of broken symmetry or an asymmetric state, in which the two enantiomers 
are present in unequal amounts, must happen when the value of an appropriately 
defi ned critical parameter exceeds a threshold value. These features can be illustrated 
using a model reaction.

In 1953, F.C. Frank [16] devised a simple model reaction scheme with chiral 
autocatalysis that could amplify a small initial asymmetry. We shall modify this 
reaction scheme so that its nonequilibrium aspects, instability and transition to 
an asymmetric state can be clearly seen. The reaction scheme we consider, which 
includes chirally autocatalytic reactions, is shown below.

COOHNH
H

R

HOOC NH
H

R

L D

Figure 11.4 The  and  forms of amino 
acids. With only very rare exceptions, the 
amino acids in living cells are of the  form
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 X X PL D
f+  →k3  (11.4.5)

Each enantiomer of X is produced directly from the achiral* reactants S and T, as 
shown in (11.4.1) and (11.4.3), and autocatalytically, as shown in (11.4.2) and 
(11.4.4). In addition, the two enantiomers react with one another and turn into an 
inactive P. Owing to the chiral symmetry of chemical processes, the rate constants 
for the direct reactions, (11.4.1) and (11.4.3), as well as the autocatalytic reactions, 
(11.4.2) and (11.4.4), must be equal. It is easy to see that at equilibrium the system 
will be in a symmetric state, i.e. [X] = [X] (Exercise 11.4).

Now let us consider an open system into which S and T are pumped and P 
removed. For mathematical simplicity, we assume that the pumping is done in such 
a way that the concentrations [S] and [T] are maintained at a fi xed level and that 
due to removal of P the reverse reaction in (11.4.5) may be ignored. The kinetic 
equations of this system are
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To make the symmetric and asymmetric states explicit, it is convenient to defi ne the 
following variables:

 λ α β= [ ][ ] = − = +
S T

X X X XL D L D[ ] [ ] [ ] [ ]
2 2

 (11.4.8)

When Equations (11.4.6) and (11.4.7) are rewritten in terms of a and b we have 
(Exercise 11.5)

 d
d

r f r
α α λα αβ
t

k k k= − + −1 2 22  (11.4.9)

* Objects that do not possess a sense of handedness are called achiral. The molecule NH3 is an example 
of an achiral molecule.

SYMMETRY-BREAKING TRANSITIONS AND DISSIPATIVE STRUCTURES 343



344 INTRODUCTION TO NONEQUILIBRIUM SYSTEMS

 d
d

f r f r
β λ β λβ β α β α
t

k k k k k= − + − + − −1 1 2 2
2 2

3
2 2( ) ( )  (11.4.10)

The above system has the reaction mechanism needed to make a transition to a 
dissipative structure in which the chiral symmetry between the two enantiomers is 
broken. The breaking of chiral symmetry is in the following sense: though the reac-
tion mechanism and the rates for the production of the two enantiomers are identi-
cal, the system reaches a state in which the concentrations of the two enantiomers 
are unequal. The overall features of this system are similar to those in the previous 
example of convection patterns. For this open system, whose kinetics are described 
by (11.4.6) and (11.4.7), the critical parameter l and the order parameter a can be 
defi ned as shown in (11.4.8). The behavior of this system is summarized in Figure 
11.5. The symmetric state, in which the amounts of X and X are equal, is charac-

Figure 11.5 A simple autocatalytic reaction scheme in which X and X are 
produced with equal preference. However, in an open system this leads to a 
dissipative structure in which X ≠ X, a state of broken symmetry. At the 
bottom is a diagram showing some general features of transitions to dissipa-
tive structures and the way the rate of entropy production s behaves as a 
function of the critical parameter l



terized by a = 0; the asymmetric state is one in which a ≠ 0. There exists a critical 
value of l beyond which the symmetric state becomes unstable and the system makes 
a transition to an asymmetric state. In the asymmetric state, a > 0 or a < 0, each 
corresponding to the dominance of one of the enantiomers, X or X. Using the 
Mathematica code provided for the numerical solutions of (11.4.6) and (11.4.7) in 
Appendix 11.1, these features can be studied and the behavior of this system explored 
(Figure 11.6). A full mathematical analysis and the determination of the critical 
value l is beyond the scope of this introductory chapter, but it can be found in Ref. 
[8]. The rate of entropy production in this system can also be computed using the 
general formula (9.5.11)

 σ ξ= = = −∑ ∑1 1
V

S
t V

A
T t

R R R R Rk k

k
k k k k

k

d
d

d
d

/i
f r f r( ) ln( )  (11.4.11)

in which Rkf and Rkr are the forward and reverse reaction rates of reactions (11.4.1)–
(11.4.5) and R is the universal gas constant. The behavior of s as a function of l is 
shown in Figure 11.5; there is a sharp change in its slope at the transition point.

The above example gives us insight into how the chiral asymmetry we see in the 
molecules of life might have arisen under prebiotic conditions. It is also clear that 
the maintenance of this asymmetric state requires continuous production of entropy. 
The ‘fi rst great unifying principle of biochemistry’ is a clear indication that the entire 
edifi ce of life stands as a dissipative structure.

11.5 Chemical Oscillations

Oscillation of a pendulum and the orbital motion of planets are by far the most 
commonly discussed periodic phenomena in physics. Their description is a triumph 
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[X] & [Y]

Figure 11.6 Time evolution of X and X, 
obtained using Mathematica Code A given 
in Appendix 11.1, showing how, for l > l, 
a small initial fl uctuation in X grows to 
establish a state of broken symmetry in which 
the concentrations of X and X are unequal. 
Initial values: [X]0 = 0.002 and [X]0 = 0.0
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of Newtonian mechanics. But there is one fundamental aspect that must be noted 
about these quintessential ‘clocks’: they are governed by time-reversible laws of 
mechanics and, as such, make no fundamental distinction between the system’s 
evolution into the future and into the past. The equations of motion remain invari-
ant when time t is replaced by −t. This means that by looking at such periodic motion 
it is impossible to say whether we are seeing evolution of the system into the past 
or into the future. If we imagine the motion of a pendulum or a planet running 
backwards in time, we see another possible motion that is consistent with all the 
laws of mechanics. The same is true for all periodic phenomena described using 
time-reversible laws. But there is a wide range of periodic phenomena that we see 
all around us that is fundamentally different from pendulums and planets: the 
beating of the heart, the fl ashing of a fi refl y, and the chirping of a cricket are gov-
erned by irreversible processes that are not time symmetric. As a consequence, if we 
imagine these periodic phenomena running backwards in time then we see processes 
that are impossible, i.e. processes that cannot be realized because they violate the 
Second Law. Their description is in the realm of thermodynamics, not mechanics. 
In this section we will see examples of periodic phenomena in chemical systems; 
irreversible chemical kinetic equations describe their behavior. In these systems, the 
concentrations of the reactants oscillate with clocklike periodicity and the process 
continuously generates entropy.

Some early reports on observations of concentration oscillations were discounted 
because it was widely believed that such behavior was not consistent with thermo-
dynamics. It was for this reason that the report on oscillating reactions by Bray in 
1921 and Belousov in 1958 were met with skepticism [17]. While it is true that oscil-
lations of the extent of reaction x about its equilibrium value violate the Second 
Law, oscillation of concentrations can occur in nonequilibrium systems with 
continuous increase in x without any violation of the Second Law. A continuous 
increase in entropy accompanies such oscillations. When it was realized that systems 
far from thermodynamic equilibrium could exhibit oscillations, interest in these and 
other oscillating reactions rose sharply and gave rise to a rich study of dissipative 
structures in chemical systems.

THE BRUSSELATOR

In 1968, Prigogine and Lefever [18] developed a simple model chemical reaction 
which demonstrated clearly how a nonequilibrium system can become unstable and 
make a transition to an oscillatory state. This model also proved to be a rich source 
for theoretical understanding of propagating waves and almost every other phenom-
enon observed in real chemical systems that are generally extremely complex. Owing 
to its enormous impact on the study of dissipative structures, it often called the 
Brusselator (after its place of origin, the Brussels school of thermodynamics) or the 
‘tri-molecular model’ due to the tri-molecular autocatalytic step in the reaction 
scheme. Because of its theoretical simplicity, we shall fi rst discuss this reaction. The 
reaction scheme of the Brusselator (in which the reverse reactions rates are assumed 
to be very small and, hence, can be ignored) is the following:



 A Xfk1 →  (11.5.1)

 B X Y Df+  → +k2  (11.5.2)

 2 33X Y Xf+  →k  (11.5.3)

 X Efk4 →  (11.5.4)

The net reaction of this scheme is A + B → D + E. We assume that the concentra-
tions of the reactants A and B are maintained at a desired nonequilibrium value 
through appropriate fl ows. The products D and E are removed as they are formed. 
We also assume that the reaction occurs in a solution that is well stirred and, hence, 
homogeneous and write the following rate equations for the species X and Y:
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The behavior of the intermediates X and Y depends on the relative values of [A] 
and [B] in the system. The steady-state solutions to (11.5.5) and (11.5.6) are defi ned 
as those for which d[X]/dt = 0 and d[Y]/dt = 0. One can easily verify that the station-
ary solutions are (Exercise 11.6)
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When the steady state is close to equilibrium it is stable, i.e. if the system is 
momentarily perturbed by a random fl uctuation it returns to the steady state. But 
as the system is driven away from equilibrium through an appropriate infl ow of 
A and B and an outfl ow of D and E, the steady state (11.5.7) becomes unstable 
and the system makes a transition to a periodic state in which the concentrations of 
[X] and [Y] oscillate. The threshold for the transition to the oscillatory state is 
given by

 [ ] [ ]B Af

f

f f

f f

> +k
k

k k
k k

4

2

3 1
2

2 4
2  (11.5.8)

Using the Mathematica code provided in Appendix 11.1, numerical solutions 
to (11.5.5) and (11.5.6) can be obtained. With these solutions the steady states 
and the transition to oscillations can be easily investigated and the behavior of 
the system under various conditions can be explored. Figure 11.7 shows the oscilla-
tion in [X] and [Y] obtained using this code. The mathematical analysis of the 

CHEMICAL OSCILLATIONS 347



348 INTRODUCTION TO NONEQUILIBRIUM SYSTEMS

Figure 11.7 (a) The Brusselator as an open system with 
an infl ow of A and B and outfl ow of D and E. When 
condition (11.5.8) is satisfi ed, the concentrations of 
X and Y oscillate. (b) Oscillations of X and Y of the 
Brusselator obtained using the Mathematica code given 
in Appendix 11.1, Code B

instability of the steady state and the transition to oscillating state can be 
found in Ref. [8].

THE BELOUSOV–ZHABOTINSKY REACTION

Once it became clear that concentration oscillations are not inconsistent 
with the laws of thermodynamics (as the theoretical models of oscillating 
reactions showed), the neglected 1958 report by Belousov and the later 
experiments of Zhabotinsky reported in a 1964 article [19] gained interest. 
The experimental studies of Belousov and Zhabotinsky on oscillating che-
mical reactions, which were conducted in the Soviet Union, were made 
known to the Western world through the Brussels School of thermo-
dynamics headed by Ilya Prigogine. In the USA, the study of the ‘Belousov–
Zhabotinsky’ oscillations was taken up by Field, Körös and Noyes [20], 
who performed a through study of the reaction mechanism in the early 
1970s. This was an important landmark in the study of oscillating reactions. 
Field, Körös and Noyes identifi ed the key steps in the rather complex 
Belousov–Zhabotinsky reaction and developed a model, which we shall refer 
to as the FKN model, consisting of only three variables that showed how 
the oscillations might arise.



The Belousov–Zhabotinsky reaction is basically catalytic oxidation of an organic 
compound such as malonic acid (CH2(COOH)2). The reaction occurs in an aqueous 
solution and is easily performed in a beaker by simply adding the following reactants 
in the concentrations shown:

 [H+] = 2.0  [CH2(COOH)2] = 0.28  [BrO3
−] = 6.3 × 10−2  [Ce4+] = 2.0 × 10−3 

After an initial ‘induction’ period, the oscillatory behavior can be seen in the varia-
tion of the concentration of the Ce4+ ion, due to which there is a change in color 
from colorless to yellow. Many variations of this reaction (with more dramatic 
variations of color) are known today.

Box 11.1 contains a simplifi ed version of the reaction mechanism based on which 
the FKN model was developed. Later models of the Belousov–Zhabotinzky reac-
tions have included as many as 22 reactions steps. The FKN model of the Belousov–
Zhabotinsky reaction makes the following identifi cation: A = [BrO3

−], X = [HBrO2], 
Y = [Br−], Z = [Ce4+], P = [HBrO] and B = [Org], the organic species that is oxidized. 
In modeling the reaction, [H+] is absorbed in the defi nition of the rate constant. The 
reaction scheme consists of the following steps:

 Rate

 Generation of HBrO : A Y X P A Y2 f+ → + k1 [ ][ ]  (11.5.9)

 Autocatalytic production of HBrO : A X X Z A X2 f+ → +2 2 2k [ ][ ]  (11.5.10)

 Consumption of HBrO : X Y P X Y2 f+ → 2 3k [ ][ ]  (11.5.11)

 2 4
2X A P Xf→ + k [ ]  (11.5.12)

 Oxidation of the organic reactants: B Z / Y B Zf+ → ( ) [ ][ ]f k2 5  (11.5.13)
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Figure 11.8 Experimentally observed oscil-
lations in the Belousov–Zhabotinsky reac-
tion. The concentrations are measured using 
electrodes. The oscillations shown are of 
[Br−]. (Courtesy: John Pojman)
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Box 11.1 The Belousov-Zhabotinsky Reaction and The FKN Model.

The Field–Körös–Noyes (FKN) model of the Belousov–Zhabotinsky reaction consists 
of the following steps, with A = [BrO3

−], X = [HBrO2], Y = [Br−], Z = [Ce4+], P = [HBrO] 
and B = [Org] is the organic species that is oxidized . In modeling the reaction, [H+] is 
absorbed in the defi nition of the rate constant.

• Generation of HBrO2: A + Y → X + P

 BrO3
− + Br− + 2H+ → HBrO2 + HBrO (BZ1)

• Autocatalytic production of HBrO2: A + X → 2X + 2Z

 BrO3
− + HBrO2 + H+ → 2BrO⋅

2 + H2O (BZ2)

 BRO⋅
2 + Ce3+ + H+ → HBrO2 + Ce4+ (BZ3)

The net reaction, (BZ2) + 2(BZ3), is autocatalytic in HBrO2. Since the rate-determining 
step is (BZ2), the reaction is modeled as BrO HBrO Ce HBrO2

H Ce
23

43
2 2− ++  → +

+ +,

• Consumption of HBrO2: X + Y → 2P and 2X → A + P

 HBrO2 + Br− + H+ → 2HBrO (BZ4)

 2HBrO2 → BrO3
− + HBrO + H+ (BZ5)

• Oxidation of the organic reactants: B + Z → (f/2)Y

 CH2(COOH)2 + Br2 → BrCh(COOH)2 + H+ + Br− (BZ6)

 Ce CH (COOH) BrCH(COOH) Br Ce Products2 2 2
4 31

2 2
+ − ++ + → + +[ ]

f
 (BZ7)

The oxidation of the organic species is a complex reaction. It is approximated by a 
single reaction in which (BZ7) is the rate-limiting step. In the FKN model, concentra-
tion ‘[B]’ of the organic species is assumed to be constant. The value of the effective 
stoichiometric coeffi cient f is a variable parameter. Oscillations occur if f is in the range 
0.5–2.4.

The corresponding rate equations for [X], [Y] and [Z] are:
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As in the previous example, the oscillatory behavior of these equations may be 
studied numerically quite easily using the Mathematica code (code C) provided in 



Appendix 11.1 (Figure 11.9). For numerical solutions of the above reaction, one 
may use the following data [21]:
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The Belousov–Zhabotinsky reaction shows oscillations of great variety and com-
plexity; it even exhibits chaos. In chaotic systems arbitrarily close initial conditions 
diverge exponentially; the system exhibits aperiodic behavior. A review by Epstein 
and Showalter summarizes these features [22]. It also produces propagating waves 
and multistability. A large number of very interesting phenomena have been observed 
in this reaction [21, 23].

OTHER OSCILLATING REACTIONS

During the last three decades, many more oscillating chemical reactions have been 
discovered. Indeed, Irving Epstein and coworkers have developed a systematic way 
of designing oscillating chemical reactions, [24, 25]. In biochemical systems, one of 
the most interesting oscillating behaviors is found in the glycolytic reaction. A recent 
monograph by Albert Goldbeter [26] summarizes the vast amount of work done on 
oscillatory biochemical systems.

The above examples of dissipative structures are just the tip of the iceberg of the rich 
and complex world of far-from-equilibrium systems. Chemical oscillations, propagat-
ing waves, and chaotic unpredictable behavior emerging from perfectly deterministic 
kinetic equation have all been identifi ed in physico-chemical systems. The text by 

[X]

[Z]

Figure 11.9 Oscillatory solutions obtained numerically 
using the FNK model of the Belousov–Zhabotinsky 
reaction. In the FKN model, [X] = [HBrO2] and [Z] = 
[Ce4+]. For the Mathematica code used to obtain these 
oscillations, see Appendix 11.1, Mathematica Code C
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Epstein and Pojman [27] is an excellent introduction to this subject. An earlier book by 
Nicolis and Prigogine [28] gives a more advanced overview. For further reading in this 
subject, a list of titles is provided in the ‘Further reading’ section.

Appendix 11.1 Mathematica Codes

The following codes give numerical solutions for the chemical kinetic equations 
discussed in this chapter. As in Chapter 9, NDSolve is used to obtain numerical 
solutions. The results can be plotted using the Plot command. Numerical output 
can be exported to graphing software using the Export command.

CODE A: CHIRAL SYMMETRY BREAKING

(* Code to show chiral symmetry breaking *)

k1f=0.5; k1r=0.01; k2f=0.5; k2r=0.2; k3=1.5; S=1.25; T=S;

R1f:=k1f*S*T; R1r:=k1r*XL[t];

R2f:=k2f*S XL[t]; R2r:=k2r*(XL[t])^2;

R3f:=k1f*S*T; R3r:=k1r*XD[t];

R4f:=k2f*S XD[t]; R4r:=k2r*(XD[t])^2;

R5f:=k3*XL[t]*XD[t];

Soln1=NDSolve[

 {XL’[t]== R1f-R1r + R2f-R2r -R5f,

 XD’[t]== R3f-R3r + R4f-R4r -R5f,

 XL[0]==0.002,XD[0]==0.0},

 {XL,XD},{t,0,100},

 MaxSteps->500]

Plot[Evaluate[{XL[t],XD[t]}/.Soln1],{t,0,50},

 AxesLabel→{"time","[XL]&[XD]"}]

{{XL → InterpolatingFunction[{{0., 100.}}, <>],

 XD → InterpolatingFunction[{{0., 100.}}, <>]}}

- Graphics -



To write output fi les for spreadsheets use the ‘Export’ command and the fi le format 
List. For more detail see Mathematica help fi le for Export command. In the command 
below, the output fi lename is: data1.txt. This fi le can be read by most spreadsheets 
and graphing software.

The command ‘X[t]/.Soln1’ specifi es that X[t] is to be evaluated using Soln1 
defi ned above. TableForm outputs data in a convenient form.

Export[“data1.txt”,

 Table[{t, {XL[t], XD[t]}/. Soln1}, {t, 1, 50}]//TableForm,

 “List”]

data1.txt

To obtain a table of t versus X[t] the following command can be used:

Table[{t, {XL[t], XD[t]}/. Soln1}, {t, 1, 5}]//TableForm

1 0.736564 0.732883

2 0.923537 0.917889

3 0.94403 0.935624

4 0.94778 0.935304

5 0.950967 0.932455

CODE B: THE BRUSSELATOR

The following is the code for the Brusselator. Since no reverse reactions are 
involved, we shall not use the subscripts f and r for the reaction rates and rate 
constants.

(* Chemical Kinetics: The Brusselator *)

k1=1.0; k2=1.0; k3=1.0; k4=1.0; A=1.0; B=3.0;

R1:=k1*A; R2:=k2*B*X[t]; R3:=k3*(X[t]^2)*Y[t];

R4:=k4*X[t];

Soln2=NDSolve[{ X’[t]== R1-R2+R3-R4,

 Y’[t]== R2-R3,

 X[0]==1.0,Y[0]==1.0},

 {X,Y},{t,0,20},

 MaxSteps->500]

{{X → InterpolatingFunction[{{0., 20.}}, <>],

Y → InterpolatingFunction[{{0., 20.}}, <>]}} <CM>

Plot[[Evaluate[{X[t]}/.Soln2],{t,0,20}]
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- Graphics -

Table[{t,Evaluate[{X[t],Y[t]}/.Soln2]},{t,0,10,1}]//TableForm

0 1. 1.

1 0.336806 2.13473

2 0.316948 2.83679

3 0.344197 3.48043

4 0.389964 4.0695

5 0.476017 4.55599

6 0.766371 4.68424

7 3.45347 0.851848

8 1.36828 1.64966

9 0.526015 2.63004

10 0.373263 3.36138

CODE C: THE BELUSOV–ZHABOTINSKY REACTION

The following is the FKN model of the Belousov–Zhabotinsky reaction. Since no 
reverse reactions are involved, we shall not use the subscripts f and r for the reaction 
rates and rate constants.
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- Graphics -

Plot[[Evaluate[{X[t]}/.Soln2],{t,0,20}]
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(* The Belousov-Zhabotinsky Reaction/FKN Model *)

(* X=HBrO2 Y=Br- Z=Ce4+ B=Org A=BrO3- *)

k1=1.28; k2=8.0; k3=8.0*10^5; k4=2*10^3; k5=1.0;

A=0.06; B=0.02;f=1.5;

R1:=k1*A*Y[t]; R2:=k2*A*X[t]; R3:=k3*X[t]*Y[t];

R4:=k4*X[t]^2; R5:=k5*B*Z[t];

Soln3=NDSolve[{

 X’[t]== R1+R2-R3-2*R4,

 Y’[t]== -R1-R3+(f/2)*R5,

 Z’[t]== 2*R2-R5,

 X[0]==2*10^-7,Y[0]==0.00002,Z[0]==0.0001},

 {X,Y,Z},{t,0,1000},

 MaxSteps->2000]

{{X → InterpolatingFunction[{{0., 1000.}}, <>],

 Y → InterpolatingFunction[{{0., 1000.}}, <>],

 Z → InterpolatingFunction[{{0., 1000.}}, <>]}}

Plot[Evaluate[{Z[t],10*X[t]}/.Soln3],{t,0,900},

PlotRange->{0.0,1.5*10^-3}]
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References

 1. Tribus, M., Thermostatics and Thermodynamics. 1961, New York: Van Nostrand.
 2. Yourgrau, W., ven der Merwe, A. and Raw, G., Treatise on Irreversible and Statistical 

Thermophysics. 1982, New York: Dover (pp. 2–3).
 3. Kleidon, A. and Lorentz, R.D., Non-equilibrium Thermodynamics and the Production of 

Entropy: Life Earth and Beyond. 2005, Berlin: Springer.
 4. Prigogine, I., Physica, 15 (1949) 272.
 5. De Groot, S.R. and  Mazur, P. Non-Equilibrium Thermodynamics. 1969, Amsterdam: 

North Holland.
 6. Baras, F. and Malek-Mansour, M., Physica A, 188 (1992) 253.

REFERENCES 355



356 INTRODUCTION TO NONEQUILIBRIUM SYSTEMS

 7. Jou, D., Casas-Vázquez, J., and Lebon, G. Extended Irreversible Thermodynamics. 1996, 
New York: Springer.

 8. Kondepudi, D.K. and Prigogine, I. Modern Thermodynamics: From Heat Engines to 
Dissipative Structures. 1999. Chichester: Wiley.

 9. Thomson, W., Proc. Roy. Soc. (Edinburgh), 3 (1854) 225.
10. Onsager, L., Phys. Rev., 37 (1931) 405.
11. Miller, D.G., Chem. Rev., 60 (1960) 15.
12. Crick, F., Life Itself. 1981, New York: Simon and Schuster (p. 43).
13. Hegstrom, R. and Kondepudi, D.K., Sci. Am., 262 (1990) 108.
14. Mason, S.F. and Tranter, G.E., Chem. Phys. Lett., 94(1) (1983) 34.
15. Hegstrom, R.A., Rein, D.W., and Sandars, P.G.H., J. Chem. Phys., 73 (1980) 2329.
16. Frank, F.C., Biochem. Biophys. Acta, 11 (1953) 459.
17. Winfree, A.T., J. Chem. Ed., 61 (1984) 661.
18. Prigogine, I. and Lefever, R., J. Chem. Phys., 48 (1968) 1695.
19. Zhabotinsky, A.M., Biophysika, 9 (1964) 306.
20. Field, R.J., Körös, E., and Noyes, R.M., J. Am. Chem. Soc., 94 (1972) 8649.
21. Gray, P. and Scott, K.S., Chemical Oscillations and Instabilities. 1990, Oxford: 

Clarendon Press.
22. Epstein, I. R. and Showalter, K.J., J. Phys. Chem., 100 (1996) 13 132.
23. Field, R.J. and Burger, M. (eds), Oscillations and Traveling Waves in Chemical Systems. 

1985, New York: Wiley.
24. Epstein, I., et al., Sci. Am., 248 (1983) 112.
25. Epstein, I.R., J. Chem. Ed., 69: (1989) 191.
26. Goldbeter, A., Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of 

Periodic and Chaotic Behaviour. 1996, Cambridge: Cambridge University Press.
27. Epstein, I.R. and Pojman, J. An Introduction to Nonlinear Chemical Dynamics, 1998. 

Oxford: Oxford University Press.
28. Nicolis, G. and Prigogine, I., Self-Organization in Nonequilibrium Systems. 1977, New 

York: Wiley-Interscience.

Further Reading

Vidal, C. and Pacault, A. (eds), Non-Linear Phenomenon in Chemical Dynamics. 1981, Berlin: 
Springer.

Epstein, I., et al., Sci. Am., 248 (1983) 112.
Field, R.J. and Burger, M. (eds), Oscillations and Traveling Waves in Chemical Systems. 1985, 

New York: Wiley.
State-of-the-Art Symposium: Self-Organization in Chemistry. J. Chem. Ed., 66(3) (1989). 

Articles by several authors.
Gray, P. and Scott, K.S., Chemical Oscillations and Instabilities. 1990, Oxford: Clarendon 

Press.
Manneville, P., Dissipative Structures and Weak Turbulence. 1990, San Diego: Academic 

Press.
Baras, F. and Walgraef, D. (eds), Nonequilibrium Chemical Dynamics: From Experiment to 

Microscopic Simulation. Physica A, 188(Special Issue) (1992).
CIBA Foundation Symposium. Biological Asymmetry and Handedness. 1991. London: John 

Wiley.
Kapral, R. and Showalter, K. (eds), Chemical Waves and Patterns. 1994, New York: 

Kluwer.
Goldbeter, A., Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Peri-

odic and Chaotic Behaviour. 1996, Cambridge: Cambridge University Press.



Exercises

11.1 (a) Show the validity of (11.1.2). (b) Assume that the Gibbs relation 
d d d dU T S p V Nk kk

= − +∑ µ  is valid for a small volume element dV. Show 

 that the relation T s u nk kk
d d d= −∑ µ  in which s = S/dV, u = U/dV and 

 nk = Nk/dV is also valid.

11.2 Calculate the relative value of fl uctuations in Ñ, (dÑ/Ñ) in cell of volume 
∆V = (1 µm)3 = 10−15 L, fi lled with an ideal gas of at T = 298 K and p = 
1 atm.

11.3 For a positive defi nite 2 × 2 matrix, show that (11.3.3) must be valid.

11.4 Show that the equilibrium state of the set of reactions (11.4.1)–(11.4.5) must 
be chirally symmetric, i.e. [X] = [X].

11.5 Using the defi nitions (11.4.8) in (11.4.6) and (11.4.7), obtain (11.4.9) and 
(11.4.10).

11.6 Show that the steady states of (11.5.5) and (11.5.6) are given by (11.5.7).
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12  THERMODYNAMICS OF 
RADIATION

Introduction

Electromagnetic radiation that interacts with matter also reaches the state of thermal 
equilibrium with a defi nite temperature. This state of electromagnetic radiation is 
called thermal radiation; it was also called heat radiation in earlier literature. In fact, 
today we know that our universe is fi lled with thermal radiation at a temperature 
of about 2.73 K.

It has long been observed that heat transfer can take place from one body to 
another in the form of radiation with no material contact between the two bodies. 
This form of heat was called ‘heat radiation’. When it was discovered that motion 
of charges produced electromagnetic radiation, the idea that heat radiation was a 
form of electromagnetic radiation was taken up, especially in the works of Gustav 
Kirchhoff (1824–1887), Ludwig Boltzmann (1844–1906), Josef Stefan (1835–1893) 
and Wilhelm Wien (1864–1928) and its thermodynamic consequences were investi-
gated [1].

12.1 Energy Density and Intensity of Thermal Radiation

We begin by defi ning the basic quantities required to study the properties of thermal 
radiation (here, we follow the classic work of Planck on thermal radiation [1]). 
Radiation is associated with energy density u, which is the energy per unit volume, 
and specifi c intensity or radiance I, which is defi ned as follows (Figure 12.1a): the 
energy incident per unit time on a small area ds due to radiation from a solid angle 
dΩ (=sinqdqdj) which makes an angle q with the surface normal equals IcosqdΩds. 
The total amount of radiation incident on one side of the area ds (Figure 12.1b) is 

equal to 
θ

π

ϕ

π

θ

π

ϕ

π
θ θ θ θϕ π

= = =∫ ∫ ∫ ∫ =
0 0

2

0

2/2

=0

/2
cos d = cos sin dI I IΩ . The quantity pI is called 

the radiation intensity, irradiance or radiant fl ux density. A similar defi nition can be 
used for radiation emitted from a small surface area ds, in which case pI is the 
emitted power per unit area of the surface called radiation intensity or irradiance or 
radiant emittance.

The energy density u and radiance I can also be defi ned as functions of 
frequency:

u(n) dn is the spectral energy density of radiation in the frequency range n and n + 
dn (J m−3 Hz−1)
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362 THERMODYNAMICS OF RADIATION

I(n) dn is the spectral radiance in the frequency range n and n + dn 
(W Hz−1 sr−1 m−2)

pI(n) is the spectral intensity or spectral irradiance in the frequency range n and n + 
dn (W Hz−1 m−2)

There is a simple relationship between the spectral radiance I(n) of radiation propa-
gating at a velocity c and its energy density [1]:

 u v
I v
c

( )
( )= 4π

 (12.1.1)

This relation is not particular to electromagnetic radiation; it is valid for any quan-
tity that fi lls space homogeneously and propagates with velocity c in all directions. 
In addition to intensity, electromagnetic radiation has two independent states of 
polarization. For each independent state of polarization, (12.1.1) is valid. For unpo-
larized thermal radiation, the specifi c intensity I(n) consists of two independent 
states of polarization.

As noted by Gustav Kirchhoff (1824–1887), thermal radiation that is simultane-
ously in equilibrium with several substances should not change with the introduction 
or removal of a substance.

Hence, I(n) and u(n) associated with thermal radiation must be functions only of 
the temperature T, independent of the substances with which it is in equilibrium. 
Therefore, we shall write thermal energy density and radiance as u(T, n) and I(T, n) 
respectively.

dσ

dσ

θ

I(T,n)

dΩ 

I(T,ν)

πΙ(T,ν)

(a)     (b)

Figure 12.1 (a) Defi nition of spectral radiance I(T, n). 
The energy fl ux incident on the area element ds, from a 
solid angle dΩ = sin qdqdj is given by I(T,v)cosqdΩds. 
Here, q is the angle between the normal to ds and the 
incident radiation. (b) The total amount of radiation inci-
dent on ds from one side, the intensity of radiation, 
equals pI(T, n). For electromagnetic radiation, the spec-
tral intensity pI(T, n) contains two independent states of 
polarization



A body in thermal equilibrium with radiation is continuously emitting and absorb-
ing radiation. The spectral absorptivity ak(T, n) of a body k is defi ned as the fraction 
of the incident thermal radiance I(T, n) that is absorbed by the body k in the fre-
quency range n and n + dn at a temperature T. The thermal radiation absorbed by 
the body in the solid angle dΩ equals ak(T, n)I(T, n) dΩ. Let Ik(T, n) be the spectral 
radiance of the body k. Then the power emitted per unit area into a solid angle dΩ 
equals Ik(T, n) dΩ. At thermal equilibrium, the radiation absorbed by the body k in 
the solid angle dΩ must equal the radiation it emits in that solid angle. It then follows 
that

 
I T v
a T v

I T vk

k

( )
( )

( )
,
,

,=  (12.1.2)

As noted above, thermal radiance I(T, n) must be independent of the substances 
with which it is in equilibrium. Hence, the ratio of a body’s radiance to its absorp-
tivity, i.e. Ik(T, n)/ak(T, n), is independent of the substance k and is a function 
only of temperature T and frequency n. This fundamental observation is called 
Kirchhoff’s law (Box 12.1).

For a perfectly absorbing body, ak(T, n) = 1. Such a body is called a black body; 
spectral radiance is equal to the thermal spectral radiance I(T, n). In this context, 
another parameter, called the emissivity ek of a body k, is defi ned as the ratio of its 
spectral radiance Ik(T, n) to that of a black body’s, i.e. ek = Ik(T, n)/I(T, n). Thus, 
Kirchhoff’s law (12.1.2) can also be stated as

emissivity ek = absorptivity ak

Gustav Kirchhoff (1824–1887) (Reproduced with permission from the Edgar Fahs Smith 
Collection, University of Pennsylvania Library)
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364 THERMODYNAMICS OF RADIATION

At the end of the nineteenth century, classical thermodynamics faced the challenge 
of determining the exact functional form of u(T, n) or I(T, n). None of the deduc-
tions based on the laws of physics that were known at that time agreed with experi-
mental measurements of u(T, n). This fundamental problem remained unsolved until 
Max Planck (1858–1947) introduced the revolutionary quantum hypothesis. With 
the quantum hypothesis, according to which matter absorbed and emitted radiation 
in discrete bundles or ‘quanta’, Planck was able to derive the following expression 
which agreed well the observed frequency distribution u(T, n):

B

CA

I(T,ν)

aI
Ik

Box 12.1 Kirchhoff ’s Law

Kirchhoff ’s law states that, at thermal equilibrium, the ratio Ik(T, n)/ak(T, n) of emissive 
radiance Ik(T, n) of a body k to its absorptivity ak(T, n) is independent of the body and 
is equal to the radiance of thermal radiation I(T, n):

I T
a T

I Tk

k

( )
(

( )
,
, )

,
ν
ν

ν=

For a perfectly absorbing body, ak(T, n) = 1. Such a body is called a black body; its 
spectral radiance is equal to the thermal spectral radiance I(T, n). The emissivity ek of 
a body k is defi ned as the ratio of its spectral radiance to that of a black body: ek = 
Ik(T, n)/I(T, n). Thus, Kirchhoff ’s law can also be stated as

emissivity ek = absorptivity ak

at thermal equilibrium.

The emissive power of a body k is the power emitted per unit area into all directions 
in a hemisphere. It equals pIk(T, n). The emissivities of some materials are shown 
below:

Material Emissivity

Lampblack 0.84
Polished copper 0.023
Cast iron 0.60–0.70
Polyethylene black plastic 0.92
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3

3

π ν ν
ν

 (12.1.3)

Here, h = 6.626 × 10−34 J s is Planck’s constant and kB = 1.381 × 10−23 J K−1 is the 
Boltzmann constant. We shall not present the derivation of this formula here (which 
requires the principles of statistical mechanics). Finally, we note that total energy 
density of thermal radiation is

 u T u T( ) ( )=
∞

∫
0

, dν ν  (12.1.4)

When functions u(T, n,) obtained using classical electromagnetic theory were used 
in this integral, the total energy density u(T, n) turned out to be infi nite. The Planck 
formula (12.1.3), however, gives a fi nite value for u(T, n).

12.2 The Equation of State

It was clear even from the classical electromagnetic theory that a fi eld which interacts 
with matter and imparts energy and momentum must itself carry energy and 

Max Planck (1858–1947) (Reproduced courtesy of the AIP Emilio Segre Visual Archive)
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366 THERMODYNAMICS OF RADIATION

momentum. Classical expressions for the energy and momentum associated with the 
electromagnetic fi eld can be found in texts on electromagnetic theory. For the pur-
poses of understanding the thermodynamic aspects of radiation, we need an equa-
tion of state, i.e. an equation that gives the pressure exerted by thermal radiation 
and its relation to the temperature.

Using classical electrodynamics it can be shown [1] that the pressure exerted by 
electromagnetic radiation is related to the energy density u by

 p
u=
3

 (12.2.1)

This relation follows from purely mechanical considerations of force exerted by 
electromagnetic radiation when it is refl ected by the walls of a container. Though it 
was originally derived using classical electrodynamics, (12.2.1) can be more easily 
derived by treating electromagnetic radiation fi lling a container as a gas of photons 
(shown in Box 12.2). We shall presently see that when this equation of state is com-
bined with the equations of thermodynamics, we arrive at the conclusion that the 
energy density u(T, n), and hence I(T, n), is proportional to the fourth power of the 
temperature, a result which is credited to Josef Stefan (1835–1893) and Ludwig 
Boltzmann (1844–1906) and called the Stefan–Boltzmann law. The fact that the 

energy density u T u T v v( ) = ( )
∞

∫ , d
0

 of thermal radiation is only a function of

temperature, independent of the volume, implies that in a volume V the total 
energy is

 U Vu T= ( )  (12.2.2)

Though thermal radiation is a gas of photons, it has features that are different from 
that of an ideal gas. At a fi xed temperature T, as the volume of thermal radiation 
expands, the total energy increases (unlike in the case of an ideal gas, in which it 
remains constant). As the volume increases, the ‘heat’ that must be supplied to such 
a system to keep its temperature constant is thermal radiation entering the system. 
This heat keeps the energy density constant. The change in entropy due to this heat 
fl ow is given by

 d
d d d

eS
Q

T
U p V

T
= = +  (12.2.3)

Once we assign an entropy to the system in this fashion, all the thermodynamic 
consequences follow. Consider, for example, the Helmholtz equation (5.2.11) (which 
follows from the fact that entropy is a state function and, therefore, ∂2S/∂T∂V = 
∂2S/∂V∂T):

 ∂
∂

∂
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V
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2  (12.2.4)



Using (12.2.2) and the equation of state p = u/3 in this equation we can obtain 
(Exercise 12.1)

 4u T T
u T

T
( )

( )= 





∂
∂

 (12.2.5)

Box 12.2 Photon Gas Pressure

A HEURISTIC DERIVATION OF THE PRESSURE OF 
A PHOTON GAS

Let n(n) be the number of photons per unit volume with frequency n. The momentum 
of each photon is hn/c. The radiation pressure on the walls is due to photon collisions. 
Each collision imparts a momentum 2(hn/c) to the wall upon refl ection. Since the 
photons are in random motion, at any instant, the fraction of the photons that will be 
moving in the direction of the wall equals 1/6. Hence, the number of photons that will 
collide with a unit area of the wall in 1 s is n(n)c/6. The total momentum imparted to 
a unit area of the wall per second is the pressure. Hence, we have

p
n c h

c
n h

( )
( ) ( )ν ν ν ν ν= =
6

2
3

Now, since the energy density u(n) = n(n)hn, we arrive at the result

p
u

( )
( )ν ν=
3

A more rigorous derivation, taking all the directions of the photon momentum into 
consideration, also gives the same result. For photons of all frequency we can integrate 
over the frequency n:

p p
u u= = =

∞ ∞

∫ ∫
0 0 3 3

( )
( )ν ν ν νd d

where u is the total energy due to photons of all frequencies and p is the total pressure. 
Note that a similar derivation for the ideal gas gives p = 2u/3, in which u = n(mv 2

avg/2), 
where n is the number of molecules per unit volume and mv 2

avg/2 is the average kinetic 
energy of a molecule.

( )
( )

3

u
p

νν =
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Upon integrating this equation we arrive at the Stefan–Boltzmann law:

 u T T( ) = β 4  (12.2.6)

in which b is a constant. The value of b = 7.56 × 10−16 J m−3 K−4 is obtained by mea-
suring the intensity of radiation emitted by a black body at a temperature T. This 
law can also be written in terms of the irradiance of a black body. By integrating 
(12.1.1) over all frequencies n, we arrive at u(T) = 4pI(T)/c. The irradiance pI(T) 
(which is the power emitted per unit area in all directions in a hemisphere) can now 
be written as

 π β σI
u T c c

T T= = 



 =( )

4 4
4 4 (12.2.7)

in which the constant s = 5.67 × 10−8 W m−2 K−4 is called the Stefan–Boltzmann 
constant.

Using (12.2.6), we can now write the pressure p = u/3 as a function of temperature:

 p T
T

( ) = β 4

3
 (12.2.8)

Equations (12.2.6) and (12.2.8) are the equations of state for thermal radiation. For 
temperatures of order 103 K or less the radiation pressure is small, but it can be quite 
large for stellar temperatures. In the interior of stars, where the temperatures can 
be 107 K, we fi nd, using (12.2.8), that the pressure due to thermal radiation is about 
2.52 × 1012 Pa ≈ 2 × 107 atm!

12.3 Entropy and Adiabatic Processes

For thermal radiation, the change in entropy is entirely due to heat fl ow:

 d d
d d
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= = +

Considering U as a function of V and T, this equation can be written as
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Since U = Vu = VbT 4 (see (12.2.6)) and p = bT 4/3, this equation can be written as

 d d dS T V VT T= 



 + ( )4

3
43 2β β  (12.3.2)



In this equation, we can identify the derivatives of S with respect to T and V:
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By integrating these two equations and setting S = 0 at T = 0 and V = 0, it is easy 
to see (Exercise 12.3) that

 S VT= 4
3

3β  (12.3.5)

The above expression for entropy and the equations of state (12.2.6) and (12.2.8) 
are basic; all other thermodynamic quantities for thermal radiation can be obtained 
from them. Unlike the other thermodynamic systems we have studied so far, the 
temperature T is suffi cient to specify all the thermodynamic quantities of thermal 
radiation: the energy density u(T), the entropy density s(T) = S(T)/V and all other 
thermodynamic quantities are entirely determined by T. There is no term involving 
a chemical potential in the expressions for S or U. If we consider the particle nature 
of thermal radiation, i.e. a gas of photons, then the chemical potential must be 
assumed to equal zero, which is a point that we will discuss in detail in Section 
12.5.

In an adiabatic process the entropy remains constant. From the expression for 
entropy, (12.3.5), the relation between the volume and temperature in an adiabatic 
process immediately follows:

 VT 3 = constant  (12.3.6)

The radiation fi lling the universe is currently at about 2.7 K. The effect of the expan-
sion of the universe on the radiation that fi lls it can be approximated as an adiabatic 
process. (During the evolution of the universe its total entropy is not a constant. 
Irreversible processes generate entropy, but the increase in entropy of radiation due 
to these irreversible processes is small.) Using (12.3.6) and the current value of T, 
one can compute the temperature when the volume, for example, is one-millionth 
of the present volume. Thus, thermodynamics gives us the relation between the 
volume of the universe and the temperature of the thermal radiation that fi lls it.

12.4 Wien’s Theorem

At the end of nineteenth century, one of the most outstanding problems was the 
frequency dependence of the spectral energy density u(T, n). Wilhelm Wien (1864–
1928) made an important contribution in his attempt to obtain u(T, n). Wien devel-
oped a method with which he could analyze what may be called the microscopic 
consequences of the laws of thermodynamics. He began by considering an adiabatic 
compression of thermal radiation. Such a compression keeps the system in thermal 
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equilibrium but changes the temperature so that VT3 = constant (12.3.6). On a 
microscopic level, he analyzed the shift of each frequency n to a new frequency n′ 
due to its interaction with the compressing piston. Since this frequency shift corre-
sponds to a change in temperature such that VT3 = constant, he could obtain a 
relation between how u(T, n) changed with n and T. This led Wien to the conclusion 
that u(T, n) must have the following functional form (for more details see Ref. 
[1]):

 u T f
T

T
T

f
T

( ), ν ν ν ν ν= 



 = 











3 3
3

 (12.4.1)

i.e. u(T, n) is a function of the ratio n/T multiplied by T3. This conclusion follows 
from the laws of thermodynamics. We shall refer to (12.4.1) as Wien’s theorem. Note 
that (12.4.1) is in agreement with Planck’s formula (12.1.3).

It was found experimentally that, for a given T, as a function of n, u(T, n) has 
a maximum. Let nmax be the value of n at which u(T, n) reaches its maximum 
value. Then, because u(T, n)/T3 is a function of the ratio n/T, it follows that u(n/T) 
reaches its maximum at a particular value of the ratio n/T = C1. So, for a given T, 
as a function of n, u(T, n) reaches its maximum at nmax when nmax/T = C1. In other 
words:

 
T

C
νmax

= 1  (12.4.2)

The spectral energy density u(T, n) can be expressed as a function of the wavelength 
l by noting that n = c/l and dn = −(c/l2) dl. Using (12.4.1) we can write u(T, n) 
dn = −T 3(c/lT)3f(c/lT)(c/l2) dl = T 5g(lT) dl, in which g(lT) is an appropriately 
defi ned function of Tl (Exercise 12.5). We can now identify T 5g(lT) dl = u(T, l) 
dl as the spectral energy density as a function of l. It is a function of the product 
lT multiplied by T5. The function u(T, l)/T 5 reaches its maximum for a particular 
value of the product lT = C2. Hence, for a given T, if u(T, l) is plotted as a function 
of l, then its maximum will occur at lmax such that lmaxT = C2. The values of the 
constants C1 and C2 can be obtained using Planck’s formula (12.1.3). Generally, the 
value of C2 is used. We thus have what is called Wein’s displacement law, which tells 
us how the maximum of u(T, l) is displaced by changes in T:

 Tλmax .= × −2 8979 10 3 mK  (12.4.3)

As T increases, lmax decreases proportionately. This conclusion is entirely a conse-
quence of the laws of thermodynamics.

The above method of Wien is general and it can be applied, for example, to an 
ideal gas. Here, the objective would be to obtain the energy density u as a function 
of the velocity v and the temperature. It can be shown [2] that u(T, v) = v4f(v2/T), 
which shows us that thermodynamics implies that the velocity distribution is a func-
tion of v2/T. This is consistent with the Maxwell velocity distribution (1.6.13). Wien’s 



approach shows us how thermodynamics can be used to investigate microscopic 
aspects of systems, such as energy or velocity distributions.

Wien’s analysis and all other classical attempts to obtain the form of u(T, n) for 
thermal radiation not only gave results that did not agree with experiments, but also 
gave infi nite values for u(T, n) when all frequencies n (0 to ∞) were included. It is 
now well known that it was to solve this problem that Planck introduced his 
quantum hypothesis in 1901.

12.5 Chemical Potential of Thermal Radiation

The equations of state for thermal radiation are

 p
u

u T= =
3

4β  (12.5.1)

where u is the energy density and p is the pressure.
If all the material particles in a volume are removed, what was classically thought 

to be a vacuum is not empty but is fi lled with thermal radiation at the temperature 
of the walls of the container. There is no distinction between heat and such radiation 
in the following sense. If we consider a volume fi lled with thermal radiation in 
contact with a heat reservoir (Figure 12.2), then, if the volume is enlarged, the tem-
perature T and, hence, the energy density u of the system are maintained constant 
by the fl ow of heat into the system from the reservoir. The heat that fl ows into the 
system is thermal radiation.

From the particle point of view, thermal radiation consists of photons which we 
shall refer to as thermal photons. Unlike in an ideal gas, the total number of thermal 
photons is not conserved during isothermal changes of volume. The change in the 
total energy U = uV due to the fl ow of thermal photons from or to the heat reservoir 

T

γth 

dQ      µth = 0 

Figure 12.2 Heat radiation in contact with 
a heat reservoir. The energy entering or 
leaving such a system is thermal radiation. 
Though the number of photons is changing, 
dU = dQ − pdV
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must be interpreted as a fl ow of heat. Thus, for thermal radiation, in a reversible 
expansion at constant T we have dS = deS = dQ/T and so we can write

 d d d d dU Q p V T S p V= − = −  (12.5.2)

This equation remains valid even though the number of photons in the system is 
changing. Comparing this equation with the equation introduced by Gibbs, dU = 
TdS − pdV + mdN, we conclude that the chemical potential m = 0. The state in which 
m = 0 is a state in which the partial pressure or the particle density is a function only 
of the temperature. Indeed, in the expression for the chemical potential, mk = m0

k(T) 
+ RT ln(pk/p0), if we set mk = 0 we see that the partial pressure pk is only a function 
of T.

TWO-LEVEL ATOM IN EQUILIBRIUM WITH RADIATION

With the above observations that the chemical potential of thermal radiation is zero, 
the interaction of a two-level atom with black-body radiation (which Einstein used 
to obtain the ratio of the rates of spontaneous and stimulated radiation) can be 
analyzed in a somewhat different light. If A and A* are the two states of the atom 
and gth is a thermal photon, then the spontaneous and stimulated emission of radia-
tion can be written as

 A* A th� + γ  (12.5.3)

 A*+ A 2th thγ γ� +  (12.5.4)

From the point of view of equilibrium of a chemical reaction, the above two reac-
tions are the same. The condition for chemical equilibrium is

 µ µ µγA* A= +  (12.5.5)

Since mg = 0, we have mA* = mA. As we have seen in Chapter 9, if we use the expres-
sion mk = m0

k(T) + RTln(pk/p0) for the chemical potential and note that the concentra-
tion is proportional to the partial pressure, then the law of mass action takes the 
form

 
[

( )
A]

[A*]
= K T  (12.5.6)

On the other hand, looking at the reactions (12.5.3) and (12.5.4) as elementary 
chemical reactions, we may write

 
[ ]
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( )

A][
A*]

thγ = ′K T  (12.5.7)



But because [gth] is a function of temperature only, it can be absorbed in the defi ni-
tion of the equilibrium constant; hence, if we defi ne K(T) ≡ K′(T)/[gth], we recover 
equation (12.5.6), which follows from thermodynamics.

Similarly, we may consider any exothermic reaction

 A B C Heat+ +� 2  (12.5.8)

from the viewpoint of thermal photons and write this reaction as

 A B C th+ +� 2 γ  (12.5.9)

The condition for equilibrium can now be written as

 µ µ µ µγA B C+ = +2  (12.5.10)

Since mg = 0, we recover the condition for chemical equilibrium derived in the 
Chapter 9. For this reaction also, one can obtain K ′(T) similar to that defi ned in 
(12.5.7).

12.6  Matter-Antimatter in Equilibrium with Thermal Radiation: 
The State of Zero Chemical Potential

When we consider interconversion of matter and radiation, as in the case of parti-
cle–antiparticle pair creation and annihilation (Figure 12.3), the chemical potential 
of thermal photons becomes more signifi cant. Similar thermodynamic analysis could 
be done for electron–hole pair production in semi-conductors by radiation. Consider 
thermal photons in thermal equilibrium with electron–positron pairs:

 2γ � e e+ −+  (12.6.1)

At thermal equilibrium we have

 µ µ µγe e+ −+ = 2  (12.6.2)

e–

e

γ γ

+

Figure 12.3 Creation of particle–antiparticle pairs by thermal photons
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For reasons of symmetry between particles and antiparticles, we may assert that me+ 
= me−. Since mg = 0, we must conclude that me+ = me− = 0 for particle–antiparticle pairs 
that can be created by thermal photons.

It is interesting to discuss further this state of matter for which m = 0. For simplic-
ity, let us consider the m = 0 state in an ideal monatomic gas mixture for which
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 (12.6.3)

in which we used the internal energy Uk = Nk [(3/2)RT + Wk] of component k of the 
ideal-gas mixture and its entropy Sk = NkR [(3/2)lnT + ln(V/Nk) + s0] and the ideal-
gas equation pkV = NkRT. As we have already noted in Chapter 2, the theory of 
relativity gives us the absolute value of energy E2 = p2c2 + m2c4. The momentum p = 
0 at T = 0, leaving the rest energy E = mc2. The term Wk is the rest energy of 1 mol 
of the particles: Wk = Mkc2, in which Mk is the molar mass of component k. Quantum 
theory gives us the entropy constant s0 in the expression for entropy. Using Equation 
(12.6.3), we can write the molar density Nk/V as

 N
V

z Tk M c RTk= −( )( )e
/µ 2

 (12.6.4)

in which z(T) is a function of temperature only (in Chapter 17 we can see that it 
is closely related to the ‘partition function’ of an ideal gas). When the process of 
pair production is in thermal equilibrium, since m = 0 the thermal particle density is 
given by
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The corresponding partial pressure is given by

 p RTz Tk
M c RTk
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 (12.6.6)

The physical meaning of the above equations can be understood as follows: just as 
photons of energy hn are excitations of the electromagnetic fi eld, particles of energy 
E = (m2c4 + p2c2)1/2 are also excitations of a quantum fi eld. In the nonrelativistic 
approximation, E ≈ mc2 + p2/2m. According to the Boltzmann principle, in a fi eld, 
the probability P(E) of an excitation of energy E is given by

 P E E EE kT mc p m k T( ) ( ) ( ) [ ( )]∝ =− − +ρ ρe e/ / / B
2 2 2  (12.6.7)

where r(E) is the density of states of energy E (see Chapter 17). If we approximate 
the statistics of theses excitations by classical Boltzmann statistics, the density of 



particles of mass m can be obtained by integrating (12.6.7) over all momenta p. We 
then obtain an expression of the form (12.6.5) in which the molar mass Mk = NAmk. 
Thus, Equations (12.6.5) and (12.6.6) give the density and partial pressure due to 
particles that appear spontaneously at temperature T as thermal excitations of a 
quantum fi eld. In this state in which m = 0, there is no distinction between heat and 
matter; just as it is for thermal photons, the particle density is entirely determined 
by the temperature.

At ordinary temperatures, the thermal particle density obtained above is extremely 
small. Nevertheless, from the point of view of thermodynamic formalism after the 
advent of quantum fi eld theory, it is important to consider this state in which the 
chemical potential vanishes. It is a state of thermal equilibrium that matter could 
reach; indeed, matter was in such a state during the early part of the universe. Had 
matter stayed in thermal equilibrium with radiation, at the current temperature of 
the universe, 2.73 K, the density of protons and electrons, given by (12.6.5) or its 
modifi cations, would be virtually zero. Indeed, the very existence of particles at the 
present temperatures has to be viewed as a nonequilibrium state. As a result of the 
particular way in which the universe has evolved, matter was not able to convert to 
radiation and stay in thermal equilibrium with it.

From (12.6.4) we see that assigning a nonzero value for the chemical potential is 
a way of fi xing the particle density at a given temperature. Since we have an under-
standing of the absolute zero of chemical potential, we can write the chemical poten-
tial of ideal gas particles as
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in which pk,th is the thermal pressure defi ned above. In principle, one may adopt this 
scale of chemical potential for all ideal systems.

CHEMICAL POTENTIAL OF NONTHERMAL RADIATION

From the above discussion, we see how a nonzero chemical potential may be associ-
ated with nonthermal electromagnetic radiation, i.e. radiation that is not in thermal 
equilibrium with matter with which it is interacting. Let us consider matter at a 
temperature T, interacting with radiation whose spectral energy distribution is not 
the Planck distribution (12.1.3) at the same temperature T. For electromagnetic 
radiation of frequency n, whether it is in thermal equilibrium or not, for an energy 
density u(n) the corresponding pressure is

 p v u v( ) ( )= /3  (12.6.9)

Also, as noted in Section 12.1, for any radiation that homogeneously fi lls space, the 
spectral energy density u(n) is related to the intensity of radiance I(n):

 u v I v( ) ( )= 4π /c  (12.6.10)
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We shall denote the Planck distribution at temperature T by uth(T, n) and the associ-
ated pressure and intensity by pth(T, n) and Ith(T, n) respectively, with the subscript 
‘th’ emphasizing that it is thermal radiation. Following (12.6.8), we can write the 
chemical potential of nonthermal radiation as
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When the radiation reaches equilibrium with matter at temperature T, u(n) = 
uth(T, n) and the chemical potential will equal zero.

The same result can also be obtained from the Planck formula by introducing a 
chemical potential m′ = m/NA. When the energy density is
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as is done for bosons in general. Here, the chemical potential is a function of the 
frequency n.

If m′/kBT << 1, then it is easy to see that we can approximately write
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in agreement with expression (12.6.12).
An example of nonthermal radiation is the solar radiation that reaches the Earth. 

The radiation has an initial Planck energy density corresponding to T = 6000 K, 
which we write as uth(6000, n). As it propagates through space from the Sun’s 
surface, the energy density decreases by a factor (rSun/r)2, in which r is the distance 
from the center of the Sun to the Earth’s surface and rSun is the radius of the 
Sun. When solar radiation arrives at the Earth’s surface, which we shall assume 
is at temperature Tearth, its shape is that of a 6000 K Planck distribution, but the 
energy density is much smaller. This radiation is not in thermal equilibrium with 
matter on the surface of the Earth. Using (12.6.11), its chemical potential can be 
written as
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This nonzero chemical potential drives photosynthesis, a topic we will discuss in 
detail in Chapter 13. Ultimately, solar radiation reaches thermal equilibrium and it 
becomes a Planck distribution at Tearth; Earth emits thermal radiation at this tem-
perature into space.
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Examples

Example 12.1 Using the equation of state, calculate the energy density and pres-
sure of thermal radiation at 6000 K (which is approximately the temperature of the 
radiation from the Sun). Also calculate the pressure at T = 107 K.
Solution The energy density is given by the Stefan–Boltzmann law u = bT4, in 
which b = 7.56 × 10−16 J m−3 K−4 (see (12.2.6)). Hence, the energy density is at 6000 K 
is

 u(6000 K) = 7.56 × 10−16 J m−3 K−4 (6000 K)4 = 0.98 J m−3

The pressure due to thermal radiation is given by p = u/3 = (0.98/3) J m−3 = 0.33 Pa 
≈ 3 × 10−6 atm. At T = 107 K, the energy density and pressure are

 u = 7.56 × 10−16 J m−3 K−4 (107 K)4 = 7.56 × 1012 J m−3

 p = u/3 = 2.52 × 1012 Pa = 2.5 × 107 atm

Exercises

12.1 Obtain (12.2.5) using (12.2.1) and (12.2.2) in the Helmholtz equation 
(12.2.4).

12.2 Using Planck’s formula (12.1.3) for u(n, T) in (12.1.4), obtain the 
Stefan–Boltzmann law (12.2.6) and an expression for the Stefan–Boltzmann 
constant b.

12.3 Show that (12.3.5) follows from (12.3.4).

12.4 At an early stage of its evolution, the universe was fi lled with thermal radia-
tion at a very high temperature. As the universe expanded adiabatically, the 
temperature of the radiation decreased. Using the current value of T = 2.73 K, 
obtain the ratio of the present volume to the volume of the universe when 
T = 1010 K

12.5 Thermal spectral radiance I(T, l) dl is defi ned as the radiance in the wave-
length range l and l + dl of thermal radiation at temperature T.
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(a) Show that
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(b) The surface temperature of the Sun is 6000 K. Plot I(6000, l) as a function 
of l and verify that lmax ≈ 483 nm for the solar thermal radiation.
(c) What will lmax be if the Sun’s surface temperature is 10 000 K?

12.6 The total energy of the Earth is in a steady state. This means that the fl ux of 
solar radiation absorbed by the Earth equals that emitted as thermal radia-
tion. (a) Assuming that the average surface temperature of the Earth is about 
288 K, estimate the amount of thermal radiation emitted by the Earth per 
second. (b)Assuming that the temperature of the solar radiation is 6000 K, 
estimate the total rate of entropy due to the thermal radiation fl ux through 
the Earth.

12.7 Estimate the chemical potential of solar radiation at the surface of the Earth 
where matter is at temperature T = 295 K.



13 BIOLOGICAL SYSTEMS

In seeking an understanding of the thermodynamic aspects of life, we must fi rst 
recognize the inadequacy of a description of life as a state of matter; no description 
of life is complete without the inclusion of the irreversible processes that make life 
what it is. The processes bring about macroscopic features such as self-replication 
and adaptation that we can observe in a living cell. From the thermodynamic view-
point, our goal is not so much to seek a precise defi nition of ‘life’ as it is to identify 
some characteristic features of living cells and see how we might understand them 
within the framework of thermodynamics. In his infl uential and inspiring book 
What is Life [1], Erwin Schrödinger established a thermodynamic framework for 
thinking about the processes in a living cell. Later, the concept of dissipative struc-
tures, pioneered by Ilya Prigogine and his coworkers [2], has shed more light on 
how organization could spontaneously arise in systems far from thermodynamic 
equilibrium. The theory of dissipative structures discussed in Chapter 11 reveals how 
entropy-producing irreversible processes can generate order and structure. In addi-
tion, the work of Katchalsky and Curran [3], Peacocke [4], and Caplan and Essig 
[5] focused on biophysical processes and elucidated how modern thermodynamics 
applies to biological systems. Yet fundamental questions regarding the origin of life 
and the evolution of complex organization from the level of individual cells to eco-
systems remain and are, at best, only partially answered. In this chapter we discuss 
thermodynamics aspects of biological processes, in particular the fl ow of Gibbs 
energy that drives the processes associated with life. It is assumed that the reader is 
familiar with the basic structure of a living cell and its overall biochemical working 
and the molecular structure of proteins, DNA and other biomolecules.

13.1 The Nonequilibrium Nature of Life

There are many features of cells that clearly indicate the nonequilibrium nature of 
its state. First, they are open systems that exchange energy and matter with their 
exterior or environment. Plants absorb CO2, H2O and solar energy and expel O2 
during photosynthesis. Other organisms feed on ‘food’ and expel waste. Second, the 
complex network of chemical processes in cells is controlled by enzymes, which are 
protein catalysts. As we have noted in earlier chapters, catalysts have no effect on 
the state of equilibrium. The simple fact that enzymes can alter the state of a cell 
implies that the cell it is not in thermodynamic equilibrium.

There is another aspect of life that indicates, in fact, that it is a far-from-
equilibrium dissipative structure, a concept introduced in Chapter 11. The entire 
biochemical edifi ce of life as we know it is founded upon a fundamental molecular 
asymmetry of its building blocks. Amino acids and the ribose in nucleotides are 

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd



380 BIOLOGICAL SYSTEMS

chiral molecules.* Of the two possible mirror-image structures, named L- and D-
enantiomers, only one kind appears in proteins and DNA of all living cells (L stands 
for levo and D for dextro). With rare exceptions, the chemistry of life is dominated 
by L-amino acids and D-sugars. In the words of Francis Crick [6], ‘The fi rst great 
unifying principle of biochemistry is that the key molecules have the same hand in 
all organisms’. The evolutionary origin of this particular asymmetry is still an 
enigma, but thermodynamics gives us a framework to understand how asymmetry 
might arise under far-from-equilibrium conditions, through instability and symme-
try-breaking transitions as described in Chapter 11. Several examples of spontane-
ous generation of chiral asymmetry in nonequilibrium systems are now known [7]. 
Chiral asymmetry, or dominance of one hand over the other, is not peculiar to bio-
logical systems: it is astonishing that chiral asymmetry pervades the whole universe, 
from elementary particles to the morphology of mammals.

The nonequilibrium state of an organism causes it to respond to changes in exter-
nal factors (such as temperature) in complex and highly sensitive ways. In the case 
of alligators, for example, the sex of an offspring depends on the temperature at 
which the egg was incubated! In contrast, the response of equilibrium systems is all 
described by Le Chatelier’s principle.

Having noted the nonequilibrium nature of living cells, we can now turn to their 
thermodynamic description. The much-discussed ‘energy fl ow’ in biological systems 
is a concept that is made clear only through thermodynamics; as we shell see in this 
chapter, it is in fact Gibbs energy fl ow. A proper understanding of fl ows of energy 
and matter in nature requires concepts of thermodynamic fl ows that are driven by 
thermodynamic forces. The thermodynamic forces that drive most of the ‘fl ows’ in 
biological systems are affi nities. When affi nity is the difference in chemical potential 
between reactants and products, the corresponding fl ow is a chemical reaction; when 
it is the difference in chemical potential from one location to another, the fl ow is 
transport of matter.

As summarized in Figure 13.1, biochemical processes are ‘fl ows’ driven by chemi-
cal affi nities. At the top of the fl ow is the state of high chemical potential. It consists 
of CO2, H2O and solar radiation. Facilitated by enzymes, the system produces car-
bohydrates, which we shall indicate by (CH2O), as it moves to states of lower chemi-
cal potential. The number of possible compounds that can be synthesized from CO2 
and H2O is enormous; enzymes channel the synthesis towards the production of 
‘biomolecules’. In the following sections we shall look at some of the specifi c chemi-
cal steps in more detail.

Regarding the entropy of the cell, it is clear that the irreversible processes occur-
ring in it continuously produce entropy, as indicated in Figure 13.1. This does not 
result in a continuous increase in the entropy of the cell, however, because there is 
a net outfl ow of entropy. The entropy fl owing out of the system is larger than that 

* Molecules that are not identical to their mirror image, i.e. molecules that have a sense of handedness 
are called chiral molecules.



fl owing into the system. If we approximate the state of a cell to be a steady state in 
which its entropy remains constant or changes little, then the outfl ow of entropy is 
equal to the rate of entropy production in the organism: deS/dt + diS/dt ≈ 0. The 
rate of entropy production depends on the affi nities Ak and the corresponding reac-
tion velocities dxk/dt:
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which is positive as required by the second law. The complex and delicate state of 
order in biological systems is in fact maintained at the expense of high rates of 
entropy generation.

Figure 13.1 A living cell is an open system that exchanges energy and 
matter. The biochemical activity within the cell consists of entropy-
generating irreversible processes. A complex network of biochemical 
reactions are driven by affi nities in the cell. In each chemical reaction 
some Gibbs free energy is lost. In photosynthetic organisms, all the 
biological activity is driven by the difference between (mCO2

 + mH2O + mg) 
and (mCO2

 + mH2O)
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13.2 Gibbs Energy Change in Chemical Transformations

In Chapter 5 we saw that, at constant p and T, irreversible chemical reactions 
decrease the Gibbs energy or Gibbs free energy. (The usage of the term ‘free energy’ 
reminds us that it is the energy available for doing work. In this chapter we will 
use both terms, Gibbs energy and Gibbs free energy, though the former is 
recommended by the IUPAC). This is made clear in the equation (dG/dt)p,T = 
−T(diS/dt) = −ΣkAk(dxk/dt)p,T < 0. To understand the meaning of this equation, let 
us consider the transformation of the reactants to products in the following 
reaction:

 X W Z Y+ +�  (13.2.1)

We shall consider three types of transformation, i.e. reversible, irreversible and what 
are called ‘standard transformations’, and calculate the corresponding changes in 
Gibbs free energy. Transformations from reactants to products and the associated 
changes in Gibbs free energy could be understood using van’t Hoff reaction cham-
bers, as shown in Figure 13.2. The reacting compounds X, W, Y and Z enter and 
exit the reaction chamber through a membrane that is permeable only to one of the 
compounds. For example, the cylinder containing X is separated from the reaction 
chamber by a membrane that is permeable only to X and none of the other com-
pounds, and similarly for the other compounds. Owing to the semi-permeable 
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Figure 13.2 The changes in Gibbs energy during reversible and irreversible 
transformations can be understood using ‘van’t Hoff reaction chambers’. 
Reactants X and W are injected into the central reaction chamber using a 
piston and semi-permeable membrane that is permeable to only one com-
pound; similarly, the products Z and Y are removed from the reaction chamber 
through a semi-permeable membrane. The affi nity A can be maintained at a 
fi xed value during such a transformation by simultaneously injecting the reac-
tants into the reaction chamber and removing the products. In an idealized 
reversible transformation A = 0; the transformation happens at an infi nitesi-
mally slow rate. For an irreversible transformation A ≠ 0 and the transforma-
tion takes place at a fi nite rate



membranes, the chemical potentials of each reactant in the reaction chamber is equal 
to its chemical potential in the chamber containing the pure compound (Figure 
13.2). For illustrative purposes, let us assume that all the compounds are ideal gases. 
For an ideal gas the chemical potential m(pk, T) = m0

k(T) + RTln(pk/p0), in which p0 
is the standard pressure. With this expression for the chemical potential it is easy to 
see that the partial pressure of X in the reaction chamber is equal to the pressure of 
X in the side chamber containing only X.

REVERSIBLE TRANSFORMATION

In an idealized reversible transformation, the reaction chamber is in equilibrium, in 
which case the affi nity A = 0. The transformation of X + W → Y + Z takes place 
when X and W are injected into the reaction chamber by moving appropriate pistons 
to the right which cause an infi nitesimal increase in their chemical potentials; simul-
taneously, Z and Y are removed from the system by moving the corresponding 
pistons to the right, which causes an infi nitesimal decrease in their chemical poten-
tials. Thus, the transformation X + W → Z + Y takes place with an infi nitesimally 
small positive value of A ≈ 0. Such a transformation takes place at a rate approach-
ing zero. If the transformation takes place at constant p and T, then the correspond-
ing change in the Gibbs energy is infi nitesimal: dG = −T diS = −(A dx) ≈ 0, i.e. the 
products generated have the same Gibbs energy as the reactants that were con-
sumed. In a reversible process, the reaction velocity dx/dt is not defi ned.

IRREVERSIBLE TRANSFORMATION

All real chemical transformations occur at a nonzero rate with A ≠ 0. Let us assume 
that A > 0. The corresponding transformation can occur at a constant A when X 
and W are injected into the reaction chamber by maintaining their partial pressures 
above the value of their partial pressures at equilibrium and, at the same time, 
keeping the partial pressures of Z and Y lower than their equilibrium partial pres-
sures. The transformation occurs at a nonzero rate. If the process occurs at constant 
p and T, then the rate of change of the Gibbs energy can be written as
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In accordance with the second law, the Gibbs energy decreases during the transfor-
mation, i.e. the energy available to do mechanical work is reduced, hence the usage 
of the phrase ‘decrease in “free energy” ’. The change in the Gibbs energy for a given 
change in the extent of reaction x is
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 ∆G G G A≡ − = − <∫f i d
i

f

ξ
ξ

ξ

0  (13.2.3)

in which the subscripts ‘i’ and ‘f ’ stand for initial and fi nal states respectively. If the 
transformation proceeds at constant A, then

 ∆G G G A≡ − = − − <f i f i( )ξ ξ 0  (13.2.4)

For the case shown in Figure 13.2, in which the reactants and products are ideal 
gases, for given values of partial pressures pk we can explicitly calculate the changes 
in Gibbs energy. (See Example 13.3 of calculating Gibbs energy changes at the end 
of the chapter.) To compute dG/dt, however, we need the reaction velocity dx/dt, as 
is clear from (13.2.2). The reaction velocity depends on the mechanism of the reac-
tion, the temperature, the pH and other such factors and it can be altered by a 
catalyst.

The above example clearly indicates that the change in Gibbs energy depends on 
the affi nity that is driving the reactions. In biochemical reactions in a cell, we can 
estimate the rate of change in Gibbs energy in a cell only if the reaction affi nities 
and reaction velocities in vivo are known.

STANDARD TRANSFORMATION AND ∆G0′

As we have seen in earlier chapters, the explicit from of the chemical potential is 
mk = m0

k + RTln ak, in which ak is the activity; ak = 1 at a defi ned standard state such 
as p = 1.0 bar and T = 298.15 K. The values of m0

k for a given standard state are tabu-
lated. Most biochemical reactions take place under physiological conditions, in 
which the pH is maintained at a value close to 7.0. For this reason, the biochemical 
standard state is defi ned at pH 7.0 and the Gibbs energy change between standard 
states is written ∆G0′, to distinguish it from the more generally used standard-state 
Gibbs energy change ∆G0 (see Box 13.1). At this standard state, ak = 1 and mk = m0

k 
by defi nition. We shall denote the affi nities corresponding to the biochemical stan-
dard states by A0′.

It has become common practice to tabulate the Gibbs energy change per unit 
change of the extent of reaction x, i.e. (xf − xi) = 1 mol, at the particular affi nity 
A0′ = (m 0

X + m0
W) − (m 0

Y + m0
Z). We shall refer to this affi nity as standard affi nity: the 

corresponding change in the Gibbs energy is written as ∆G0′, and it is called standard 
Gibbs free energy change:

 − ′= ′ = + − + −∆G A0 0 0 0 0 0 1( ) ( )µ µ µ µX W Z Y J mol  (13.2.5)

Since changes in G in any chemical reaction depend on affi nities (which may not 
equal standard affi nities), tabulating and using ∆G 0′ to discuss Gibbs free energy 
changes in biochemical reactions is somewhat arbitrary. Regarding the usage of 



standard Gibbs free energy change ∆G 0′ to discuss Gibbs free energy changes in 
living cells, biochemist Albert Lehninger [8 (p. 33)] comments:

.  .  .  it is clear that the actual free energy changes of metabolic reactions under the conditions 
existing in the cell may be quite different from the standard free energy change. Nevertheless, 
for consistency we must use the arbitrarily defi ned standard free energy changes if we are to 
compare the energetics of chemical reactions quantitatively.

This comment puts the use of ∆G0′ in perspective; it is important to bare in mind 
that tabulated values of ∆G0′ do not represent the actual changes of Gibbs free 
energy in a cell. For a proper understanding of the Gibbs energy changes and 
entropy production in a cell, reaction affi nities in the conditions that exist in the cell 
are needed. The values of A0′ = −∆G0′ for some biochemical reactions are shown in 
Table 13.1. In the same table, estimated values of the reaction affi nities Acell under 
cellular conditions for some reactions in glycolysis, a sequence of ATP-producing 
reactions that occurs in every cell, are also shown. All but the fi rst reaction in Table 
13.1 are reaction steps in glycolysis, which is summarized in Figure 13.6.

13.3 Gibbs Energy Flow in Biological Systems

With the thermodynamic formalism outlined in the previous section, let us look at 
some specifi c processes in the overall process of life summarized in Figure 13.3. The 
ultimate energy source for the biosphere is the sun. Solar energy drives photo-
synthesis and the cycles of life that derive from it.

Box 13.1 Biochemical Standard State

In view of the conditions found in living cells, such as a pH that is maintained close 
to 7.0 through the use of buffers, the standard state used in a biochemical context is 
different from the usual standard state. The biochemical standard state is defi ned as 
follows:

T = 298.15 K, p = 1.0 bar = 100 kPa and pH 7.0

This means that the chemical potential of H+ in the molarity scale, mH+ = mm
H+

0 + RT ln(aH+), 
is defi ned in such a way that the activity aH+ = 1.0 when the [H+] = 10−7 M. For dilute 
solutions, we may approximate the activity by molarity and mH+ = mm

H+
0 + RT ln(cH+/10−7) 

in which cH+ is the molar concentration.
The chemical potential of ionic species, such as ATP, and all biochemical activities 

are to be calculated assuming [H+] = 10−7 M.
For biochemical reactions, the tabulated equilibrium constants are at pH 7.0. 

Accordingly, if a reaction includes [H+], then it is assumed that [H+] = 10−7 M.
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PHOTOSYNTHESIS

Photosynthesis is a process in which solar energy drives the synthesis of large bio-
molecules from CO2, H2O and other small molecules, releasing O2 in the process. It 
is a very complex process. Photosynthetic production of glucose, for example, 
involves over 100 steps. Among the substances produced by photosynthesis are cel-
lulose, proteins and lipids. Cells are open systems that exchange energy and matter 
with their environment. Organisms that synthesize their own ‘food’ (molecules they 
need to build components of their cells) from simple inorganic substances such as 
CO2 and H2O are called autotrophs. If they obtain their energy from the sun, they 
are called photoautotrophs; if they obtain their energy from chemical sources they 
are called chemoautotrophs. Other organisms that obtain carbon compounds and 
energy from autotrophs are called heterotrophs.

One of the most important products of photosynthesis is glucose, C6H12O6. The 
net reaction that generates glucose photosynthetically is

Table 13.1 Standard Gibbs energy changes or standard reaction affi nities A0 = −∆G0′ (T = 298  K, 
pH 7.0, p = 1.0  bar)* and estimated affi nities Acell under cellular conditions

Reaction A0 = −∆G0′/kJ  mol−1 Acell/kJ  mol−1 †

C6H12O6(s) + 6O2(g) → 6CO2(g) + 6H2O 2878
ATP4− + H2O → ADP3− + HPO2−

4 + H+ 30.5 46
D-Glucose + ATP → D-Glucose-6-phosphate + ADP + H+ 16.7 33
Glucose 6-phosphate → Fructose 6-phosphate −1.67 2.5
Fructose 6-phosphate + ATP → Fructose 1,6-

bisphosphate + ADP + H+
14.2 22

Fructose 1,6-bisphosphate → glyceraldehyde 3-phosphate 
+ dihydroxyacetone phosphate

−23.8 1.2

*  Source: Styer, L., Biochemistry (3rd edition). 1988, New York: W. H. Freeman.
†  The standard affi nity or Gibbs energy change used by biochemists is denoted by A0 = −∆G0′. It is the change in Gibbs 
energy at T = 298  K, p = 1.0  bar, pH 7.0, with the concentrations of the reactants and products maintained at a concen-
tration of 1.0  M during the transformation of 1  mol of reactants to 1  mol of products.
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Figure 13.3 Gibbs free energy fl ow in a photosynthetic cell



 6 6 62 2 6 12 6 2CO H O C H O O+ + → +γ  (13.3.1)

in which we have represented solar radiation, or photons, by g. The overall effect 
of this reaction is to bind H atoms to C and remove O atoms; in other words, C is 
‘reduced’. The H atoms in this case come from H2O. Other sources of H atoms are 
also used in photosynthesis. For example, photosynthetic purple bacteria (which 
carry a pigment) obtain H atoms from H2S. The reaction in this case is

 6 12 12 62 2 2 12 6 2CO H S C H O S H O+ + → + +γ  (13.3.2)

Several other H donors can also take part in photosynthetic reactions [8 (chapter 
6)].

The complex process of photosynthesis begins with the absorption of a photon 
by chlorophyll. The entire process consists of two stages, as shown in Figure 13.4. 
Stage I occurs in the presence of light and it essentially splits H2O and releases O2 
while capturing the H atoms; it also converts adenosine diphosphate (ADP) to 
adenosine triphosphate (ATP). In stage II, the H atoms are transferred to CO2 and 
glucose is synthesized. The net reaction is (13.3.1).

For a thermodynamic description of photosynthesis, we need the chemical poten-
tial of solar radiation or photons. The thermodynamic properties of electromagnetic 
radiation or photons are described in terms of its intensity or radiance and energy 
density (described in detail in Chapter 12). In particular, the chemical potential can 
be expressed as a function of energy density or radiance. Once the chemical potential 
of photons is known, the affi nities of photochemical reactions can be written explic-
itly in terms of measurable quantities and the changes in Gibbs energy can be com-
puted using expressions such as (13.2.2). The thermodynamics of electromagnetic 
radiation has been discussed in Chapter 12. For the convenience of the reader, we 
shall summarize the main points of interest leading up to the expression for the 
chemical potential of radiation mg.

Figure 13.4 A summary of photosynthesis. g represents solar photons that 
drive the reactions. Photosynthesis produces glucose and other biomolecules 
through a complex series of reactions that involves over 100 steps. The above 
reaction scheme summarizes the overall energetics of the processes that 
produce glucose (CH2O)6
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Chemical potential of nonthermal radiation

In order to understand the affi nity of reactions such as (13.3.1) quantitatively, we 
need the chemical potential mg of the electromagnetic radiation (solar radiation) that 
takes part in the reaction. Towards this goal, we begin by recalling some thermo-
dynamic properties of radiation that were discussed in detail in Chapter 12.

� At a given temperature T, radiation that is in equilibrium with matter is called 
thermal radiation. Its total energy density (consisting of all frequencies) depends 
only on T and is independent of the kind of matter with which it is interacting. 
At suffi ciently high T, all particles, photons, electrons, positrons, protons, anti-
protons, etc. can exist as thermal radiation. The chemical potential of thermal 
radiation is zero.

� The total energy density uth of electromagnetic thermal radiation or thermal 
photons is given by the Stefan–Boltzmann law:

 u Tth J m K= = × − − −β β4 16 3 47 56 10.  (13.3.3)

The energy density of thermal photons uth(n, T), as function of frequency n and 
temperature T, is given by the Planck formula or Planck distribution:*

 u T
h

c h k Tth /
d

d
B

( , )
e

ν ν π ν ν
ν=

−
8

1

3

3  (13.3.4)

in which c is the velocity of light and h is Planck’s constant. As it is for all thermal 
radiation, the chemical potential associated with the Planck distribution is zero.

� Any energy density u(n) that is not a Planck distribution is nonthermal radiation. 
Only nonthermal radiation has a nonzero chemical potential. In Chapter 12 it was 
shown that (12.6.11)

 µ ν ν
νγ ( ) ln

( )
( , )

= 





RT
u

u Tth

 (13.3.5)

In practice, the spectral radiance I(n) associated with u(n) is the quantity that can 
usually be measured. The radiation power incident on a small surface ds, from a 
solid angle dΩ = sin q dq dj, in the frequency range n and n + dn, equals I(n)dΩdsdn. 
If it is assumed that the intensity is isotropic (same in all directions), then u(n) and 
I(n) have the following relationship:

 u
I
c

( )
( )ν π ν= 4  (13.3.6)

* u(T, n) dn is the energy of radiation whose frequency is in the range n and n + dn, per unit volume.



in which c is the velocity of light. This relationship is valid for thermal radiation. 
Using the defi nition of radiance, it can easily be shown that the total amount of 
power falling on a unit area from all directions in a hemisphere, in the frequency 
range n and n + dn, is equal to pI(n) dn.

With the above formalism, the chemical potential for solar photons can be explic-
itly written in terms of the intensity of solar radiation arriving at the photosynthetic 
reaction site. For scattered sunlight falling on a leaf, we may, as a fi rst approxima-
tion, assume I(n) is isotropic and use (13.3.6) to obtain u(n) from the measured 
radiance I(n).

Solar radiation reaching the Earth originates as thermal radiation from the sun’s 
surface with a corresponding intensity I(n, TS), in which TS is the surface temperature 
equal to 6000 K. As solar radiation propagates through space, the shape of the curve 
I(n, TS) as a function of n remains essentially the same, but its magnitude decreases. 
(In fact, by noting the value of n at which I(n, T) has its maximum, we determine 
the temperature of the sun’s surface.) At a given point on Earth we can write the 
solar intensity as aI(n, TS), in which a is the factor by which the intensity is reduced. 
Example 13.1 at the end of this chapter shows how a can be estimated; just above 
the Earth’s atmosphere a = 2.2 × 10−5. Given the factor a at a given point on the 
Earth where the temperature is TE, we can use (13.3.6) and (13.3.5) and see that the 
chemical potential of the nonthermal solar radiation can be written as

 µ ν α ν
νγ ( ) ln
( , )

( , )
= 





RT
u T

u T
th S

th E

 (13.3.7)

Using this expression, the chemical potential of solar radiation reaching the 
Earth could be estimated as shown in Example 13.2 at the end of this chapter. 
Depending on the wavelength, the chemical potential is in the range 160–
260 kJ mol−1. If we consider the amount reaching the surface of the Earth after taking 
into account the refl ection in the atmosphere, it is even less. The chemical potential 
of solar radiation at the point where photosynthesis is occurring could be 
even lower. Nevertheless, in a reaction such as (13.3.1), the affi nity that drives the 
reaction is signifi cant.

Photochemical transfer of gibbs energy

Using the chemical potential of radiation mg, let us look at the fi rst step of photo-
synthesis (Figure 13.5). This reaction is photo-excitation of chlorophyll followed by 
the transfer of its excitation energy to another molecule. We shall write this set of 
reactions thus:

 Y X+ γ �  (13.3.8a)

 X W Z Y+ +� 1  (13.3.8b)

 Z1 �  Z2

 .  .  .

 Zs sZ−1�  (13.3.8s)
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The exact details are quite complex and can be found in texts on biochemistry [4]. 
However, to understand the general thermodynamic aspects, the exact names and 
nature of the compounds in the reaction scheme are not essential. In (13.3.8a), X is 
the excited state at a higher chemical potential and Y is the ground state. If the 
second reaction (13.3.8b) were absent, then the absorbed photon energy would 
simply be reemitted and eventually the radiation will become thermal radiation and 
its chemical potential will become zero. When the second reaction is included, the 
Gibbs energy of X could result in the generation of Z1, which may preserve or ‘store’ 
some of the Gibbs energy of the incident solar radiation. If the compound Z1 is 
further converted into other compounds Zk, then the Gibbs energy of the incident 
solar radiation would be ‘chemically stored’ in these compounds. In a cell, these 

X W

A1

γ 
µγ 

Y
µY

X
µX

Reversible: Ak = 0 dG = 0
Irreversible: Ak > 0      dG/dt < 0 

A2

W
µW

Z1

1Zµ
A3 Z2

2Zµ
A4 Z3

3Zµ
Zs

Zs
µ

....

γ

Y

Z1 Z2 ... Zs

Y + γ  X            X + W  Z1 + Y            Z 1  Z2  …                 Z s−1  Zs

Figure 13.5 Conversion of Gibbs energy of photons to chemical energy. 
Driven by the high chemical potential of nonthermal radiation or 
photons, W is converted to compounds Z1, Z2,  .  .  .  , Zs. The Gibbs 
energy stored in these compounds is released when their chemical poten-
tials return to their equilibrium values in the absence of nonthermal 
photons. The method of the van’t Hoff reaction chamber described in 
Figure 13.2 can be extended to this series of reactions to elucidate the 
distinction between reversible and irreversible transformations. In each 
reaction chamber, a reaction is taking place with an affi nity Ak. The 
reaction chambers are connected to chambers containing reacting com-
pound through a semi-permeable membrane through which only that 
reactant can pass. Pistons attached to each reservoir can be used to 
maintain the affi nity in each reaction chamber at a desired value. For 
an idealized reversible transformation, Ak ≈ 0. All real transformations 
are irreversible for which Ak ≠ 0. These are accompanied by a loss of 
Gibbs free energy given by expressions (13.3.11) and (13.3.12)



energy-storing compounds correspond to glucose, ATP and other Gibbs-energy-
carrying compounds.

In order to focus on the thermodynamic principles, we have represented a complex 
process of photosynthesis by a simple process of single-molecule conversions 
Zk �  Zj, but this is not at the expense of thermodynamic generality. The thermo-
dynamic analysis of (13.3.8a)–(13.3.8s) could be extended to more complex reactions 
that occur during photosynthesis (with many more reactants and products). During 
the process of respiration and biological activity, the last stage shown in Figure 13.3, 
the chemically stored Gibbs energy is ultimately converted to heat or thermal radia-
tion at the surface temperature of the Earth.

Using the formalism presented in Section 13.2, we can now write the affi nities 
and the rate at which the Gibbs free energy changes in the sequence of reactions 
(13.3.8a)–( 13.3.8s):

 A1 = + −( )µ µ µγY X  (13.3.9a)

 A2 1= + − +( ) ( )µ µ µ µX W Z Y  (13.3.9b)

 A3 1 2= −µ µZ Z  (13.3.9c)

 .  .  .

The change of Gibbs free energy in this series of reactions can be illustrated as was 
done for reaction (13.2.1). As shown in Figure 13.5, we can represent the set of 
reactions (13.3.8a)–(13.3.8s) as a series of van’t Hoff reaction chambers each con-
nected to chambers containing reactants on one side and products on the other. 
Each reacting compound is separated from the reacting chambers by a semi-
permeable membrane that is permeable only to that compound (as in Figure 13.2). 
No Gibbs free energy is lost in a reversible reaction in which Ak ≈ 0. In this case, it 
is easy to see that

 µ µ µ µ µ µγ + = = = =W Z Z Z3 s1 2 . . . Z  (13.3.10)

This equation implies that the chemical potential of the compounds Zk are higher 
than that of W by an amount equal to mg. Thus, every mole of Zk stores an energy 
equal to mg, the molar Gibbs energy of the nonthermal radiation. In this case, the 
conversion of the Gibbs energy of the nonthermal photons to chemical energy is 
without any losses.

In all realistic conditions, the transformation of W to Zk is irreversible in which 
the affi nities Ak > 0. The corresponding rate of loss of Gibbs free energy is

 d d diG T S Ak k
k

= − = − <∑ ξ 0  (13.3.11)

The rate of loss of Gibbs free energy is equal to −ΣkAk(dxk/dt); the remaining Gibbs 
energy of the initial reactants, radiation and W is converted to the Gibbs energy in 
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the compounds Zk. If dNg /dt and dNW/dt are the rates at which photons and W are 
consumed, then the rate at which the Gibbs energy is channeled into the synthesis 
of the photosynthetic products Zk is given by
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γ  (13.3.12)

in which Gsynth is the Gibbs energy in the synthesized compounds Zk.
The actual process of photosynthesis is much more complex than the simple 

scheme presented above, but its thermodynamic analysis could be done along the 
same lines, regardless of the number of reactions involved.

The products of photosynthesis are many. When a plant grows, it not only syn-
thesizes compounds, but it also absorbs water. For this reason, to estimate the 
amount of substance produced in photosynthesis it is necessary to separate the ‘dry 
mass’ from the water. By measuring the Gibbs energy in the dry mass generated in 
the presence of a known fl ux of radiation, the effi ciency of photosynthesis can be 
estimated in various conditions. When the dry mass is combusted, it is converted 
back to its initial reactants, CO2, H2O and other small compounds, and the Gibbs 
energy captured in photosynthesis is released. Carbohydrates release about 15.6 kJ g−1 
on combustion, proteins about 24 kJ g−1 and fats about 39 kJ g−1 [9]. Plant cells 
contain many other compounds that yield less energy upon combustion. On the 
whole, the plant dry mass yields about 17.5 kJ g−1. Under optimal conditions, rapidly 
growing plants can pro-duce around 50 g m−2 day−1, which equals 875 kJ m−2 day−1. 
During this observed plant growth, the amount of solar energy incident on the plants 
averages about 29 × 103 kJ m−2 day−1. From these fi gures we can estimate that plants 
capture solar energy with an effi ciency of about 875/(29 × 103) = 0.03, which is a rather 
low value. A much larger fraction, about 0.33 of solar energy that enters the Earth’s 
atmosphere, goes into the water cycle (see Figure 2.9). A part of the reason for such a 
low effi ciency of photosynthetic capture of solar energy is the low amounts of CO2 in 
the atmosphere (about 0.04% by volume). Plants grow faster at higher levels of CO2.

The rate of photosynthesis depends on the intensity of incident radiation 
I (W m−2). In a leaf exposed to radiation of intensity I, the rate of photosynthesis 
can me measured in terms of the energy captured P (W m−2). P increases with I at 
low intensities, but P reaches a saturation value Pmax at high intensities (see Box 
13.2). The empirical relationship between P and I can be expressed as [9]

 P P
I

K I
=

+max  (13.3.13)

in which K is a constant which is approximately 200 W m−2. The similarity of this 
equation to the Michaelis–Menten equation that describes enzyme kinetics is 
obvious. A representative value of Pmax is about 25 W m−2. It is found that Pmax 
depends on the temperature and the CO2 concentration. On a bright sunny day, 
I ≈ 1000 W m−2. Using (13.3.13) one can estimate the photosynthetic effi ciency at 
various intensities.



The Gibbs energy captured by plants moves up the food chain, sustaining the 
process of life at the micro level and ecosystems on the macro level. Ultimately, this 
‘food’ reacts with O2 and turns into CO2 and H2O, thus completing the cycle. The 
cycle, however, has an awesome complexity, which is the process of life. Finally, 
when an organism ‘dies’ its complex constituents are converted to simpler molecules 
by bacteria.

THE ROLE OF ATP AS A CARRIER OF GIBBS ENERGY

Central to the Gibbs energy fl ow in biochemical systems is the energy-carrying 
molecule ATP. The role of ATP as an energy carrier came to light around 1940, by 
which time a signifi cant amount of experimental data had been gathered. The ubiq-
uitous role of ATP as a Gibbs-energy-transporting compound was noted by Fritz 

Box 13.2 Facts about Photosynthesis

� Satellite measurements of solar radiant fl ux just outside the atmosphere give a value 
of 1370 W m−2 (area perpendicular to the direction of radiation). The maximum 
radiation reaching the Earth’s surface is about 1100 W m−2. For the purposes of esti-
mation, the maximum fl ux at the ground surface during a clear day is ∼800 W m−2.

� It is estimated that 90% of photosynthesis takes place in the oceans in algae, bacteria, 
diatoms and other organisms. Approximately 4.7 × 1015 mol of O2 is generated per 
year by photosynthesis. Microorganisms in the oceans and soil consume over 90% 
of all the oxygen consumed by life.

� The energy captured P by photosynthesis varies with the incident solar energy inten-
sity I according to the approximate equation shown below.

� The rate of photosynthesis can be considered as the rate of primary production. It 
can be quantifi ed as either energy captured or new biomass formed. Gross primary 
production is the rate at which biomass is being synthesized. The process of respira-
tion degrades biomass into CO2. Net primary production is the difference between 
the rate at which biomass is being synthesized and the rate at which it is being 
degraded into CO2; it is the rate at which biomass is accumulating. For example, 
sugar cane growth corresponds to about 37 g m−2 day−1.

P

I

max

max

200 W m

25 W m

K

P

I
P P

K I

≈

≈

=
+

Source: R. M. Alexander, Energy for Animals, 1999. New York: Oxford University Press.
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Lipmann and Herman Kalckar in 1941. ATP is involved in an enormous number 
of reactions which otherwise would not occur because their affi nity in the absence 
of ATP is negative. It provides the Gibbs energy needed for biosynthesis, muscle 
contraction and active transport of biomolecules. We shall now consider some 
typical examples of the thermodynamics of ATP-driven reactions.

ATP is synthesized in a series of reactions called glycolysis, shown in Figure 13.6. 
The production of ATP is associated with the oxidation of compounds. ATP con-
sists of three phosphate groups linked to an [Adenine]–[D-Ribose] unit. It can react 
with water (hydrolysis) and lose one of the phosphate groups to form ADP. The 
different ways of writing this reaction, are shown below.

Glucose

Glucose-6-phosphate 

Fructose-6-phosphate 

Fructose-1,6-bisphosphate 

Glyceraldehyde-3-phosphate

Dihydoroxyacetone 
phosphate 

1,3-bisphosphoglycerate 

3-phosphoglycerate 

2-phosphoglycerate 

Phosphoenolpyruvate 

Pyruvate

ATP 

ADP 

2ADP 

2ATP 

ATP 

ADP 

2ADP 

2ATP 

Figure 13.6 A summary of the main reac-
tion scheme of glycolysis. Each step is cata-
lyzed by an enzyme. Every mole of glucose 
that becomes pyruvate results in the conver-
sion of 2 mol of ADP to ATP
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(13.3.14a)

or

 ATP H O ADP HPO H4
2

3
4
2− − − ++ → + +  (13.3.14b)

or

 ATP H O ADP P Hi+ → + + +
2  (13.3.14c)

 A G A′ ′ − −= − = ≈0 0 1 130 5 46∆ . kJ mol and kJ molcell  (13.3.14d)

At a given pH, the phosphate group, HPO 4
2−, exists in different resonant forms, each 

corresponding to a different distribution of charge 2− within the molecule, and it is 
usually written as Pi in biochemical literature. (13.3.14a)–(13.3.14c) show three 
equivalent ways of writing the hydrolysis of ATP. For this reaction, at pH 7.0, the 
standard affi nity A0′ and the affi nity under cellular conditions Acell are as given in 
(13.3.14d). The higher affi nity Acell can be expressed in terms of the activities in the 
cell (aATP, aADP, etc.) as follows [10 (p. 317)]:

Acell =A0′ + RT ln(aATPaH2O/aADPaPi
aH+)

 ≈ 30.5 kJ mol−1 + R(298)ln(500) 
 ≈ (30.5 + 15.4) kJ mol−1

Note that in the biochemical standard state, aH+ = 1.0 for pH 7.0 and aH2O � 1.0 for 
pure liquids. This implies aATP/aADPaPi � 500.

An enormous number of reactions in the cell that have negative affi nities in the 
absence of ATP fi nd pathways with positive affi nities when they couple with ATP 
conversion to ADP. These reactions are said to be driven by the ATP–ADP couple. 
The following example illustrates how ATP drives a reaction. The reaction shown 
below, formation of glutamine, has a negative standard affi nity:

Glutamic Acid NH Glutamine H O kJ mol+ → + ′= − ′= − −
3 2

0 0 114 2A G∆ .  (13.3.15)

The affi nity under cellular conditions is also negative. However, in the presence of 
ATP, glutamine is synthesized. The mechanism is as follows:

 ATP Glutamic Acid Glutamyl-phosphate ADP+ → +  (13.3.16)

 Glutamyl-phosphate NH Glutamine Pi+ → +3  (13.3.17)

The affi nities for both reactions (13.3.16) and (13.3.17) are positive. The net reaction is

ATP + H2O + Glutamic Acid + NH3 → Glutamine + ADP + Pi + H+ (13.3.18)
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Since the affi nity Acell of the reaction ATP + H2O → ADP + Pi + H+ under cellular 
conditions is about 46 kJ mol−1 (13.3.14d), the overall reaction has a positive affi nity. 
This example shows that ATP converts glutamic acid to glutamyl-phosphate by 
transferring a phosphate group. The chemical potential of glutamyl-phosphate is 
higher than that of glutamic acid; the higher chemical potential makes the affi nity 
of reaction (13.3.17) positive. Increasing the chemical potential of a compound by 
transferring a phosphate group to it is a common theme in biochemical reactions. 
This increase of the chemical potential of compounds through ATP–ADP transfor-
mation drives a very large number of reactions in a cell.

The ATP–ADP cycle is continuously driving biochemical reactions. In fact, this 
turnover of ATP is enormous: it is estimated that 40 kg day−1 of ATP is cycled in a 
resting human! Strenuous exercises consume about 0.5 kg min−1 of ATP [10 (p. 319)]. 
It is estimated that ATP is present in all living cells in concentrations in the range 
0.001–0.01 M [8].

TRANSPORT ACROSS CELL MEMBRANES

Lipid bilayer membranes, about 9 nm or 90 Å thick, enclose living cells; they defi ne 
the boundaries of a cell. Imbedded in these lipid bilayers are many proteins, consti-
tuting about 50% of the membrane. A living cell is an open system that exchanges 
matter with its environment. The matter exchange takes place through the lipid–
protein membrane. The membrane, however, has selective permeability. It is perme-
able to water, glucose, amino acids, Na+ and K+ ions, O2, CO2 and other small 
molecules, but it is not permeable to a large number of molecules that are within 
the cell, such as ATP, ADP and other molecules containing phosphate groups.

For many of the compounds that can pass through the cell membrane, their 
chemical potentials in the cell interior and the exterior are equal. This does not mean 
that the net concentrations of the compounds are equal, however. As we have noted 
before, equality of chemical potentials does not imply the equality of concentrations. 
For example, the membrane of seaweed cells is permeable to iodine. However, 
because the interior of seaweed cells contain an iodine-binding protein, the net 
concentration of iodine in the interior is higher than it is in seawater, but the chemi-
cal potential is the same. This is because the chemical potential of iodine is lowered 
when it is bound to the protein, causing more of it to accumulate in the cell until 
the chemical potentials of iodine in the cell’s interior and exterior are equal, though 
the concentrations are quite different.

Membrane permeability does not always result in the establishment of equilibrium 
between the cell’s interior and exterior for the molecules that can pass through the 
membrane. In most mammalian cells, as shown in the Figure 13.7, Na+ and K+ ions 
in the interior of the cell are not in thermodynamic equilibrium with those in the 
exterior medium: their chemical potentials in the two regions are unequal. This 
nonequilibrium state is maintained by ATP-driven ‘ion pumps’ whose mechanism 
is not fully understood. The concentration of K+ is about 100 mM inside the cell and 
about 5 mM outside; in contrast, the concentration of Na+ inside the cell is about 
10 mM and outside it is about 140 mM. Owing to the corresponding difference in 



chemical potential, there is a small fl ux of K+ fl owing out of the cell and a small fl ux 
of Na+ fl owing into the cell. These fl uxes are countered by the ‘active transport’ of 
Na+ out of the cell and K+ into the cell through an ATP-consuming process which 
is thought to be a protein. Studies have indicated that the pumping of the two ions 
is coupled. In 1957, Jens Christian Skou discovered that transport of the two ions 
takes place through a protein to which they bind. He was awarded the Nobel Prize 
in 1997 for this discovery. This protein is called Na+–K+–ATPase or simply the 
sodium–potassium pump. As shown in Figure 13.8, the sodium–potassium pump 
reacts with ATP and undergoes a structural transformation in such a manner that 
K+ and Na+ are transported across the cell membrane; this transport maintains the 
difference in chemical potential gradients, drawing the needed Gibbs energy from 
ATP. As is the case with all reactions coupled to ATP to ADP conversion, the 
protein pump that binds the two ions must transform to an intermediate state in 
which the transport of Na+ ions out of the cell and K+ into the cell is driven by a 
positive affi nities. We can describe the thermodynamics of this process as follows. 
Let us denote the intracellular and extracellular regions of the cell by superscripts 
‘i’ and ‘e’ respectively. The stages summarized in Figure 13.8 can be written as the 
following reactions, in which [SPP] is the sodium–potassium pump:

ADP 

Protein

Lipid membrane

[K+]=5 mM 

[Na+]=140 mM 

[K+] ∼ 100 mM

[Na+] ∼ 10 mM

∆φ ∼ –70 mV 

ATP 

Figure 13.7 The cell membrane is permeable to some 
small molecules and ions, but it is not permeable to 
molecules such as ATP and ADP that are synthesized 
and used within the cell. In mammalian cells, chemical 
potentials of Na+ and K+ ions in the cell’s interior are 
not equal to those in the exterior. This nonequilibrium 
state is maintained by ATP-driven ‘ion pumps’. As 
shown in the fi gure, the concentration of K+ is higher 
inside the cell and Na+ is higher outside the cell. With 
respect to the exterior, the electrical potential of the 
interior of the cell is at about −70 mV
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 [ ] ( ) [ ]SPP Na SPP Nai+ −+ +3 3�  (13.3.19a)

 [ ] [ ]SPP Na ATP ATP SPP Na− + − −+ +3 3�  (13.3.19b)

 [ ] [ ]ATP SPP Na H O P SPP Na ADP Hi− − + − − + ++ + +3 32 �  (13.3.19c)

 [ ] ( ) [ ] ( )P SPP Na K P SPP K Nai
e

i
e− − + − − ++ + + +3 2 2 3�  (13.3.19d)

 [ ] ] ( )P SPP K [SPP K Pi
i

i− − + ++ +2 2�  (13.3.19e)

The net reaction is

2 3 2 32( ) ( ) ( ) ( )K Na ATP H O K Na ADP H Pe i i e
i

+ + + + ++ + + + + + +�  (13.3.20)

= K+

ATP 

ADP

P P

P

P

(a) 

(d) (e)

(c)(b)

(f)

ATP 

= Na+

Figure 13.8 A simplifi ed scheme showing the mechanism of the 
sodium–potassium pump. (a) Three intracellular Na+ ions bind to the 
protein. (b) ATP attaches to the protein. (c) The protein is phosphory-
lated with the release of ADP. (d) Phosphorylation causes a structural 
change in the protein. The change in the structure causes a decrease in 
the binding affi nity for Na+ and an increase of binding affi nity for K+ 
ions. (e) Subsequent release of Na+ into the extracellular region and the 
binding of two extracellular K+ ions to the protein. (f) The binding of 
K+ triggers dephosphorylation and a structural change that restores the 
protein to its initial structure. In this state, the two K+ ions are released 
into the intracellular region. The overall effect is the hydrolysis of ATP, 
the transport of three Na+ from the intracellular region to the extracel-
lular region and transport of two K+ ions in the opposite direction



The net pumping of three Na+ ions out of the cell and two K+ ions into the cell 
occurs because each of the reaction steps in (13.3.19a)–(13.3.19d) have a positive 
affi nity. One can check whether the net reaction (13.3.20) has a positive affi nity for 
the [Na+] and [K+] concentrations in the intra- and extra-cellular regions shown in 
Figure 13.8 by using the expression m c

k = mk
c0 + RT ln(ak) for the chemical potential 

of a solute in the concentration scale, in which m k
c0 is the standard chemical potential 

defi ned for unit activity ak = 1. For dilute solutions we may approximate ak � ck/c0, 
in which ck is the molarity and c0 = 1.0 M. Given that the affi nity of ATP + H2O → 
ADP + Pi + H+ under cellular conditions is about 46 kJ mol−1, it is left as an exercise 
(Exercise 13.2) for the reader to verify that the affi nity for the net reaction (13.3.20) 
is positive for the [Na+] and [K+] concentrations in the intra- and extra-cellular 
regions shown in Figure 13.8.

The above examples illustrate the central role of ATP in the Gibbs energy fl ow 
in living cells. The ultimate source of Gibbs energy is solar radiation originating at 
the surface of the sun at a temperature of about 6000 K. This Gibbs energy is dis-
sipated in the various biological activities, as summarized in Figure 13.3; the biologi-
cal activity in turn produces heat that is ultimately radiated back into space as 
thermal radiation at T = 288 K. The corresponding entropy production due to bio-
logical processes is small compared with the entropy generated in atmospheric pro-
cesses, such as the water cycle. As described in Chapter 2, the water cycle transports 
enormous amount of heat from the Earth’s surface to the upper atmosphere, acting 
like a steam engine.

13.4 Biochemical Kinetics

Biochemical reactions are catalyzed by enzymes. Catalysts have no effect on systems 
in thermodynamic equilibrium. In the nonequilibrium cellular conditions, enzymes 
control the biochemical pathways. In this section we shall look at some of the basic 
kinetic laws that describe enzyme-catalyzed reactions.

MICHAELIS–MENTEN RATE LAW

The early investigations of Leonor Michaelis and Maude Menten, around 1913, 
resulted in the formulation of a rate law based on a mechanism of enzyme catalysis 
they proposed. This mechanism and the resulting rate law were discussed in Chapter 
9, but for convenience we shall summarize the main points here. The following 
notation will be used:

S = substrate E = enzyme  ES = enzyme-substrate complex
P = product R = rate of product formation
kif = forward rate constant of reaction i  kir = reverse rate constant of reaction i

The catalysis proceeds in two stages:
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 E S ESf

r
+  →← 

k

k

1

1

 (13.4.1a)

 ES P E2f

2r

k

k
 →←  +  (13.4.1b)

 k k k k k1 1 2 2 2f r f f rand, � �  (13.4.1c)

The enzyme–substrate complexation reaction (13.4.1a) occurs rapidly and revers-
ibly. The second reaction, (13.4.1b), the conversion of the substrate to product, 
occurs essentially irreversibly, so we can ignore the reverse reaction rate. The rate 
equations for these reactions are:

 d E
d

E S ES ESf r f
[ ]

[ ][ ] [ ] [ ]
t

k k k= − + +1 1 2  (13.4.2)

 d S
d

E S ESf r
[ ]

[ ][ ] [ ]
t

k k= − +1 1  (13.4.3)

 d ES
d

E S ES ESf r f
[ ]

[ ][ ] [ ] [ ]
t

k k k= − −1 1 2  (13.4.4)

 d P
d

ESf
[ ]

[ ]
t

k= 2  (13.4.5)

 [ ] [ ] [ ]E E ES constant0 = + =  (13.4.6)

The Michaelis–Menten law refers to the rate at which the product is generated, 
d[P]/dt, for a given concentration of the total amount of enzyme [E0] = [E] + [ES] 
and the substrate concentration [S]. The assumption that the concentration of the 
enzyme substrate complex [ES] is in a steady state, i.e. d[ES]/dt = 0, leads to the fol-
lowing law for the rate R at which the product is generated (Exercise 13.4):

 R
P
t

k
K

R
K

≡ =
+

=
+

d
d

E S
S

S
S

f

m m

[ ] [ ][ ]
[ ]

[ ]
[ ]

max2 0
 (13.4.7)

in which

 K
k k

k
R km

r f

f
f E= + =1 2

1
2 0max [ ]  (13.4.8)

Km is the Michaelis–Menten constant and Rmax is the maximum rate at which the 
substrate S is converted to the product P for a given [E0]. These constants, Km and 
Rmax, are characteristic to an enzyme and are quite sensitive to the conditions under 
which the reaction takes place. A plot of d[P]/dt as a function of the substrate con-
centration [S] is shown in Figure 13.9a. At low values of [S], the rate is linear, but 
it saturates at a high value of [S] and becomes independent of [S]. Since the total 



amount of enzyme is fi xed, the rate saturates when all the available enzyme is bound 
to the substrate; as a result, the rate for very large [S] equals k2f[E0].

The values of Km and Rmax = k2f[E0] are determined experimentally by measuring 
the initial rates of product formation R = d[P]/dt for various values of [S]. From 
(13.4.7), it follows that

 
1 1 1
R

K
R R

= +m

Smax max[ ]
 (13.4.9)

A plot of 1/R versus 1/[S], called a Lineweaver–Burk plot, would be a straight line 
with a slope equal to Km/Rmax and intercept equal to 1/Rmax (Figure 13.9b). From the 
slope and the intercept of such plots, the values of Km and Rmax = k2f[E0] are obtained. 

Km

Rmax 

d[P]/dt

[S] 

Rmax/2 

(a)

Slope = Km/Rmax

1/Rmax 

1/R

1/[S] (b)

Figure 13.9 (a) The Michaelis–Menten rate of product 
formation as a function of the substrate concentration. 
(b) A plot of 1/R versus 1/[S], called a Lineweaver–Burk 
plot, can be used to obtain the Michaelis-Menten con-
stant Km and Rmax
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The Michaelis–Menten rate law (13.4.7) could be rearranged in other ways to obtain 
linear plots from which Rmax and Km could be obtained. For example, it can be shown 
that a plot of [S]/R versus [S] would also be straight line. We leave it as an exercise 
for the reader to devise alternate methods to obtain Rmax and Km.

The structure of an enzyme depends on factors such as pH and the temperature. 
Consequently, Km and Rmax depend on factors such as the pH and temperature. As 
the temperature or pH increases from a low value, the rate of product formation 
d[P]/dt generally reaches a maximum and then decreases. If the Arrhenius form of 
the rate constants kif and kir for all the reactions (13.4.2)–(13.4.6) is known, then the 
temperature dependence of the constants Km and Rmax can be determined.

From the thermodynamic viewpoint, the affi nity of a reaction is not changed by 
the catalyst, but the reaction velocity is. Consequently, the rate of entropy produc-
tion increases with the introduction of a catalyst. The rate of entropy production 
per unit volume can be written as

 
1

0
1

2

V
S
t

R R R R Rk k k k
k

d
d

/i
f r f r= − >

=
∑ ( ) ln( )  (13.4.10)

in which V is the system volume, R is the gas constant and R1f = k1f[E][S], 
R1r = k1r[ES], R2f = k2f[ES] and R2r = k2r[E][P]. In evaluating the rates of entropy 
production, the reverse reaction rates, however small, must be included.

MECHANISMS OF ENZYME INHIBITION

Enzymes control biochemical pathways. The control takes place not only through 
the production of the enzyme when needed, but also through inhibition of its action 
by other compounds, sometimes even by the product. We shall discuss some common 
mechanisms involving an inhibitor I.

Enzymes have specifi c sites to which the substrate binds. The specifi city of the 
enzymes is due to the particular structure of the binding site where the recognition 
of the substrate molecule takes place. An inhibitor I that has a structure similar to 
that of the substrate can bind to the enzyme’s active site and, thus, compete with 
the substrate for the binding site, or it could bind to another part of the enzyme and 
structurally alter the biding site and, thus, prevent the substrate from binding to the 
enzyme. Such a mechanism, called competitive inhibition, has the following reaction 
steps:

 E S ES ES P E E I EIf

1r

2f

2r

3f

3rk k k
+  →←   →←  + +  →← 

k k k1
 (13.4.11)

The third reaction is the competitive binding of the inhibitor I to the enzyme. When 
bound to the inhibitor, forming the complex EI, the enzyme becomes inactive. The 
amount of the inactive complex [EI] depends on the relative values of the rate con-
stants k1f, k1r, k3f and k3r. For the total amount of enzyme [E0] we have

 [ ] [ ] [ ] [ ]E E ES EI0 = + +  (13.4.12)



The Michaelis–Menten steady-state approximation for [ES] now takes the form

 d ES
d

E ES EI S ES ESf r f
[ ]

([ ] [ ] [ ])[ ] [ ] [ ]
t

k k k= − − − − =1 0 1 2 0  (13.4.13)

In addition, the binding of the inhibitor is generally rapid and we may assume that 
the reaction E + I �  EI is in equilibrium:

 k k3 3f rE I EI[ ][ ] [ ]=  (13.4.14)

As in the case of the simple Michaelis–Menten kinetics, we would like to obtain an 
expression for the rate of product formation as a function of the total amount of 
enzyme, the substrate concentration [S] and the inhibitor concentration [I]. This 
could be done if [ES] can be expressed as functions of [S], [I], [E0] and the rate con-
stants. In order to do this, fi rst we use (13.4.12) and (13.4.14) to obtain [EI] as a 
function of [ES], [I], [E0] and the rate constants:

 [ ]
[ ]([ [ ])
( ) [ ]

EI
I E ES

/ Ir f

= −
+

0

3 3k k
 (13.4.15)

Substituting this expression into the steady-state approximation (13.4.13), we can 
express [ES] as a function of [S], [I], and [E0]. Then the rate of product formation is 
equal to k2f[ES]. The result is

 R
dt

k
K K

≡ [ ] = [ ][ ]
[ ] + + [ ]( )

d P E S
S I
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 (13.4.16a)
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The expression for the rate shows that the constant Km is modifi ed by the factor 
(1 + K3[I]) due to the inhibitor. For large [S], the rate R approaches its maximum 
Rmax = k2f[E0]. A plot similar to the Lineweaver–Burk plot can be obtained by rear-
ranging Equation (13.4.16a) in the form

 
1

1
1 1

3
R

K
R

K
R

= +( ) +m I
Smax max

[ ]
[ ]

 (13.4.17)

and plotting 1/[R] versus 1/[S]. Comparing this expression with the uninhibited 
enzyme, we see that Km, and hence the slope, is altered by the factor (1 + [I]K3) = 
{1 + (k3f/k3r)[I]}, while the intercept remains the same.

The second type of inhibitor action is through its binding to the enzyme–substrate 
complex ES but not the enzyme. This is called uncompetitive inhibition. The enzyme 
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bound to the inhibitor is inactive. The corresponding reaction steps for the enzyme 
action are

 E S ES ES P E ES I ESIf

r

2f

2r

3f

3r
+  →←   →←  + +  →← 

k

k

k

k

k

k

1

1
 (13.4.18)

In this case the total concentration of the enzyme in its various forms is

 [ ] [ ] [ ] [ ]E E ES ESI0 = + +  (13.4.19)

and we may assume that the inhibitor binds reversibly and rapidly so that the reac-
tion ES + I �  ESI is in equilibrium:

 k k3 3f rES I ESI[ ][ ] [ ]=  (13.4.20)

As before, by making the steady-state approximation for the concentration of ES 
and using (13.4.19) and (13.4.20), one can arrive at the following expression for the 
rate of product formation:

 R
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K K

≡ = +
+ +

d P
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E S I
S I

f
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[ ] [ ][ ]( [ ])
[ ] ( [ ])
2 0 3

3

1
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 (13.4.21)

in which Km = (k1r + k2f)/k1f and K3 = (k3f/k3r).
The maximum rate and Km are altered by the same factor (1 + K3[I]). As we expect, 

when [I] = 0, rate R equals the Michaelis–Menten rate. A Lineweaver–Burk plot 
of 1/R versus 1/[S] will have a slope equal to Km/k2f[E0] and an intercept equal to 
1/k2f[E0](1 + K3[I]). In this case, the inhibitor I changes the intercept but not the 
slope.

The third mechanism of enzyme inhibition, called noncompetitive inhibition, is 
through the binding of the inhibitor to the enzyme E as well as to the complex ES, 
a combination of the fi rst two mechanisms. The mechanism is as follows:

E S ES ES P E E I EI ES If

r

2f

2r

3f

3r

4f

k
+  →←   →←  + +  →←  +

k

k

k k

k

k1

1 kk4r
ESI →←   (13.4.22)

The two forms of the enzyme EI and ESI are inactive, in that they cannot convert 
the substrate to product. The total amount of enzyme is now

 [ ] [ ] [ ] [ ] [ ]E E ES EI ESI0 = + + +  (13.4.23)

Once again, the reversible complexation of the inhibitor to the enzyme is rapid and 
may be assumed to be in equilibrium, i.e.

 k k k k3 3 4 4f r f rE I EI ES I ESI[ ][ ] [ ] [ ][ ] [ ]= =  (13.4.24)

Invoking the steady-state approximation for [ES], and using (13.4.23) and (13.4.24), 
one can obtain the following expression for the rate of product formation:
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Figure 13.10 Three mechanisms of enzyme inhibition: (a) competitive; (b) noncompetitive; 
(c) uncompetitive. E: enzyme; S: substrate; I: inhibitor; P: product
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The inhibitor alters the maximum rate by a factor (1 + [I]K4)−1 and the constant Km 
by a factor (1 + [I]K3)/(1 + [I]K4). If K4 = 0, i.e. when the inhibitor does not bind to 
ES, this equation reduces to the uncompetitive inhibition rate (13.4.21). As before, 
a plot of 1/R versus 1/[S] yields a straight line. The slope is equal to 
Km′ /R ′max and the intercept is equal to 1/R′max, in which K ′m = Km{(1 + [1]K3/(1 + [1]K4)} 
and R′max = K2f[E0]/(1 + [1]K4). In this case, the inhibitor alters both the slope and the 
intercept.

Thus, as shown in Figure 13.10, plots of 1/R versus 1/[S] with and without the 
inhibitor enable us to distinguish the three types of inhibitor action.
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Examples

Examples 13.1 Spectral analysis of solar radiation indicates that it originates as a 
Planck distribution at a T = 5780 K. The radius of the sun is 6.96 × 105 km. The 
average distance between the Earth and the sun (orbital radius) is 1.496 × 108 km. 
Using this information and the thermodynamics of thermal radiation, calculate the 
intensity of solar radiation just above the Earth’s atmosphere (data collected by 
satellites give a value of 1370 W m−2).
Solution Using the Stefan–Boltzmann law we can calculate energy density of solar 
radiation near the surface of the sun:

I = cu/4   uS = bT 4   T = 5780 K   b = 7.56 × 10−16 J m−3 K−4



Consider the thermal energy in a thin spherical shell of thickness d at sun’s surface. 
The energy contained in this shell is

 U = 4pdR2
SuS

where RS is the radius of the sun.
As this radiation propagates through space and arrives at the Earth, it would have 

spread over a volume equal to 4pdR 2
SE, in which RSE is the average distance between 

the sun and the Earth. If uE is the energy density of the radiation just above the 
Earth’s atmosphere (before it is scattered), then, since the total energy U in the two 
shells must be the same, we have

 U = 4pdR2
SuS = 4pdR 2

SEuE

It follows that

 u
R
R

u
R
R

TE
S

SE
S

S

SE

= 



 = 





2 2
4β

Substituting the numerical values RS = 6.96 × 105 km, RSE = 1.496 × 108 km, 
T = 5780 K and b = 7.56 × 10−16 J m−3 K−4 we obtain

 I = cuE/4 = 1370 W m−2

a result in excellent agreement with the value of 1370 W m−2 obtained from satellite 
data. The factor a in Equation (13.3.7) is equal to (RS/RSE)2 = 2.2 × 10−5.

Example 13.2 Using the data in the previous example, estimate the chemical 
potential of of solar radiation as a function of the wavelength l just above the 
atmosphere.
Solution The chemical potential of nonthermal radiation of frequency is given 
by

 µ λ α λ
λ

( ) ln
( , )
( , )

= 





RT
u T

u T
E

S

th E
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in which a is the factor by which the energy density of solar radiation decreases 
when it reaches the point of interest; TE is the temperature at the point of interest 
(just above the atmosphere) and TS is the surface temperature of the sun.

From Example 13.1 we see that just above the atmosphere:
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The Planck formula in terms of the wavelength l is
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The expression for the chemical potential then becomes:
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From the fi gure in Box 1.2 we see that the temperature at an altitude of 100 km is 
about 273 K. Hence, we take TE = 273 K and TS = 6000 K. The above expression for 
m(l) can be plotted (using Mathematica, for example). The plot below shows m(l) 
for l in the range 400–700 nm.

Example 13.3 Consider a reaction X(g) + Y(g) �  2Z(g) taking place in a reaction 
chamber of the type shown in Figure 13.2 in which there is an infl ow of X and Y 
and an outfl ow of Z. All the reactants may be assumed to be ideal gases. Assume 
that the equilibrium partial pressures of X, Y and Z in the reaction chamber are 
pXeq, pYeq and pZeq respectively. The infl ows X and Y and the outfl ow of Z are such 
that the partial pressures in the reactions chamber are maintained at values pX, pY 
and pZ. What is the affi nity of the reaction in the reaction chamber? What is the 
change in the Gibbs energy for the production of 2.6 mol of Z?



Solution Since the reactants and products are ideal gases, their chemical potentials 
can be written as

 mk(p, T) = m 0
k + RTln(pk/p0)   k = X, Y, Z

The affi nity is

 A = mX + mY − 2mZ = m0
X + m0

Y − 2m0
Z + RTln(pXpY/p 2

Z)

At equilibrium, A = 0. Therefore, we have

 m0
X + m0

Y − 2m0
Z = −RTln(pXeq

pYeq
/p 2

Zeq
) = 0

Using this equation in the above expression for affi nity, we can express the affi nity 
as a function of equilibrium pressures and the pressures of X, Y and Z in the reac-
tion chamber:

 A = RT ln(pX/pXeq
) + RT ln(pY/pYeq

) − 2RTln(pZ/pZeq
)

For the above reaction, the extent of reaction

 d
d d dX Y Zξ =

−
=

−
=N N N

1 1 2

Using Equation (13.2.4) we can write the Gibbs energy change as ∆G = −A(xf − xi), 
in which xi and xf are the initial and fi nal values of the extents of reaction. For the 
production of 2.6 mol of Z, we have xf − xi = 2.6/2 = 1.3 mol. Hence, the Gibbs energy 
change is

 ∆G = −(1.3 mol)[RTln(pX/pXeq
) + RTln(pY/pYeq

) − 2RTln(pZ/pZeq
)]

Exercises

13.1 Let u(n, TS) be the Planck energy distribution at temperature TS of sun’s 
surface. Let a be the factor by which it decreases by the time it reaches the 
surface of the Earth.
(a) Check whether the condition hn/kBT >> 1 is satisfi ed for wavelengths in 
the range 400–700 nm.
(b) When the condition hn/kBT >> 1, show that the chemical potential of solar 
radiation reaching the Earth’s surface could be written approximately as

 µ ν α ν( ) ln= + −



RT N h

T
T

A
S

1

 in which T is the surface temperature of the Earth.
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13.2 Given that the affi nity of ATP + H2O → ADP + Pi + H+ under cellular condi-
tions is about 46 kJ mol−1, show that the net reaction 2(K+)e + 3(Na+)i + ATP 
+ H2O �  2(K+)i + 3(Na+)e + ADP + H+ + Pi has a positive affi nity under cel-
lular conditions for the active transport of Na+ out of the cell and K+ into the 
cell for the intracellular and extracellular concentrations of Na+ and K+.

 Intracellular Extracellular

[Na+]/mM 10 140
[K+]/mM 100 5

13.3 Write the Michaelis–Menten reaction kinetics in terms of the extents of reac-
tion of the following two reaction steps:

 E S ES ES P Ef
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13.4 For the set of rate equations (13.4.2)–(13.4.6), under the approximation 
d[ES]/dt = 0, derive the Michaelis–Menten rate law (13.4.7).

13.5 Write the complete set of rate equations for all the species in the Michaelis–
Menten reaction mechanism:

 E S ES P Ef

r

f+  →←   → +
k

k

k1

1

2

(a) Write Mathematica/Maple code to solve them numerically with the fol-
lowing numerical values for the rate constants and initial values: k1f = 1.0 × 
102, k1r = 5.0 × 103, k2f = 2.0 × 103 and at t = 0, [E] = 3.0 × 10−4, [S] = 2 × 10−2, 
[ES] = 0, [P] = 0. Using the numerical solutions, check the validity of the 
steady-state assumption.
(b) Plot concentration versus time graphs for each [S], [E], [ES] and [P]. Use 
these plots to comment on the steady-state approximation d[ES]/dt = 0.
(c) Plot the rate of entropy production diS/dt as function of time.

13.6 An exercise machine’s digital display has two columns. One shows ‘resistance’ 
in watts and the other shows calories/min. Depending on the speed with which 
the person exercises on the machine, the numbers displayed on the two 
columns increase and decrease in proportion. When the ‘resistance’ column 
shows 97.0 W the second column shows 7.0 cal min−1. Explain the relationship 
between the two.



14  THERMODYNAMICS OF 
SMALL SYSTEMS

Introduction

Pioneering work in formulating the thermodynamics of small systems was done by 
Terrell Hill [1] in the early 1960s. It could be applied to many small systems that we 
encounter in nature: small particles in the atmosphere called aerosols (which include 
small droplets of water containing dissolved compounds), crystal nuclei in super-
saturated solutions, colloids, small particles in interstellar space, etc. Important as 
it was, thermodynamics of small systems has taken on a new signifi cance due to the 
development of nano-science, the production and study of particles in the size range 
1–100 nm. Thermodynamics applied to particles in the ‘nano range’ is called nano-
thermodynamics, but, because we do not limit our discussion to this size range, we 
call this topic the thermodynamics of small systems.

The laws of thermodynamics are universal, valid for all systems. However, depend-
ing on the system being considered, various approximations are made. Care is neces-
sary in applying thermodynamics to systems that are very small. First, it must be 
ensured that thermodynamic variables that were used for large systems have a clear 
physical meaning when used to describe a small system. Owing to random molecular 
motion, thermodynamic variable will fl uctuate about their average values. We need 
a clear understanding of the magnitude of these fl uctuations relative to the average 
values and whether and why the system is stable when subjected to them. Second, 
quantities, such as interfacial energy, that could be neglected for large systems must 
be taken into consideration. In Chapter 5, we have already seen how interfacial 
energy can be included in the thermodynamic description of a system. We shall 
extend this formalism to understand why some properties, such as solubility and 
melting point, change with size. In general, the properties of very fi ne powders can 
be signifi cantly different from those of bulk substance, hence the current interest in 
nanotechnology. We shall begin by discussing the thermodynamic formalism that 
includes interfacial energy and then address thermodynamic stability and 
fl uctuations.

14.1 Chemical Potential of Small Systems

Chemical potential is an important variable that enables us to understand how the 
properties of a system may change as its size decreases to microscopic dimensions. 
In this section, we will derive an expression for the chemical potential as a function 
of size.

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd



412 THERMODYNAMICS OF SMALL SYSTEMS

In Section 5.6 we noted that molecules at an interface have different energy and 
entropy compared with molecules in the bulk. This interfacial energy or surface 
tension g is generally of the order of 10−1–10−2 J m−2. Table 14.1 lists some solid–water 
interfacial energies. Whether interfacial energy can be neglected or not depends on 
the size of the system, more precisely the area-to-volume ratio. If Um is the molar 
energy, then, for a sphere of radius r, the ratio of interfacial energy to bulk energy 
is 4pr2g/[(4pr3/3Vm)Um] = 3gVm/rUm, in which Vm is the molar volume. If this quantity 
is very small, then the interfacial energy can be neglected, and as r → ∞ it becomes 
zero. If this ratio is not small, then we include the interfacial energy term in the 
expression for dU. For a pure substance:

 d d d d dU T S p V N= − + +µ γ Σ  (14.1.1)

in which Σ is the interfacial area. The last two terms can be combined to express the 
chemical potential as a function of the size of the system. For simplicity, we shall 
assume that the system is a sphere of radius r. Then the molar amount N = 4pr3/3Vm. 
The interfacial term dΣ = d(4pr2) = 8pr dr can be written in terms of dN by noting 
that dN = 4pr2 dr/Vm = (r/2Vm) dΣ. Thus, we can substitute (2Vm/r) dN for dΣ in 
(14.1.1) to obtain

 d d d dmU T S p V
V
r

N= − + +





µ γ2
 (14.1.2)

Using this equation, we see that for a pure substance we can assign an effective 
chemical potential that depends on the system’s radius (Figure 14.1). We shall write 
this potential as

 µ µ γ= +∞
2 V

r
m  (14.1.3)

in which m∞ is the chemical potential as r → ∞; it is the ‘bulk chemical potential’ 
that has been used in the previous chapters when interfacial energy could be ignored. 
The Gibbs energy of the system is

Table 14.1 Experimentally measured interfacial energies of AgCl, AgBr and AgI particles 
in water and their molar and molecular volumes Vm

Compound g /mJ  m−2 Vm/mL  mol−1 Molecular volume/10−23  mL

At 10  °C At 40  °C

AgCl 104 100 25.9 4.27
AgBr 112 102 29.0 4.81
AgI 128 112 41.4 6.88

Source: T. Sugimoto and F. Shiba, J. Phys. Chem. B, 103 (1999) 3607.



 G N= +∞µ γΣ  (14.1.4)

and a simple calculation shows (Exercise 14.1) that (∂G/∂N)p,T = m = m∞ + (2gVm/r).
Equation (14.1.3) can also be understood in terms of the excess pressure in a small 

system. In Chapter 5 we saw that surface tension (or interfacial tension) increases 
the pressure in a small spherical system by an amount ∆p = 2g/r (see (5.6.6)). Expres-
sion (14.1.3) is the chemical potential under this higher pressure. This can be seen 
by noting that

  µ µ µ µ( , ) ( , ) ( , ) ,p p T p T
p

p p T V p p
p

p p

T p

p p

+ = + ∂
∂







= + =
+ +

∫ ∫∆ ∆
∆ ∆

d dm
22γ
r

 (14.1.5)

where we have used the relation (∂Gm/∂p)T = (∂m/∂p)T = Vm. For solids and liquids, 
the molar volume Vm does not change much with changes in pressure; hence, we can 
write (14.1.5) as

 µ µ µ γ
( , ) ( , ) ( , )p p T p T V p p T

V
r

+ = + = +∆ ∆m
m2

 (14.1.6)

which is (14.1.3). So, the increase in chemical potential of a small system by a term 
2gVm/r is a consequence of increase in the pressure due to surface tension.

γ4πr2

m(2 / )V rµ    µ          γ∞=      +

Figure 14.1 The chemical potential of a small spherical 
particle or liquid drop depends on the radius r. g (J m−2) 
is the interfacial energy or surface tension. The energy of 
the interface equals 4pr2g
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414 THERMODYNAMICS OF SMALL SYSTEMS

14.2 Size-Dependent Properties

Using the chemical potential (14.1.3), several size-dependent properties can be 
derived. We shall consider solubility and melting point. As noted above, small 
systems have higher chemical potential due to the fact they are under higher pres-
sure. This causes a change in their solubility and melting point.

SOLUBILITY

We consider a solid solute Y is in equilibrium with its solution. The chemical poten-
tials of Y in the solid and solution phases are equal. At equilibrium, the concentra-
tion of the solution is the saturation concentration, called the solubility; we shall 
denote it by [Y]eq. We shall denote the solid and solution phases with the subscripts 
‘s’ and ‘l’ respectively.

As shown in (8.3.17), in the molarity scale the equilibrium chemical potential of 
the solute in the solution phase is mY,1 = mY

c0 + RTln(gY[Y]eq/[Y]0), in which gY is the 
activity coeffi cient of Y (not to be mistaken for the interfacial energy g) and [Y]0 is 
the standard concentration, equal to 1.0 M. For a solute particle of radius r in equi-
librium with the solution, mY,l = mY,s, which gives

 µ µ γ µ µ γ
Y,l Y

c Y eq
Y,s Y,s

mY
Y

= + 





= = +∞
0

0

2
RT

V
r

ln
[ ]

[ ]
 (14.2.1)

in which we have used (14.1.3) for the chemical potential of the solid phase. The 
quantity mY

c0 − mY,s∞ = ∆Gsol is the molar Gibbs energy of solution (defi ned for large 
particles r → ∞). Hence, (14.2.1) can be written as

 RT G
V
r

ln
[ ]

[ ]
γ γY eq

sol
mY

Y 0

2





= − +∆

i.e.

 
γ γY eq sol mY

Y
[ ]

[ ]
exp exp

0

2= −











∆G
RT

V
rRT

 (14.2.2)

If we denote the equilibrium concentration for solute particles of radius r by [Y(r)]eq 
and assume that the activity coeffi cient gY does not vary much in the concentration 
range of interest, (14.2.2) can be simplifi ed to the following relation:

 [ ( )] [ ( )] expY Yeq eq
mr

V
rRT

= ∞ 





2γ
 (14.2.3a)

or more generally as

 a r a
V

rRT
Y eq Y eq

m( ) ( ) exp= ∞ 





2γ
 (14.2.3b)



in which aY is the activity of Y. These equations give solubility [Y(r)]eq as a function 
of the particle size. They tell us that the saturation concentration will be higher for 
smaller particles; that is, smaller particles have higher solubility. It is generally called 
the Gibbs–Thompson equation, but some also call it the Ostwald–Freundlich equa-
tion. The solubility of AgCl, AgBr and AgI particles whose size is in the range 2–
20 nm can be satisfactorily explained using the Gibbs–Thompson equation (Figure 
14.2).

The higher solubility of smaller particles has an interesting consequence. As 
shown in Figure 14.3, consider a supersaturated solution containing solute particles 
of different sizes or radii. Supersaturation means that the chemical potential of the 
solute in the solution phase is higher, ml > ms. So, the solute will begin to precipitate 
out and deposit on the solid particles. As the chemical potential in the solution phase 
decreases due to solute deposition on the solid phase, there will come a point at 
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Figure 14.2 (a) Experimental data relating solubility 
ratio S = [Y(r)]eq/[Y(∞)]eq to particle size r for AgCl at 
298 K. (b) Plot of ln(S) versus 1/r is a straight line in 
agreement with Equation (14.2.3a). (Source: T. Sugi-
moto and F. Shiba, J. Phys. Chem. B, 103 (1999) 3607)
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which the solution is in equilibrium with the smaller particles, ml � ms(rsmall), but its 
chemical potential is still higher than that of the larger particles, ml > ms(rlarge). Hence, 
solute from the solution begins to deposit on the larger particles, causing a reduction 
of concentration in the vicinity of the larger particles. A concentration gradient is 
thus established, with a higher concentration near smaller particles and a lower 
concentration near larger particles. The solute then begins to fl ow from the vicinity 
of the smaller particles towards the larger particles. The consequent drop in concen-
tration in the vicinity of the smaller particles causes them to dissolve, while the larger 
particles continue to grow. As the smaller particles dissolve, their solubility increases, 
causing them to dissolve even faster and they ultimately disappear. Such growth of 
larger particles at the expense of smaller ones is called Ostwald ripening. It is a very 
slow process, but it can be observed.

MELTING POINT

The higher chemical potential of small particles also has the effect of reducing their 
melting point. Let us consider a solid particle of radius r in equilibrium with the 
melt. Let Tm be the melting point for the bulk substance; it is the temperature at 
which large particles are in equilibrium with the melt. For small particles of radius 
r, due to their higher chemical potential, let us assume that the melting point is Tm 
+ ∆T. The chemical potential of a pure substance m(p, T) is a function of p and T. 
Using (14.1.3) for the chemical potential of the solid particle, we see that solid–melt 
equilibrium for large particles at Tm implies

 µ µs m m∞ =( , ) ( , )p T p T1  (14.2.4)

and the same for small particles at Tm + ∆T implies

 µ µ γ µs m s m
m

l m( , ) ( , ) ( , )p T T p T T
V
r

p T T+ = + + = +∞∆ ∆ ∆2
 (14.2.5)

High µ Low µ

Figure 14.3 Ostwald ripening. Small parti-
cles have a higher chemical potential than 
larger particles. As a consequence, in a satu-
rated solution, small particles dissolve while 
larger particles grow. The difference in chem-
ical potential results in the effective transport 
of the solute



In this equation we can use the relation
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Using (14.2.4) and noting that (∂m/∂T)p = −Sm, the molar entropy, we can simplify 
this equation to

 ( )S S T
V
rT

T T

ml ms
md

m

m

− + =
+

∫
∆ 2

0
γ

The difference in molar entropies between the liquid and the solid state (Sml − Sms) 
� ∆Hfus/T. The enthalpy of fusion ∆Hfus does not change much with T and may be 
assumed to be constant. With this approximation, the integral can be evaluated and 
we get

 ∆ ∆
H

T
T

V
r

fus
m

mln 1
2

0+



 + =γ

Since ∆T/Tm << 1, we can approximate ln(1 + ∆T/Tm) � ∆T/Tm. If we write the 
melting point of particles of radius r as Tm(r) = Tm(∞) + ∆T, in which we have used 
Tm(∞) in place of Tm, the above equation can be rearranged to

 T r T
V

H r
m m

m

fus

( ) ( )= ∞ −



1

2γ
∆

 (14.2.6)

Sometimes this equation is written in the parametric form:

 T r T
r

m m( ) ( )= ∞ −



1

ρ
 (14.2.7)

in which r is expressed in nanometers. For many inorganic materials, r is in the 
range 0.2–1.7 nm. Also for metals, the solid–melt interfacial energy can be estimated 
using the following formula [2]:

 γ = 0 59. RT
aN

m

A

in which Tm is the melting point, a is the area occupied by a single atom on the 
surface (approximately equal to the square of the diameter), and R and NA are the 
gas and the Avogadro constants respectively.
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14.3 Nucleation

The transition from a vapor to a liquid phase occurs when the corresponding affi nity 
is positive, i.e. liquid will condense from a vapor when the chemical potential of the 
liquid is lower than that of the vapor; and similarly for the transition from a liquid 
to a solid phase. The condensation of vapor into liquid must take place through 
clustering of molecules that eventually grow into liquid drops. But, as we have seen, 
the chemical potential of a small system increases with decreasing radius. Hence, 
the affi nity is higher for larger clusters and, indeed, can be negative for very small 
clusters. We can see this clearly by writing the affi nity for the transformation from 
vapor to liquid cluster of radius r, which we write as Cr:

Transformation 1 C→ r

 Affinity v l
m m: A

V
r

V
r

= − +



 = −∞µ µ γ µ γ2 2∆  (14.3.1)

in which the subscripts ‘v’ and ‘l’ stand for vapor and liquid respectively. Activities 
for nucleation of a solute from a solution or a solid from a melt will also have the 
same form as (14.3.1). In each case, ∆m is the difference between the chemical poten-
tials of the two phases. For crystallization from solution, ∆m is the difference 
between the solution and the solid solute; in the case of solidifi cation of a melt, it is 
the difference between the chemical potentials of the melt and the solid. To refl ect 
the generality of expression (14.3.1), we can consider a phase transition from 
initial phase a that nucleates to phase b and write the affi nity for a phase transfor-
mation as

 A
V
r

V
r

= − +





= −∞µ µ γ µ γ
α β

2 2m m∆  (14.3.2)

We assume that initially ∆m ≡ ma − mb∞ > 0; that is, phase a is a supersaturated vapor 
or a supersaturated solution or a supercooled melt with a T below its melting 
point.

Equation (14.3.2) implies that the affi nity A is positive only when r is larger than 
a critical value, r*, i.e. A > 0 only when r > r* (Figure 14.4). It is easy to see that

 r
V V

* m m=
−

=
∞

2 2γ
µ µ

γ
µα β ∆

 (14.3.3)

r* is called the critical radius. Owing to random molecular motion, the molecules in 
the a phase form clusters of b phase of various sizes. But most clusters of radius 
r < r* will evaporate or dissolve and return to the a phase. Only when a cluster’s 
radius reaches a value r ≥ r* would a b phase have ‘nucleated’; since the affi nity 
(14.3.2) is positive for such nuclei, they will grow. It is through the growth of nuclei 
(into liquid drops or solid particles) that phase a converts to phase b. The formation 
of nuclei of radius r ≥ r* takes place through random energy fl uctuations. It is the 



process of nucleation, the gateway for the transition from phase a to phase b. As is 
clear from (14.3.3), the critical radius r* decreases with increasing ∆m; that is, the 
critical radius decreases as the supersaturation increases.

The above understanding of affi nity for the formation of clusters and the corre-
sponding changes in Gibbs energy enable one to formulate a theory of nucleation 
rate. The theory we present here is called the classical theory of nucleation. In small 
systems, which could be subsystems of larger systems, random fl uctuations in Gibbs 
energy occur. Since Gibbs energy reaches its minimum value at equilibrium, fl uctua-
tions in systems in equilibrium can only increase the Gibbs energy. The clustering 
of molecules in the a phase to form small clusters of b phase can only take place 
through fl uctuations because the Gibbs energy change for such a transformation is 
positive. If the Gibbs energy of the random fl uctuations is large enough, then a 
critical nucleus of radius r* will form and begin to grow, thus initiating a phase 
transition. Therefore, we need to know the laws that govern fl uctuations to under-
stand the dynamics of nucleation. An elegant thermodynamics theory of fl uctuation 
was formulated by Einstein. We shall discuss this theory and the theory of thermo-
dynamic stability in the next section. According to this theory, the following formula 
gives the probability P(∆G) of a fl uctuation in Gibbs energy of magnitude ∆G:

 P G Z G k T( )∆ ∆= −e / B  (14.3.4)

where Z is the normalization factor such that P G G( ) ( )∆ ∆d
0

1
∞

∫ =  and kB is the 

Boltzmann constant. Let ∆G(r*) be the increase in Gibbs energy needed to form the 
critical nucleus. We can obtain the probability for the formation of a critical nucleus 
by substituting ∆G(r*) into (14.3.4). The rate of nucleation is clearly proportional 
to P[∆G(r*)]. Hence, the rate of nucleation J (number of nuclei formed per unit 
volume per unit time) can be written as

r

∆G

r*

∆µ

A

r r*

A < 0 A > 0

Figure 14.4 Affi nity (14.3.2) and the corresponding Gibbs energy 
change for the process of nucleation. r* is the critical nucleation radius. 
Clusters with radius r > r* will grow while clusters with r < r* will 
shrink
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 J J
G r

k T
= −





0 exp
( )∆ *

B

 (14.3.5)

in which J0 is called the ‘pre-exponential factor’; the value of J0 depends on the 
particular process being considered. The Gibbs energy of a nucleus of radius r* of 
the b phase containing N moles of substance is Gb = mb∞N + g 4p (r*)2. The corre-
sponding Gibbs energy in the a phase is Ga = maN. The change in Gibbs energy for 
this transformation from the a phase to the b phase is ∆G(r*) = (Gb − Ga). This can 
be written as

 ∆ ∆G r
r

V
r( )

( )
( )*

*
*

m

= − +4
3

4
3

2π πµ γ  (14.3.6)

where ∆m = ma − mb∞. Substitution of expression (14.3.3) for the critical radius r* 
into (14.3.6) gives (Exercise 14.3)

 ∆
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3 2
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 (14.3.7)

Thus, the nucleation rate (14.3.5) can be written as

 J J
k T

V= −
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∆
 (14.3.8)

This expression shows how the nucleation rate depends on the interfacial energy g 
and the supersaturation expressed through ∆m. The pre-exponential factor J0 depends 
on the details of the kinetics of nucleation and it is generally diffi cult to estimate its 
value. Reported values of J0 are in the range 1025–1030 s−1 mL−1 for salts that are spar-
ingly soluble. Equilibrium between the a phase and the b phase implies mb∞ = m0

a + 
RT lnaa,eq. Since the chemical potential of the a phase ma = m 0

a + RT lnaa, it follows 
that

 ∆µ µ µα β
α= − = 






∞ RT

a
a

ln
eq

 (14.3.9)

Here, the equilibrium activity aeq is the activity at saturation in the case of vapors 
and solution; for solidifi cation of a melt it is the activity of the liquid phase (melt) 
at the melting point. If the vapor a is considered an ideal gas, then ∆m = RT ln(pa/
psat), in which psat is the saturated vapor pressure. Similarly, for an ideal solution of 
solute Y, ∆m = RT ln([Y]/[Y]S), in which [Y]S is the saturation concentration. For 
solidifi cation from a melt, the dependence of the chemical potential on T must be 
considered. It can be shown (Exercise 14.4) that ∆m = ∆Hfus(1 − T/Tm).

In the above theory, the nucleation rate (number of nuclei formed per unit volume 
per unit time) is independent of position; it is the same everywhere in the system. 
This, therefore, is called homogeneous nucleation. According to this theory, in a 



supersaturated vapor or solution, we should observe nucleation in all parts of the 
system with some uniformity, albeit with expected statistical fl uctuations. However, 
most of the time we do not fi nd this to be the case. Instead, we fi nd that nucleation 
occurs on small impurity particles or on the walls of the container, indicating that 
nucleation occurs at higher rates at particular sites. Such nucleation is called hetero-
geneous nucleation. It happens because, on impurity particles or the walls, the inter-
facial energy g is smaller. The expression (14.3.8) is fundamentally correct, but the 
value of g (or, more generally, the nucleation Gibbs energy G*) depends on the site 
where the nucleation takes place. At these sites (called nucleation sites) the rate of 
nucleation is higher. This is the reason why, when crystals are grown from a solu-
tion, nucleation does not occur homogeneously throughout the system, but hetero-
geneously at certain sites.

14.4 Fluctuations and Stability

Thermodynamic variables such as pressure and temperature are clearly defi ned for 
macroscopic systems. That random molecular motion will cause these quantities to 
fl uctuate and that the values we assign to thermodynamic variables are the average 
values about which they fl uctuate is obvious. To be sure, our experience tells us that 
fl uctuations in thermodynamic quantities are extremely small in macroscopic 
systems. When we consider very small systems, however, we must ensure that ther-
modynamic variables are well defi ned, because the size of the fl uctuations relative 
to the average value can be signifi cant. To look at this aspect more closely, let us 
consider a small system 1, of volume V1 containing N1 moles of substance within a 
larger system 2 (Figure 14.5). We shall denote the number of molecules by Ñ = NNA. 
Owing to random molecular motion, the number of molecules in this subsystem will 
fl uctuate about its average value Ñ1 = N1NA. As we shall show later in this section, 
the magnitude of these fl uctuations dÑ is of the order of the square root of the 

average value �N1. To compare it with the average value we look at the ratio 

δ � � �N N N1 1 11/ /= . If this value is very small, then it means that we can meaningfully 

2

1

Figure 14.5 Thermodynamic quan-
tities such as number of molecules 
and temperature of a subsystem 1, 
which is a part of a larger system 2, 
will fl uctuate
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assign a value of N1 moles to the amount of substance in system 1. Similarly, since 
the temperature is a measure of the average kinetic energy, its value will fl uctuate 
and if dT/T << 1, the temperature of the small system is well defi ned.

Next, we address the question of stability in the presence of fl uctuations. As 
shown in Figure 14.6, due to fl uctuations, the position of a free particle will drift 
away from its initial value, which is the phenomenon of Brownian motion. In con-
trast, fl uctuations do not cause a thermodynamic variable Y to drift randomly away 
from its initial value: there is a restoring force that keeps it from drifting; it is stable. 
We shall see that the reason for the stability of equilibrium states lies in the second 
law. A fundamental understanding of stability also enables us to understand insta-
bility of states that results in phase separation.

THE PROBABILITY OF A FLUCTUATION

In Chapter 3 (Box 3.2), the statistical interpretation of entropy was introduced and 
this was used in Sections 6.1 to calculate the entropy of mixing. Statistical interpre-
tation of entropy is based on Ludwig Boltzmann’s (1844–1906) famous formula that 
related entropy and probability:

 S k W= B ln  (14.4.1)

in which kB = 1.38 × 10−23 J K−1 is the Boltzmann constant and W is the number of 
microscopic states corresponding to the macroscopic thermodynamic state. W is 
measure of the probability that a system will be in a state with entropy S. As sug-
gested by Max Planck, W is sometimes called thermodynamic probability because, 
unlike the usual probability, it is a number larger than one; in fact it is a very, very 
large number! (An entropy S = 1.0 J K−1 corresponds to W = eS/kB ≈ e7×1022

.) Thus, 
Boltzmann’s formalism relates entropy, a physical quantity, to probability. 
Boltzmann’s idea proved to be very successful. The entire subject of statistical ther-

Figure 14.6 (a) Random fl uctuation in position x of a free par-
ticle can drive it away from its initial position. Without a restoring 
force, the particle will randomly drift. (b) In contrast, a thermo-
dynamic variable Y fl uctuates about its average value Yavg. When 
a fl uctuation drives the system away from Yavg, irreversible pro-
cesses restore it back to Yavg, thus keeping it stable



modynamics, which we will discuss in Chapter 17, is a testimony to the success of 
Boltzmann’s approach.

Albert Einstein, in whose work thermodynamics played an important role [3], 
introduced a new interpretation for Boltzmann’s formula. He proposed a formula 
for the probability of a fl uctuation for thermodynamic quantities by using 
Boltzmann’s formula in a conceptually reverse manner. Inverting (14.4.1) we can 
write W = exp(S/kB). Let us assume that a fl uctuation changes the entropy from its 
equilibrium value Seq to S = Seq + ∆S. Then, the associated thermodynamic probabil-
ity W = exp[(Seq + ∆S)/kB]. Using this relation, Einstein proposed the following 
formula for the probability of a fl uctuation that cause a change in entropy ∆S from 
its equilibrium value:

 P S Z S k( )∆ ∆= e / B  (14.4.2)

where Z is a normalization constant that ensures that the sum of all probabilities 
equals one. Though relations (14.2.1) and (14.2.2) are mathematically close, it is 
important to note that conceptually one is the opposite of the other. In (14.2.1), the 
probability of a state is the fundamental quantity and entropy is derived from it; in 
(14.2.2), entropy as defi ned in thermodynamics is the fundamental quantity and the 
probability of a fl uctuation is derived from it. Einstein’s observation was that ther-
modynamic entropy also gives us the probability of fl uctuations. We shall obtain 
expressions that relate ∆S to fl uctuations in temperature dT and number of mole-
cules dÑ after we discuss the closely related topic of stability of the equilibrium 
state.

STABILITY

Every fl uctuation is associated with a corresponding change in entropy. For an iso-
lated system in equilibrium, the entropy reaches its maximum value. Hence, a fl uc-
tuation can only decrease its value and drive it away from equilibrium. Also, at 
equilibrium, thermodynamic forces and fl ows are zero: Fk = Jk = 0. Once the system 
is away from equilibrium, thermodynamic forces Fk and fl ows Jk attain a nonzero 
value deviating from zero by a small amount dFk and dJk. Since thermodynamic 
forces and fl ows can only increase the entropy in accord with the second law, diS/dt 
= ΣkdFkdJk ≥ 0, the system’s entropy increases and is restored to its equilibrium value. 
Thus, a decrease in entropy due to fl uctuations is countered by thermodynamic 
forces and fl ows keeping the equilibrium state stable. Because the change in entropy 
due to fl uctuations and the change due to forces and fl ows have opposite signs, the 
system is stable. The stability condition for the equilibrium state can thus be expressed 
as:

 ∆ ∆
S

S
t

F Jk k
k

< = >∑0 0
d
d

δ δ  (14.4.3)

If this condition is satisfi ed, then a thermodynamic state is stable.
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In classical thermodynamics, which does not contain the relation diS/dt = ΣkdFkdJk 
≥ 0, the stability of a state is analyzed using a different approach called the Gibbs–
Duhem theory of stability. This theory, presented in Chapter 15, is limited to con-
straints that extremize (maximize or minimize) one of the thermodynamic potentials, 
H, F or G. We recall that the Helmholtz energy F is minimized when V and T are 
constant. A theory of stability that is based on positivity of entropy production does 
not require such constraints and is more general than the classical Gibbs–Duhem 
theory. In addition, stability theory based on entropy production can also be used 
to obtain conditions for the stability of some nonequilibrium states.

CALCULATING ∆S

To obtain the probability of fl uctuation of variables such as the temperature T or 
Gibbs energy G, we turn to Einstein’s formula (14.4.2) and write the entropy of 
fl uctuation ∆S < 0 in terms of these variables whose fl uctuations are of interest. First, 
we note that irreversible processes that restore the system back to equilibrium must 
generate entropy equal to −∆S > 0. As shown in Figure 14.7, given a fl uctuation that 
has taken the system to the nonequilibrium state I, we can obtain the magnitude of 
∆S by computing the entropy generated in restoring it back to the equilibrium state 
E. Thus, our computation is based on the relation

 ∆S S= −∫ di

I

E

 (14.4.4)

Figure 14.7 Schematic diagram 
illustrating the entropy change ∆S 
associated with a fl uctuation. The 
fi gure shows equilibrium entropy S 
as a function of a thermodynamic 
variable Y. The reference equilib-
rium state is denoted by E. The fl uc-
tuation, which results in a decrease 
in entropy, drives the system to the 
point I. We compute the change in 
entropy ∆S associated with the fl uc-
tuation by computing the entropy 
produced ∆iS as the system relaxes 
back to the equilibrium state



If we are interested in fl uctuation in the Gibbs energy when T and p are 
constant, then we could use the relation dG = −T diS in (14.4.4) and write

∆ ∆S dG T dG T G T= = − = − <∫ ∫/ / /
I

E

E

I
0 . Here, ∆G is the increase in G in going from 

equilibrium state E to nonequilibrium state I, and ∆S = −∆G/T. Replacing ∆S by −
∆G/T in Einstein’s formula (14.4.2), we arrive at the probability for Gibbs energy 
fl uctuation ∆G from an equilibrium state E to a nonequilibrium state I:

 P G Z G k T( )∆ ∆= −e / B  (14.4.5)

We recall that this expression was used in Section 14.3 to obtain the nucleation rate. 
Similarly, the probability of a fl uctuation in Helmholtz energy ∆F at constant T and 
V is given by P(∆F) = Ze−∆F/kBT.

TEMPERATURE FLUCTUATIONS

We can obtain the probability for temperature fl uctuations as follows. Consider a 
small subsystem within a larger system at an equilibrium temperature Teq (Figure 
14.8a). We assume that a fl uctuation has increased the temperature of the subsystem 
to Teq + dT. To calculate the entropy associated with this change, we use Equation 
(14.4.4), in which diS is the entropy produced when heat dQ fl ows out of the sub-
system, which is at a higher temperature, into the larger system whose temperature 
is Teq. At any instant, if the temperature of the subsystem is Teq + a, as we have seen 
in Chapter 3, then the entropy change diS due to this heat fl ow dQ out of the sub-
system is

 

d d

d

i
eq eq

eq

S
T T

Q

T
Q

= −
+

+





= >

1 1

0
2

α
α  (14.4.6)

ξeqTeq

(a) (b) 

ξeq + δξTeq + δT

Figure 14.8 (a) A local fl uctuation in temperature dT 
can occur in a subsystem. The probability of a fl uctua-
tion dT can be calculated using (14.4.8). (b) A local fl uc-
tuation in the extent of reaction. The entropy change 
associated with such a fl uctuation can be calculated using 
the relation (14.4.14)

FLUCTUATIONS AND STABILITY 425



426 THERMODYNAMICS OF SMALL SYSTEMS

where we have used the approximation (Teq + a)Teq � T 2
eq because a << Teq. Thus, 

(14.4.6) implies if a > 0, then dQ > 0; that is, heat fl ows out of the subsystem. Since 
dQ is the heat fl owing out of the subsystem, we must have dQ > 0 for da < 0 Hence, 
for small changes in temperature, we write dQ = −CV da, in which CV is the subsys-
tem’s heat capacity at constant volume. As the subsystem returns to equilibrium, a 
changes from dT to 0. Therefore:

 ∆S S
C
T

C
T

T

T

V

T

V= − = = −∫ ∫d di
eq eqδ δ

α α δ0

2

0

2

2

2
( )

 (14.4.7)

The condition for stability (14.4.3) can now be written as

 ∆S
C
T

TV= − <
eq
2

2

2
0

( )δ
 (14.4.8)

which is satisfi ed only if the heat capacity of the subsystem CV > 0. By substituting 
(14.4.8) in (14.4.2) we obtain the probability of a temperature fl uctuation of magni-
tude dT:

 P T Z
C T

k T
V( ) expδ δ= −





2

22 B eq

 (14.4.9)

Thus, given the heat capacity CV and the equilibrium temperature Teq, the probabil-
ity of a fl uctuation dT can be calculated. The normalization factor Z has to be such 

that the total probability of all possible fl uctuations equals unity, i.e. P T T( ) ( )δ δd
−∞

∞

∫ = 1. 

This leads to 1/ dZ P T T=
−∞

∞

∫ ( ) ( )δ δ . The mean and standard deviation of dT can be 

calculated using (14.4.9). The probability distribution P(dT) is a Gaussian, centered 
at dT = 0, so its mean equals zero, as we expect. The standard deviation can be 
calculated using the integrals given in Appendix 1.2. A simple calculation shows 
that δT k T CV

2 2= B eq/ .

FLUCTUATION IN EXTENT OF REACTION x

Diffusion causes fl uctuations in the number of molecules in a subsystem, and chemi-
cal reactions can cause fl uctuations in the number of reacting molecules even in a 
closed system. These fl uctuations can be described as fl uctuations in the extent of 
reactions x (Figure 14.8b). Consider a chemical reaction and the corresponding 
extent of reaction:

 2
2 1 1 1

X Y Z W
d d d dX Y Z W+ + =
−

=
−

=
+

=
+

� d
N N N Nξ  (14.4.10)

The fl uctuations in x can be related to fl uctuations in the corresponding values of 
NX, NY, NZ, and NW. In the case of fl uctuations due to diffusion of a component, 
say Y, dx = dNY is the change in NY due to fl ow of particles into and out of the 
subsystem. The thermodynamic force for both of these processes is the affi nity A: 



for reaction (14.4.10), A = (2mX + mY − mZ − mW); for diffusion, A = (min − mout), the 
difference in chemical potentials inside and outside the subsystem. The equilibrium 
affi nity Aeq = 0.

We assume a random fl uctuation has changed the value of x from its equilibrium 
value xeq to (xeq + dx). The change in entropy associated with this fl uctuation can be 
calculated using (14.4.4), in which diS = (A/T) dx, a fundamental relation established 
in Chapter 4:

 ∆S S
A
T

A
T

= − = − =∫ ∫ ∫d d di

δξ δξ

δξ

ξ ξ
0 0

0

 (14.4.11)

At equilibrium, the affi nity Aeq = 0. For a small change a = x − xeq of the extent of 
reaction from the equilibrium state we may approximate A by

 A A
A A= + ∂
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= ∂
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eq

eq eqξ
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The entropy change ∆S due to the fl uctuation dx can thus be expressed as
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where we have used dx = da. The stability condition ∆S < 0 and the probability of 
fl uctuations take the form

 ∆S
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  (14.4.14)

This expression can also be written in terms of the fl uctuations dNk in molar amounts 
Nk by rewriting (14.4.11) in terms of Nk:

 ∆S S
A
T

A
T

N

N N

k

k

N

k k

k

= − = − = −∫ ∫ ∫d d
d

i

δ δ

δ

ξ
ν

0 0

0

 (14.4.15)

in which nk are the stoichiometric coeffi cients shown in (14.4.10), which are negative 
for reactants and positive for products. In the case of a chemical reaction, all changes 
dNi are related through stoichiometry and they can be expressed in terms of changes 
dNk of one of the constituents k. However, the changes dNk due to diffusion can all 
be independent. When molecules diffuse in out of a small volume, the chemical 
potential in the volume may change but in the larger surroundings its change is 
negligible. Taking this into consideration, it can be shown that (Exercise 14.5)

 ∆S
N

N
T

k

k

k= − ∂
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µ δ
eq

( )2

2
 (14.4.16)
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If the chemical potential mk is expressed as a function of Nk, then the above expres-
sion can be made explicit. If we consider ideal gases as an example, then the chemical 
potential of a component k

 µ µ µk k
k

k
kT RT

p
p

T RT
RTN
Vp

= + 





= + 





0

0

0

0

( ) ln ( ) ln

and

 
∂
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=µk

k kN
RT
N

 (14.4.17)

Substituting (14.4.17) into (14.4.16), we see that

 ∆S
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R N
k N
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δ δ δ2 2
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 (14.4.18)

This expression can also be written in terms number of molecules Ñk = NANk; and 
noting R = NAkB, we obtain

 ∆S
k N

N
P N Z

N
N

k

k
k

k

k

= − = −
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δ δ δ�
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2 2
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 (14.4.19)

This expression shows that the probability of fl uctuations in the number of 

molecules is independent of temperature. The mean of Ñk = 0 and δ � �N Nk k
2 = ,eq , 

as was noted at the beginning of this section.
The above results can be extended to situations in which many chemical reactions 

are simultaneously present. If we consider r chemical reactions, then the deviations 
dxi(t), i = 1, 2,  .  .  .  , r, of the extents of reaction from their equilibrium values can 
be expressed as functions of a parameter t such that dxi(0) = 0 and dxi(t) ≈ (∂xi/∂t)t=0t 
for small values of t. Using such parameterization, it can be shown that [4]

 ∆S
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i j
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j
i j= ∂
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∑ 1
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δξ δξ

eq

 (14.4.20)

More generally, if Nk can vary independently then it can be shown that

 ∆S
T N

N Ni
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i j
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= − ∂
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∑ 1

2
µ δ δ

eq,

 (14.4.21)

The corresponding probability distribution can be derived following the method 
presented above.



GENERAL EXPRESSION FOR PROBABILITY OF FLUCTUATIONS

Following the above method, the probability of entropy associated with a fl uctua-
tion of the volume of a subsystem at a fi xed pressure and molar amounts Nk of its 
constituents can be shown to equal ∆S = −(1/TeqkT)(dV2/2V), in which kT = −(1/
V)(∂V/∂p)T is the isothermal compressibility. If we consider fl uctuations in T, Nk and 
V, then

 ∆S
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and

 P T N V Zek
S k( , , )δ δ δ    B= ∆  (14.4.22)

Finally, we note that this entropy term is second order in the fl uctuations dT, dV 
and dNk. In expression (14.4.21), the independent variables are T, V and N. A more 
general expression through which the entropy change for fl uctuations in any other 
set of independent variables can be derived is the following:

 ∆S
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T S p V Ni i
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= − − +



∑1

2
δ δ δ δ δµ δ  (14.4.23)

This relation could be derived as follows. In (14.4.21), in the fi rst term:
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Similarly, in the second term:
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And in the third term:
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At equilibrium, the entropy reaches its maximum value. Hence, its fi rst-order varia-
tion dS = 0. So the variation ∆S due to a fl uctuation is often written as d2S/2, espe-
cially in the classical theory of fl uctuations, which is discussed in the following two 
chapters.
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Examples

Example Consider an ideal gas at T = 298 K and p = 1.0 atm. Calculate the molar 
amount N1 of gas in a spherical volume of radius 1.0 mm, the average value and the 
magnitude of fl uctuations in concentration N1/V1.
Solution

 N
pV
RT

1

6 3 3

1 1

101 4 3 1 0 10
8 314 298

1 7= = × ×
×

= ×
−

− −

kPa / m
JK mol K
( )( . )

.
.

π
110 16− mol

The average concentrations

 
N
V

1

1

3
1 1

340 76 40 76



 = =− −

avg
avgmol m N /V mol m. ( ) .

The magnitude of the fl uctuations

 δ �N N N= = ×1
41 02 10A .

Fluctuation in concentrations

 
N N
N V

1

1

3 3 34 02 10A

A

mol m mol m− − −= ×.

The magnitude of
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�
N V

N N V N N

/
/A A

1

1 1 1

41
1 0 10= × −.

Exercises

14.1 Using the expression G = m∞N +g Σ, show that (∂G/∂N)p,T = m = m∞ + 
(2gVm/r).



14.2 Using the parameters in Table 14.1, determine the size of AgBr particles 
whose saturation concentration [Y(r)] = 1.3[Y(∞)]. Estimate the number of 
AgBr molecules in these particles.

14.3 N moles of the phase a form a b-phase cluster of radius r*. For this process, 
assume that Ga = maN and Gb = mb∞N + g 4p(r*)2 and show that

 G G G r
V

β α
π γ

µ
− = =∆

∆
( ) .* m16

3

3 2

2

14.4 For solidifi cation from a melt, from the liquid phase a to the solid phase b, 
the chemical potential as a function of temperature must be analyzed. Assume 
T = Tm − ∆T, in which ∆T/T << 1 and show that ∆m = ma − mb ≈ 
∆Hfus(1 − T/Tm).

14.5 For fl uctuation in Nk in a small volume due to diffusion, obtain the expression 
(14.4.16) for the change in entropy.

14.6 Obtain the expression

 ∆S
C T

T T
V
V

R N
N

V

T

i

ii

= − − − ∑( ) ( ) ( )δ
κ

δ δ2

2

2 2

2
1

2 2

 for an ideal system for which mk = m0
k(T) + RTln(xk).

14.7 (a) Evaluate the normalization constant Z for (14.4.9). (b) Obtain the average 

values of the square of the fl uctuations by evaluating ( ) ( ) ( )δ δ δT P T T2 d
−∞

∞

∫ . 

(c) In an ideal gas, estimate the value of δT 2  for a small cubic volume of 
side 1.0 mm.

14.8 Consider an ideal gas at a temperature T and p = 1 atm. Assume that this 
ideal gas has two components X and Y in equilibrium with respect to inter-
conversion, X � Y. In a small volume dV, calculate the number of molecules 
that should convert from X to Y to change the entropy by kB in terms of the 
number of molecules X in the considered volume.
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15 CLASSICAL STABILITY THEORY

15.1 Stability of Equilibrium States

The random motion of molecules causes all thermodynamic quantities, such as 
temperature, concentration and partial molar volume, to fl uctuate. In addition, 
owing to its interaction with the exterior, the state of a system is subject to constant 
perturbations. The state of equilibrium must remain stable in the face of all fl uctua-
tions and perturbations. In this chapter, we shall develop a theory of stability for 
isolated systems in which the total energy U, volume V and mole numbers Nk are 
constant. The stability of the equilibrium state leads us to conclude that certain 
physical quantities, such as heat capacities, have a defi nite sign. This will be an 
introduction to the theory of stability as was developed by Gibbs. Chapter 16 con-
tains some elementary applications of this stability theory.

For an isolated system, the entropy reaches its maximum value. Thus, any fl uctua-
tion can only reduce the entropy. In response to a fl uctuation, entropy-producing 
irreversible processes spontaneously drive the system back to equilibrium. Hence, 
the state of equilibrium is stable to any perturbation that results in a decrease in 
entropy. The fl uctuations in temperature, volume, etc. are quantifi ed by their 
magnitudes, such as dT and dV. The entropy of the system is a function of these 
variables. In general, the entropy can be expanded as a power series in these vari-
ables, so that we have

 S S S S= + + +eq δ δ1
2

2 . . .  (15.1.1)

In such an expansion, the term dS represents the fi rst-order terms containing dT, 
dV, etc., the term d2S represents the second-order terms containing (dT)2, (dV)2 and 
so on. This notation will be made explicit in the examples that follow. Also, as we 
shall see below, since the entropy is a maximum, the fi rst-order term dS vanishes. 
The change in entropy is due to the second- and higher-order terms, the leading 
contribution coming from the second-order term d2S.

We shall look at the stability conditions associated with fl uctuations in different 
quantities such as temperature, volume and mole numbers. As stated before, we 
consider an isolated system in which U, V and Nk are constant.

15.2 Thermal Stability

For the fl uctuations in temperature, we shall consider a simple situation without 
loss of generality. Let us assume that a fl uctuation occurs in a small part of the 
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434 CLASSICAL STABILITY THEORY

system (see Figure 15.1). Owing to the fl uctuation, there is a fl ow of energy dU from 
one part to another, resulting in small temperature fl uctuations dT in the smaller 
part. The subscripts 1 and 2 identify the two parts of the system. The total entropy 
of the system is

 S S S= +1 2  (15.2.1)

Here, entropy S1 is a function of U1, V1, etc., and S2 is a function of U2, V2, etc. If 
we express S as a Taylor series about its equilibrium value ∆Seq, then we can express 
the change in entropy ∆S from its equilibrium value as
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 (15.2.2)

where all the derivatives are evaluated at the equilibrium state.
Since the total energy of the system remains constant, dU1 = −dU2 = dU. Also, 

recall that (∂S/∂U)V,N = 1/T. Hence, (15.2.2) can be written as
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We can now identify the fi rst and second variations of entropy, dS and d2S, and 
write them explicitly in terms of the perturbation dU:

 δ δS
T T

U= −





1 1

1 2

 (15.2.4)

2 

δU
1

Figure 15.1 Thermal fl uctua-
tions in the equilibrium state. 
We consider a fl uctuation that 
results in a fl ow of energy dU 
from one part to another 
causing the temperatures to 
change by a small amount dT
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 (15.2.5)

At equilibrium, since all thermodynamic forces must vanish, the entire system should 
be at the same temperature. Hence, T1 = T2, and the fi rst variation of entropy dS = 
0. (If it is taken as a postulate that entropy is a maximum at equilibrium, then the 
fi rst variation should vanish. One then concludes that T1 = T2.) The change in 
entropy due to fl uctuations in the equilibrium state is due to the second variation 
d2S (the smaller higher-order terms in the Taylor series are neglected). As stated 
above, the equilibrium state is stable only if the fl uctuation causes the entropy to 
decrease, i.e. d2S < 0; spontaneous, entropy-increasing irreversible processes then 
drive the system back to the state of equilibrium. Now let us write (15.2.5) explicitly 
in terms of the physical properties of the system and see what the condition for sta-
bility implies. First, we note that
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 (15.2.6)

in which CV is the heat capacity. Also, if the change in the temperature of the smaller 
system is dT, then we have dU1 = CV1

(dT), where CV1
 is the heat capacity of the 

smaller part. CV2
 is the heat capacity of the larger part. Using (15.2.6) for the two 

parts in (15.2.5) and writing dU = CV1
(dT), and noting that all the derivatives are 

evaluated at equilibrium, so that T1 = T2 = T, we obtain
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If system 1 is small compared with system 2, CV1
 << CV2

, then the second term in the 
parentheses can be ignored. Thus, for stability of the equilibrium state we have
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 (15.2.8)

This condition requires that the heat capacity CV1
 > 0. Thus, the state of equilibrium 

is stable to thermal fl uctuations only when the heat capacity at constant volume CV is 
positive.

15.3 Mechanical Stability

We now turn to stability of the system with respect to fl uctuation in the volume of 
a subsystem with N remaining constant, i.e. fl uctuations in the molar volume. As in 
the previous case, consider the system divided into two parts (see Figure 15.2), but 
this time we assume there is a small change in volume dV1 of system 1 and dV2 of 
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system 2. Since the total volume of the system remains fi xed, dV1 = dV2 = dV. For 
the computation of the change in entropy associated with such a fl uctuation, we can 
write an equation similar to (15.2.3), with V taking the place of U. Since (∂S/∂V)U,N 
= p/T, a calculation similar to the one above leads to

 δ δS
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p
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 (15.3.1)
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If the derivatives are evaluated at equilibrium, then p1/T1 = p2/T2 = p/T. Then the 
fi rst variation dS vanishes (as it must if S is a maximum at equilibrium). To under-
stand the physical meaning of the conditions for stability ∆S < 0, the second varia-
tion can be written in terms of the isothermal compressibility. The isothermal 
compressibility kT is defi ned by kT = −(1/V)(∂V/∂p). During the fl uctuation in V we 
assume that T remains unchanged. With these observations it is easy to see that 
(15.3.2) can be written as
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As before, if one part is much larger than another, V2 >> V1, then this expression 
can be simplifi ed to
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 (15.3.4)

The condition for stability of the equilibrium state d2S < 0 now means that kT > 0. 
Thus, the state of equilibrium is stable to volume or mechanical fl uctuations only when 
the isothermal compressibility is positive.

2 

δV
1

Figure 15.2 Fluctuation in 
the volume of a system for 
fi xed N and U



15.4 Stability with Respect to Fluctuations in N

Fluctuations in the amount in moles of the various components of a system occur 
due to chemical reactions and due to diffusion. We discuss each of these cases 
separately.

CHEMICAL STABILITY

These fl uctuations can be identifi ed as the fl uctuations in the extent of reaction x, 
about its equilibrium value. Considering a fl uctuation dx, the change in entropy is
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We saw in Chapter 4 that (∂S/∂x)U,V = A/T. Hence, (15.4.1) can be written as
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(Here, T is constant.) In this equation, the identifi cation of the fi rst and second 
variations of entropy is obvious. At equilibrium, the affi nity A vanishes, so that once 
again dS = 0. For the stability of the equilibrium state, we then require that the 
second variation d2S be negative:
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Since T > 0, the condition for stability of the equilibrium state is
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When many chemical reactions take place simultaneously, condition (15.4.3) can be 
generalized to [1]
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STABILITY TO FLUCTUATIONS IN N DUE TO TRANSPORT

In the above stability analysis, the fl uctuations in mole numbers considered were 
only due to chemical reactions. The fl uctuation in mole number can also occur due 
to exchange of matter between a part of a system and the rest (see Figure 15.3). As 
we did in the case of exchange of energy, we consider the total change in entropy 
of the two parts of the system.
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 S S S  = +1 2  (15.4.6)
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Now we note that dN1k = −dN2k = dNk and (∂S/∂Nk) = −mk/T. Equation (15.4.7) can 
then be written so that the fi rst and second variations of the entropy can be 
identifi ed:
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As before, if the derivatives are evaluated at the state of equilibrium, then the chemi-
cal potentials of the two parts must be equal. Hence, the fi rst term vanishes. Fur-
thermore, if system 1 is small compared with system 2, then the change in the 
chemical potential (which depends on the concentrations) with respect to Nk of 
system 2 will be small compared with the corresponding change in system 1; 
that is:
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if system 1 is much smaller than system 2. We then have
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Figure 15.3 Fluctuations in 
mole number can occur due to 
chemical reactions and 
exchange of molecules between 
the two systems. The state of 
equilibrium is stable if the 
entropy change associated 
with such fl uctuations is 
negative
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as the condition for the stability of an equilibrium state when fl uctuations in Nk are 
considered.

In fact, this condition is general and it can be applied to fl uctuations due to chemi-
cal reactions as well. By assuming the fl uctuations dNk = nkdx, in which nk is the 
stoichiometric coeffi cient, we can obtain the condition (15.4.5) (Exercise 15.4). Thus, 
a system that is stable to diffusion is also stable to chemical reactions. This is called 
the Duhem–Jougeut theorem [2, 3]. A more detailed discussion of this theorem and 
many other aspects of stability theory can be found in Ref. [4].

In summary, the general condition for the stability of the equilibrium state to 
thermal, volume and mole number fl uctuations can be expressed by combining 
(15.2.8), (15.3.4) and (15.4.9):
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Though we have derived the above results by assuming S to be a function of U, V 
and Nk, and a system in which U, V and N are constant, the results derived have a 
more general validity, in that they are also valid for other situations in which p or 
T or both p and T are maintained constant. The corresponding results are expressed 
in terms of the enthalpy H, Helmholtz free energy F and the Gibbs free energy G. 
In fact, as we saw in Chapter 14, a general theory of stability that is valid for a wide 
range of conditions can be formulated using the entropy production diS as its 
basis.
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Exercises

15.1 For an ideal gas of N2 at equilibrium at T = 300 K, calculate the change in 
entropy due to a fl uctuation of dT = 1.0 × 10−3 K in a volume V = 1.0 × 
10−6 mL.
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15.2 Obtain the expressions (15.3.1) and (15.3.2) for the fi rst- and second-order 
entropy changes due to fl uctuations of volume at constant N.

15.3 Explain the physical meaning of the condition (15.4.4) for stability with 
respect to a chemical reaction.

15.4 In expression (15.4.9), assume that the change in amount in moles N is due 
to a chemical reaction and obtain expression (15.4.3).



16  CRITICAL PHENOMENA 
AND CONFIGURATIONAL 
HEAT CAPACITY

Introduction

In this chapter we shall consider applications of stability theory to critical phenom-
ena of liquid–vapor transitions and the separation of binary mixtures. When the 
applied pressure and temperature are altered, systems can become unstable, causing 
their physical state to transform into another distinct state. When the pressure on 
a gas is increased, for example, it may lose its stability and make a transition to 
liquid. Similarly, when the temperature of a two-component liquid mixture (such as 
hexane and nitrobenzene) changes, the mixture may become unstable to changes in 
its composition; the mixture then separates into two phases, each rich in one of the 
components. In Chapter 11 we saw that, in far-from-equilibrium systems, loss of 
stability can lead to a wide variety of complex nonequilibrium states. In equilibrium 
systems, loss of stability leads to phase separation. In this chapter, we shall also look 
at the response of a system that can undergo internal transformations to quick changes 
in temperature. This leads us to the concept of confi gurational heat capacity.

16.1 Stability and Critical Phenomena

In Chapter 7 we looked briefl y at the critical behavior of a pure substance. If its 
temperature is above the critical temperature Tc then there is no distinction between 
the gas and the liquid states, regardless of the pressure. Below the critical tempera-
ture, at low pressures the substance is in the form of a gas, but liquid begins to form 
as the pressure is increased. We can understand this transformation in terms of 
stability.

As shown in Figure 16.1 by the arrows, by using an appropriate path it is possible 
to go from a gaseous state to a liquid state in a continuous fashion. This was noted 
by James Thomson, who also suggested that the isotherms below the critical point 
were also continuous, as shown in Figure 16.2 by the curve IAJKLBM. This sug-
gestion was pursued by van der Waals, whose equation, as we saw in Chapter 1, 
indeed gives the curve shown. However, the region JKL in Figure 16.2 cannot be 
physically realized because it is an unstable region, i.e. it is not mechanically stable. 
In Section 15.3 we saw that the condition for mechanical stability is that the com-
pressibility kT ≡ −(1/V)(∂V/∂p) > 0. In Figure 16.2, this implies that the system is 
stable only if
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T > Tc

p
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T < TcD E

Figure 16.1 The critical behavior of a pure substance. 
Below the critical temperature, at a fi xed temperature, a 
decrease in volume results in a transition to a liquid state 
in the region AB in which the two phases coexist. The 
envelope of the segments AB for the family of isotherms 
has the shape ECD. Above the critical temperature Tc 
there is no gas–liquid transition. The gas becomes more 
and more dense, there being no distinction between the 
gas and the liquid phases. By following the path shown 
by the arrows, it is possible to go from a gas to a liquid 
state without going through a transition
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Figure 16.2 The stable, metastable and 
unstable regions for a liquid–vapor transi-
tion are indicated. In the region JKL, 
(∂p/∂V)T > 0, which shows that the system is 
unstable
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a condition that is satisfi ed for the segments IA and BM and for all the isotherms 
above the critical temperature. These regions represent stable regions. For the 
segment JKL we see that (∂p/∂V)T > 0, which means that this state is unstable. In 
this unstable state, if the volume of the system is kept fi xed, then small fl uctuations 
in pressure, depending on the initial state, will cause either the vapor to condense 
or the liquid to evaporate. The system will collapse to a point in the segment AB, 
where liquid and vapor coexist. As shown in Section 7.4, the amount of the sub-
stance in the two phases is given by the ‘lever rule’.

In region BL of Figure 16.2, the system is a supersaturated vapor and may 
begin to condense if nucleation can occur. This is a metastable state. Similarly, 
in the region AJ we have a superheated liquid that will vaporize if there is nucle -
ation of the vapor phase. The stable, metastable and unstable regions are indicated 
in Figure 16.2. Finally, at the critical point C, both the fi rst and second deriv -
atives of p with respect to V equal zero. Here, the stability is determined by the 
higher-order derivatives. For stable mechanical equilibrium at the critical point 
we have
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which is an infl ection point. The inequality (∂3p/∂V3) < 0 is obtained by considering 
terms of higher order than d2S.

16.2 Stability and Critical Phenomena in Binary Solutions

In solutions, depending on the temperature, the various components can segregate 
into separate phases. For simplicity, we shall only consider binary mixtures. This is 
a phenomenon similar to the critical phenomenon in a liquid–vapor transition, in 
that in one range of temperature the system is in one homogeneous phase (solution), 
but in an another range of temperature the system becomes unstable and the two 
components separate into two phases. The critical temperature that separates these 
two ranges depends on the composition of the mixture. This can happen in three 
ways, as illustrated by the following examples.

At atmospheric pressure, liquids n-hexane and nitrobenzene are miscible in all 
proportions when the temperature is above 19 °C. Below 19 °C, the mixture sepa-
rates into two distinct phases, one rich in nitrobenzene and the other in n-hexane. 
The corresponding phase diagram is shown in Figure 16.3a. At about 10 °C, for 
example, in one phase the mole fraction of nitrobenzene is 0.18, but in the other 
phase the mole fraction is about 0.75. As the temperature increases, at T = Tc, the 
two liquid layers become identical in composition, indicated by the point C. Point 
C is called the critical solution point or consolute point and its location depends on 
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the applied pressure. In this example, above the critical temperature the two liquids 
are miscible in all proportions. This is the case of an upper critical temperature. But 
this is not always the case, as shown in Figure 16.3b and c. The critical temperature 
can be such that below Tc the two components become miscible in all proportions. 
An example of such a mixture is that of diethylamine and water. Such a mixture is 
said to have a lower critical solution temperature. Binary systems can have both 
upper and lower critical solution temperatures, as shown in Figure 16.3c. An example 
of such a system is a mixture of m-toluidine and glycerol.

Let us now look at the phase separation of binary mixtures from the point of view 
of stability. The separation of phases occurs when the system becomes unstable with 
respect to diffusion of the two components; that is, if the separation of the two 
components results in an increase in entropy, then the fl uctuations in the mole 
number due to diffusion in a given volume grow, resulting in the separation of the 
two components. As we saw in Section 15.4, the condition for stability against dif-
fusion of the components is

 δ µ δ δ2 0S
N T

N N
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At a fi xed T, for binary mixtures this can be written in the explicit form
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Condition (16.2.2) is mathematically identical to the statement that the matrix with 
elements mij is positive defi nite. Also, because
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this matrix is symmetric. The stability of the system is assured if the symmetric 
matrix

 µ µ
µ µ

11 12

21 22







 (16.2.5)

is positive defi nite. The necessary and suffi cient conditions for the positivity of 
(16.2.5) are

 µ µ µ µ µ µ11 22 11 22 21 120 0 0> > − >  (16.2.6)

If these are not satisfi ed, then condition (16.2.2) will be violated and the system 
becomes unstable. Note that (16.2.4) and (16.2.6) imply that m12 = m21 < 0 to assure 
stability for all positive values of m11 and m22.
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Figure 16.3 Three types of phase diagrams showing 
critical phenomenon in binary solutions: (a) a mixture 
of hexane and nitrobenzene; (b) a mixture of dieth-
ylamine and water; (c) a mixture of m-toluidine and 
glycerol
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If we have an explicit expression for the chemical potential, then the conditions 
(16.2.6) can be related to the activity coeffi cients of the system. This can be done, 
for example, for a class of solutions called strictly regular solutions, which were 
studied by Hildebrandt and by Fowler and Guggenheim in 1939. The two compo-
nents of these solutions interact strongly and their chemical potentials are of the 
form

 µ µ α1 1 2 1
0

1 2
2( ) ( ) ( )T p x x T p RT x x, , , , ln= + +  (16.2.7)

 µ µ α2 1 2 2
0

2 1
2( ) ( ) )T p x x T p RT x x, , , , ln(= + +  (16.2.8)
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are the mole fractions. The factor a is related to the difference in interaction energy 
between two similar molecules (two molecules of component 1 or two molecules 
of component 2) and two dissimilar molecules (one molecule of component 1 and 
one of component 2). For solutions that are nearly perfect, a is nearly zero. From 
these expressions it follows that activity coeffi cients are given by RT ln g1 = ax2

2 and 
RT ln g2 = ax2

1. We can now apply the stability conditions (16.2.6) to this system. By 
evaluating the derivative we see that the condition m11 = (∂m1/∂N1) > 0 becomes 
(Exercise 16.5)
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For a given composition specifi ed by x1, if R/2a is positive, then for suffi ciently large 
T this condition will be satisfi ed. However, it can be violated for smaller T. The 
maximum value of x1(1 − x1) is 0.25. Thus, for RT/2a < 0.25 there must be a range 
of x1 in which the inequality (16.2.10) is not valid. When this happens, the system 
becomes unstable and separates into two phases. In this case we have an upper criti-
cal solution temperature. From (16.2.10), it follows that the relation between mole 
fraction and the temperature below which the system becomes unstable is
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This gives us the plot of Tc as a function of x1 shown in Figure 16.4. It is easy to 
see that the maximum of Tc occurs at x1 = 0.5. Thus, the critical temperature and 
mole fractions are

 ( ) .x T
R

1 0 5
2

c c= = α
 (16.2.12)

The equation T = (2a/R)x1(1 − x1) gives the boundary between the metastable region 
and the unstable region. The boundary between the stable region and the metastable 



region is the coexistence curve. The coexistence curve of the two phases can be 
obtained by writing the chemical potentials m1 and m2 in both phases and equating 
them. This is left as an exercise.

16.3 Confi gurational Heat Capacity

The thermodynamic state of many systems may be specifi ed, in addition to p and T 
and by the extent of reaction x. For such a system, the heat capacity must also 
involve changes in x due to the change in temperature. For example, we may con-
sider a compound that may exist in two isomeric forms. Then the extent of reaction 
for the transformation is the variable x. The heat absorbed by such a system causes 
changes not only in p and T, but also in x, causing it to relax to a new state of equi-
librium with respect to the transformation. If the system is in equilibrium with 
respect to the extent of reaction x, then the corresponding affi nity A = 0. Now, since 
the heat exchanged dQ = dU − p dV = dH − V dp, we can write

 d d d d, , ,Q h V p C T hT p T p= − + +( )ξ ξ ξ  (16.3.1)
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At constant pressure, we can write the heat capacity Cp = CpmN as
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Figure 16.4 The phase diagram for strictly regular 
solutions
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Now for an equilibrium transformation, it can easily be shown (Exercise 16.6) 
that
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By substituting (16.3.4) into (16.3.3) we obtain the following result for a system that 
remains in equilibrium during the time it is receiving heat:
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But we have seen in Section 15.4 that the condition for the stability of a system 
with respect to chemical reactions is that (∂A/∂x) < 0. Hence, the second term on 
the right-hand side of (16.3.5) is positive. The term Cp,x is the heat capacity at 
constant composition. There may be situations, however, in which the relaxation 
of the transformation represented by x is very slow. In this case, we measure the 
heat capacity at a constant composition. This leads us to the following general 
conclusion:

The heat capacity at a constant composition is always less than heat capacity of a system 
that remains in equilibrium with respect to x as it receives heat.

The term hT,p(dx/dT) is called the confi gurational heat capacity, because it refers 
to the heat capacity due to the relaxation of the system to the equilibrium confi gura-
tion. The confi gurational heat capacity can be observed in systems such as glycerin 
near its crystalline state, where the molecules can vibrate but not rotate freely as 
they do in the liquid state. This restricted motion is called libration. As the tempera-
ture is increased, a greater fraction of the molecules begin to rotate. For this system, 
x is the extent of reaction for the libration–rotation transformation. For glycerin, 
there exists a state called the vitreous state in which the libration–rotation equilib-
rium is reached rather slowly. If such a system is heated rapidly, the equilibrium is 
not maintained and the measured heat capacity will be Cp,x, which will be lower than 
the heat capacity measured through slow heating during which the system remains 
in equilibrium.
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Exercises

16.1 Using the Gibbs–Duhem equation at constant p and T, and the relation 

d d,µk i k i p T iN N= Σ ( / )∂µ ∂ , show that
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k
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0

 This equation implies that the determinant of the matrix with elements mki = 
(∂mk/∂Ni) is equal to zero. Consequently, one of the eigenvalues of the matrix 
(16.2.5) is zero.

16.2 Show that, if the 2 × 2 matrix (16.2.5) has a negative eigenvalue, then the 
inequality (16.2.2) can be violated.

16.3 Show that if the matrix (16.2.5) has positive eigenvalues, then m11 > 0 and 
m22 > 0.

16.4 In a strictly binary solution, assuming that the two phases are symmetric, i.e. 
the dominant mole fraction in both phases is the same, obtain the coexistence 
curve by equating the chemical potentials of a component in the two 
phases.

16.5 Using (16.2.7) and (16.2.9), show that the condition m11 = ∂m1/∂N1 > 0 leads 
to Equation (16.2.10).

16.6 For an equilibrium transformation, show that
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17  ELEMENTS OF STATISTICAL 
THERMODYNAMICS

Introduction

In the nineteenth century, development of kinetic theory, the ideas Daniel Bernoulli 
published a century earlier in his Hydrodynamica, came to fruition. When the atomic 
nature of matter became evident, James Clerk Maxwell, Ludwig Boltzmann, and 
others began to formulate the kinetic theory of gases. Kinetic theory demonstrated 
how random molecular motion gives rise to pressure in accordance with the ideal 
gas law, pV = NRT (as discussed in Section 1.6). It gave us the precise relationship 
between temperature and molecular motion: the average kinetic energy of molecule 
is directly proportional to the temperature, 〈mv2/2〉 = (3/2)kBT. The concepts intro-
duced through kinetic theory could also explain other properties of gases, such as 
heat conductivity, diffusion and viscosity [1], the so-called transport properties. Once 
the connection between the temperature and energy of an individual molecule was 
established, the relationship between energy as formulated in thermodynamics and 
mechanical energy of a molecule became clear. The thermodynamic energy of a 
system is the sum of all the energies of the molecules. Random molecular motion 
distributes the total energy of the system into all possible modes of motion, i.e. trans-
lation, rotation and vibration, and the amount of energy in each mode of motion 
depends on the temperature. If the average energy of a single molecule is known, 
then the total energy of the system can be calculated; in turn, the average energy of 
a molecule is related to the system’s temperature. The success of these developments 
still left one big question unanswered: what is the microscopic explanation of 
entropy? What is the relationship between entropy and molecular properties? 
Boltzmann’s answer to that question, which has already been introduced in earlier 
chapters, is ‘S = kBlnW  ’. This fundamental formula opened the way for the formula-
tion of statistical thermodynamics, a theory that relates thermodynamic quantities 
to the statistical properties of molecules.

In this chapter, we introduce the reader to the basic formalism of statistical ther-
modynamics and illustrate how thermodynamic properties of some simple systems 
can be related to statistical properties of molecules. We will begin by giving the 
reader a brief overview of the topic.

In previous chapters the thermodynamic quantities were written as functions of 
moles N and gas constant R. In this chapter, it is more convenient to use molecular 
quantities, Ñ the number of particles and the Boltzmann constant kB. Conversion 
to N and R may be done by noting that Ñ = NNA and R = NAkB. Also, when discuss-
ing general statistical thermodynamic concepts that are valid for electrons, atoms 
or molecule, we shall use the term ‘particles’.

Introduction to Modern Thermodynamics Dilip Kondepudi
© 2008 John Wiley & Sons, Ltd
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17.1 Fundamentals and Overview

On the one hand, quantum mechanics describes the behavior of electrons, atoms 
and molecules with remarkable success through the concepts of quantum states, 
quantized energies and energy eigenstates. On the other hand, an equally successful 
thermodynamics describes the macroscopic behavior of matter in terms of variables 
such as entropy S, Helmholtz energy F, and chemical potential m. Statistical ther-
modynamics relates these two theories. It enables us to calculate thermodynamic 
quantities such as the Helmholtz energy F, given all the energy states of constituent 
particles: electrons, atoms or molecules as the case might be.

In quantum theory, particles such as electrons, atoms or molecules are described 
by their quantum states y〉. Among these states are energy eigenstates, states with 
defi nite energy. Statistical thermodynamics uses these ‘energy eigenstates’ Ek〉, asso-
ciated with an energy Ek, in which the subscript k = 1, 2, 3,  .  .  .  indexes the quantized 
energies. There could be several states that have the same energy; the energy level 
is then said to be ‘degenerate’. A microstate of a system is the detailed specifi cation 
of the state of every particle in the system. For a given total energy U there are a 
large number of different ways in which that energy can be distributed among the 
particles in the system. In general, there are a large number of microstates that cor-
respond to a given thermodynamic state. Boltzmann’s fundamental postulate is that 
entropy is related to the number of microstates W through

Ludwig Boltzmann (1844–1906) (Reproduced courtesy of the AIP Emilio Segre Visual 
Archive, Segre Collection)



 S k W= B ln  (17.1.1)

in which the constant kB is now named after Boltzmann. W is sometimes called the 
thermodynamic probability, a term introduced by Max Planck. In Chapter 3 (Box 
3.2) we considered simple examples to illustrate how W is calculated. We will discuss 
more such examples in the following sections. For a brief overview of statistical 
thermodynamics, we shall focus on two basic relations that follow when (17.1.1) is 
applied to systems in thermodynamic equilibrium.

� Statistical thermodynamics uses the concept of statistical ensembles, a large col-
lection of Ñ identical particles or entire systems, to calculate average values. There 
is an alternative way of expressing (17.1.1). For an ensemble of particles or 
systems, if Pk is the probability that the particle or system is in state k, then in 
Section 17.4 we show that S can also written as

 S k N P P
k

k= − ∑B ln�  (17.1.2)

� When a system is in thermodynamic equilibrium at a temperature T, the probabil-
ity P(Ei) that a particle will occupy a state with energy Ei is

 P E
q

i
E k Ti( ) = −1

e / B  (17.1.3)

The term

 q
i

E k Ti= ∑ −e / B  (17.1.4)

is the normalization constant; it is introduced so that Σi iP E( ) = 1, as required by the 
very defi nition of probability. Expression (17.1.3) for the probability of a state k is 
called the Boltzmann probability distribution. In many situations, it is found that 
several distinct states have the same energy. If g(Ei) is the number of states having 
the same energy Ei, then the probability that a particle has an energy Ei occupying 
any one of the g(Ei) states is

 P E
q

g E q g Ei i
E k T

i
i

E k Ti i( ) ( ) ( )= =− −∑1
e e/ /B B  (17.1.5)

g(Ei) is called the degeneracy of the energy level Ei.
Statistical thermodynamics of equilibrium systems is based on the fundamental 

expressions (17.1.2) and (17.1.3). Thus, given the quantum energy levels Ek, and their 
degeneracies g(Ek), the average value of the energy of a single molecule, which we 
shall denote by 〈E〉, is calculated using (17.1.3):

 E E P E
i

m

i i=
=
∑

1

( )  (17.1.6)

To calculate the average energy of a system of Ñ particles, an ensemble of systems 
is used (the reason for using an ensemble of systems is explained in Section 17.4). 
In this case, the total energy of all the particles Ui takes the place of Ei in (17.1.6), 
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in which P(Ui) is the corresponding probability. The ensemble average 〈U〉 = U, is 
the energy of the system. The entropy of the system can be calculated using (17.1.2). 
From these two quantities, the Helmholtz energy F = U − TS and other thermody-
namic quantities can be obtained.

In the following sections we shall see that thermodynamic quantities can be 
obtained from q defi ned in (17.1.4). Because of its importance, it is given a name, 
the partition function.* To be more precise with terminology, q defi ned above is called 
the ‘single-particle canonical partition function’. The partition function of a system 
of Ñ particles is usually denoted by Q. For Ñ identical noninteracting particles, q 
and Q have the following relation:

 Q
q

N

N

=
�

� !
 (17.1.7)

For interacting particles, Q is a more complicated function of T, V and Ñ. Express-
ing Q as a function of V, T and Ñ, and using (17.1.2), one can derive the following 
general relation between Q and the Helmholtz energy F:

 F k T Q V T N= − B ln , ,( )�  (17.1.8)

From the Helmholtz energy, other thermodynamic quantities can be calculated:
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= −





= −
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 (17.1.9)

Statistical thermodynamics of a system usually begins with the calculation of the 
partition function Q. If Q can be obtained in a convenient analytic form, then all 
thermodynamic quantities can be calculated from it. This is the basic framework of 
equilibrium statistical thermodynamics. In the following sections we develop this 
formalism and present illustrative applications.

17.2 Partition Function Factorization

When the total energy of a particle can be written as a sum of independent energies 
with independent quantum numbers, the partition function can be expressed as a 
product of partition functions. The total energy of a molecule consists of energies 
in various types: energies of translation, rotation, vibration and the energies in the 
electronic and nuclear states. We can write the total energy E as the sum

 E E E E E E= + + + +trans rot vib elec nuc  (17.2.1)

in which the superscripts stand for translation, rotation, etc. Each of the energies is 
quantized and has independent quantum numbers. (Depending on the conditions, 
the energies may also depend on external factors, such as gravitational and electro-
magnetic fi elds, but those terms are not included in the above expression.) The above 

* The letter z is also used for the partition function, because in German the sum (17.1.4) is called 
Zustandsumme (which means ‘state sum’).
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expression assumes that energy of each type of motion is independent of another. 
Though this may be a good approximation in many situations, it is not strictly true. 
For example, the rotational energy of a molecule may depend on its vibrational 
state; in such situations, one could deal with the combined vibrational–rotational 
energy levels. For simplicity, we shall assume energy levels of each type of motion 
have independent quantum numbers. In this case, the single molecule partition func-
tion can be factorized:

 

q g E g E g E g E g E
j k l m n

j k l m n
E E Ej k l= ∑ − + +

, , , ,

e
trans rot v

( ) ( ) ( ) ( ) ( ) (β iib elec nuc

trans rot

e e e

+ +

− −= ∑ ∑ ∑

E E

j
j

E

k
k

E

l
l

m n

j kg E g E g E

)

( ) ( ) ( )β β −− − −∑ ∑β β βE

m
m

E

n
n

El m ng E g E
vib elec nuc
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(17.2.2)

For each molecule, quantum theory gives us the energy levels of each mode of 
motion. As shown in Box 17.1, the spacing of energy levels increases from transla-
tion to rotation to vibration. Translational energy levels are very closely spaced 
compared with the average thermal energy of a molecule, which is of the order of 
kBT. The electronic energies generally have a much larger spacing than vibrational 
energies do. If the ground-state energy is taken to be zero, then the electronic parti-
tion function is close to unity.

The energy of the nucleus is also quantized and the spacing is so large that transi-
tion from an excited state to the ground state is through the emission of high-energy 
g rays or the ejection of a or b particles (the latter being electrons or positrons). 
Transitions between nuclear states do not occur as a result of thermal collisions 
between atoms and molecules, so we can assume that the nuclei are in their ground 
states (except for radioactive nuclei). However, at temperatures that are encountered 
in the interior of stars, transitions between nuclear states must be considered. Box 
17.1 lists commonly used expressions for the energy levels in molecules. With these 
energy levels, the corresponding partition functions can be calculated.

17.3 The Boltzmann Probability Distribution and Average Values

To illustrate the use of the Boltzmann probability distribution (17.1.5) let us con-
sider Ñ particles whose energy can be any of the m possible values E1, E2,  .  .  ., Em. 
At equilibrium, let Ñ1, Ñ2,  .  .  ., Ñm be the number of particles in these energy levels, 
which implies Ñ = Ñ1 + Ñ2  .  .  .  + Ñm. The probability that we will fi nd a particle in 
energy level Ek is proportional to Ñk, the number of particles in that state. According 
to the Boltzmann principle:

 P E
g E

q
N
N

k
k

E k T
k

k

( )
( ) /

= =
−e B �

�  (17.3.1)

Ñk is often called the occupation number of the state with energy Ek. From (17.3.1), 
it follows that the relative number of particles in energy states Ek and El is:
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Box 17.1 Energy Levels Associated with Different Types of Motion.

Energy levels of a molecule for various types of motion. Translational energy levels 
are very closely spaced compared with rotational energies, which are more closely 
spaced than vibrational energies. The energy level spacing shown is not to scale; these 
are just meant to give a qualitative idea.

• Translational energy levels of a particle of mass m in a box of sides lx, ly and lz 
(volume V = lxlylz) are specifi ed by quantum numbers nx, ny and nz:
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in which h = 6.626 × 10−34 J s is Planck’s constant.
• Energy levels for rotation about an axis with moment of inertia I are specifi ed by 

the quantum number L:

E
I

L L L g E L hL L= + = = + =�
�

2

1 2 1
2

0,1, 2, 3, . . . and /2( ) ( ) π

• Vibrational energy levels of a diatomic molecule with reduced mass m = m1m2/(m1 + 
m2) and force constant k are specifi ed by the quantum number v:
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Thus, the ratio of occupation numbers is a function of the difference in the energies 
and the ratio of the corresponding degeneracies.

The average value of a variable or physical property can be calculated using the 
Boltzmann probability distribution. We shall denote the average value of a quantity 
X by 〈X〉. Thus, the average energy of a single particle 〈E〉 is

 E
E N

N
E P Ek

m

k k

k

m

k k= ==

=

∑
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1

�

� ( )  (17.3.3)

The total energy of all particles is U = Ñ〈E〉.
More generally, the average values of any physical property X can be calculated 

if its value in the state Ek〉, which we denote by Xk, is known.
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The average value of any function of X, f(X), can similarly be calculated using

 f X
f X N

N
f X P Ek
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For example, the average value of 〈E2〉 is

 E E P E
k

m

k k
2

1

2=
=

∑ ( )  (17.3.6)

The standard deviation, ∆E, in E is defi ned by (∆E)2 ≡ 〈(E − 〈E〉)2〉. An elementary 
calculation shows that

 ( ) ( )∆E E E E E2 2 2 2≡ − = −  (17.3.7)

In this manner, statistical quantities such as the average and standard deviation 
of physical variables associated with an equilibrium system can be calculated. 
When an ensemble of systems is considered, the energy Ek is replaced by the total 
energy Ui.

17.4 Microstates, Entropy and the Canonical Ensemble

A macroscopic thermodynamic state of a system corresponds to a large number 
of ‘microstates’. For instance, if the total energy of an ensemble of Ñ particles 
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(molecules, electrons, etc.) in a volume V is specifi ed, then this energy can be dis-
tributed among the Ñ particles in a number of ways. Each distinct distribution of 
the energy among the Ñ particles corresponds to a microstate. We now show how 
expression (17.1.2) is derived from the fundamental formula

 S k W= B ln  (17.4.1)

in which W is the number of microstates corresponding to the given thermodynamic 
state (also called a macrostate). To illustrate how W is calculated, let us consider an 
ensemble of Ñ particles each of which can be in any one of the m states. These could 
be ‘numbered particles’ on a crystal lattice. A microstate specifi es the energy state 
of each particle. As in the previous sections, we assume Ñk particles are in a state 
with energy Ek. The number of microstates W is the number of distinct ways in 
which the Ñ particles can be distributed in m states. W can be calculated as follows 
(Figure 17.1). First, we note that if a particle, say particle 26, is in energy state E5 
and another particle, say particle 14, is in energy state E2, then an interchange of 
these two particles gives a different microstate; but if both particles 26 and 14 are 
in the same energy state, say E5, then interchanging them does not give a new micro-
state. Thus, only permutations that do not correspond to interchange of particles 
with the same energy Ek correspond to distinct microstates. The number of all pos-
sible permutations is Ñ! The number of permutations of particles with the same 
energy Ek is Ñk! Thus, the total number of microstates W is given by

 W
N

N N Nm

=
�
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!

! ! . . . !1 2

 (17.4.2)

The entropy S is

Figure 17.1 An ensemble of Ñ par-
ticles distributed in m energy levels. 
Ñk particles are in energy level Ek. 
Pk = Ñk/Ñ is the probability that a 
particle will occupy a state with 
energy Ek. The entropy per particles 
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 (17.4.3)

We assume Ñk is large. Then, for the term ln(Ñk!) we can use Stirling’s approxima-
tion (see Appendix 17.1):

 ln( lna a a a!) ≈ −  (17.4.4)

Using this approximation one can show that (Exercise 17.1)
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Since Ñk/Ñ = Pk, the probability of occupying a state with energy Ek, we immediately 
see that

 S k W k N
N
N

N
N

k N P P
k

k k

k
k k= = − 











= −∑ ∑B B Bln ln ln�
�
�

�
�

�  (17.4.6)

which is (17.1.2) if we replace P(Ek) with Pk. We derived (17.4.6), the relationship 
between entropy and probability, from (17.4.1) without any assumption about the 
system being in equilibrium. Hence, this defi nition of entropy is valid for nonequi-
librium systems as well. Sometimes it is considered the defi nition of statistical 
entropy and used in contexts other than thermodynamics, such as information 
theory.

In Chapter 5 we noted that the entropy reaches its maximum value when the 
energy of a system U is constant. Now, we show that the Boltzmann equilibrium 
distribution (17.1.3) maximizes S when the total energy is constant. In other words, 
we show that, with the constraint of fi xed total energy, S will reach its maximum 
value when Pk ∝ e−bEk. This result can be obtained by using Lagrange’s method of 
fi nding the maximum of a function subject to constraints. Our constraints are the 
constancy of total energy E and the total number of particles Ñ. They can be 
expressed as

 E E N N E N N N E P
k

k k
k

k k
k

k k= = =∑ ∑ ∑� � � � �( )/  (17.4.7a)

 � �N N
k

k= ∑  (17.4.7b)

in which we have used Pk = Ñk/Ñ. Lagrange’s method now stipulates that, to 
maximize −ΣkPk ln Pk with the constraints (17.4.7), one needs to maximize the 
function

 I P P E N E P N N
k

k k
k

k k
k

k= − + −





+ −



∑ ∑ ∑ln λ ξ� � �  (17.4.8)
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in which l and x are arbitrary constants whose values can be determined by addi-
tional requirements. Now it is straightforward to see that the condition ∂I/∂Pk = 0 
leads to the relation

 lnPk = −lÑEk + 1 − x

As a function of Ek, we can now write

 P Ck
Ek= −e β  (17.4.9)

in which C = exp(1 − x) and b = lÑ. This is essentially the Boltzmann distribution 
(17.1.2) once we identify b = 1/kBT. That b must be 1/kBT can deduced by calculating 
the average kinetic energy of a particle and equating it to 3kBT/2, as required by 
kinetic theory. Since Σk kP = 1 , we see that C = 1/q by comparing (17.4.9) with 
(17.1.3). Equation (17.4.9) is valid for every state that has energy Ek. Taking into 
account the degeneracy g(Ek), the probability that the system will occupy any one 
of the g(Ek) states with energy Ek can be written as

 P E
q

g Ei i
E k Ti( ) ( )= −1

e / B  (17.4.10)

If each state with energy Ei is counted separately, then the degeneracy factor need 
not be included. In expression (17.4.6) the Pk values are the probabilities of occupying 
a particular state with energy Ek.

THE CANONICAL ENSEMBLE

In the following sections we will see that thermodynamic quantities of a system are 
calculated using the concept of a statistical ensemble. In deriving (17.4.10) it was 
assumed that the number of particles Ñk occupying a state k is large. This is a good 
assumption for rotational and vibrational states of molecules, but it is not valid for 
the occupation of translational states. Translational energies are very closely spaced. 
At ordinary temperatures, the average kinetic energy 3kBT/2 is much larger than the 
energy spacing of the translational quantum states. For example, if we assume T = 
298 K, then a simple calculation for N2 gas in a cube of side 10 cm shows (Example 
17.1) that there are roughly 1029 states with energy less than 3kBT/2. At ordinary 
pressures, this is much larger than the number of N2 molecules; hence, most trans-
lational states are unoccupied. Thus, we cannot assume that Ñk is large. In such 
cases we use the concept of an ensemble of systems. The energy U of each system 
in the ensemble is itself subject to fl uctuations, and in that respect is similar to the 
energy of a single particle. The system’s energy can take values U1, U2,  .  .  .  with 
probabilities P1, P2,  .  .  .  ; that is, the probability P(Uk) that the total energy U of a 
system in the ensemble has a particular value Uk can be defi ned just as P(Ek) was 
defi ned for a single particle. It is assumed that the thermodynamic properties of a 
single system are the same as the average properties of the ensemble.



One such ensemble is the canonical ensemble shown in Figure 17.2. It consists of 
a large number Ñ of identical systems in contact with a thermal reservoir at a tem-
perature T. In this fi gure, Ñk is the number of systems (not particles) with total energy 
Uk. Each system’s energy can take values Uk with probabilities P(Uk). The thermo-
dynamic energy of a system is the average energy calculated using this ensemble. 
With this formalism, we see that all the calculations done above for a single particle 
could be carried out for the canonical ensemble with the following result:

 P U
Q

Qk
U k T

i

U k Ti i( ) = =− −∑1
e e/ /B B  (17.4.11)

We note here that Ui is the total energy of all the particles of the system at a given 
temperature T. The partition function Q of a canonical ensemble is called canonical 
partition function. The entropy of a system is

 S k P U P U
k k k= − ∑B ln( ) ( )  (17.4.12)

In the following section, we shall see how thermodynamic quantities can be obtained 
from these two expressions.

T

U1

U4

U2

U3

Um

Ñ1

Ñ2

Ñ3

Ñ4

Figure 17.2 A canonical ensemble is a large 
set of Ñ identical systems in contact with a 
temperature reservoir. The system’s total 
energy U can take many possible values, U1, 
U2,  .  .  .  , Um. At any instant, the ensemble of 
systems is distributed among the possible 
energy states, Ñk systems with energy Uk. Pk 
= Ñk/Ñ is the probability that a system’s 
energy will be Uk. The entropy of the system 
S k P Pk k k= − B lnΣ
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17.5 Canonical Partition Function and Thermodynamic Quantities

There is a general scheme for calculating thermodynamic quantities from the parti-
tion functions. The partition function for a system of Ñ particles is

 Q k T
i

Ui= =∑ −e / B
β β 1  (17.5.1)

in which we have introduced a convenient notation b = 1/kBT. The total energy 
U N Ei k k

i
k= Σ � , in which Ñi

k, is the number of molecules in state k with energy Ek. The 
superscript i indexes a particular set of Ñi

k whose total energy adds up to Ui. The 
value of each Ñi

k can vary from 0 to Ñ, the total number of molecules in the system, 
but Σk k
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(17.5.2)

where we have used U P U Ui i i= Σ ( )  and Σi iP U( ) = 1 . From (17.5.2), it follows that 
F ≡ U − TS = −kBTlnQ. When we compute Q explicitly in the following sections, we 
will see that Q is a function of the system volume V, the temperature T and Ñ. 
Making this explicit, we write

 F V T N k T Q V T N( ) ( ), , ln , ,B
� �= −  (17.5.3)

The total energy U can also be calculated directly from the partition function Q. It 
is easy to verify that

 U
Q= − ∂

∂β
ln

 (17.5.4)

Using (17.5.3) and (17.5.4), other thermodynamic quantities could be calculated. 
For example, the chemical potential m = (∂F/∂N)V,T and p = −(∂F/∂V)N,T.

17.6 Calculating Partition Functions

For simple systems, such as an ideal gas of noninteracting particles and the vibra-
tional and rotational states of a diatomic molecule, the partition functions can be 
calculated without much diffi culty. In these cases, the partition function Q of the 
entire system can be related to the partition function of a single particle or molecule. 
The calculation of the translational partition function is done as follows.
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TRANSLATIONAL PARTITIONS FUNCTION

For a gas of Ñ identical noninteracting particles the total energy U N Ei k k
i

k= Σ � , in 
which Ek is the translational energy of state and Ñi

k are the number of particles in 
that state. We have already noted (Section 17.4) that translational states are sparsely 
occupied. Therefore, most of the Ñi

k are zero and the partition function for the 
translational states is a sum that looks like
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(17.6.1)

The terms in this sum can be interpreted as terms in a single-particle partition func-
tion. Each of the factors e−bEk is a term in the single-particle partition function 
q k

Ek= −Σ e β . Since the number of available translational states is much larger than 
the number of particles, an overwhelming number of terms correspond to only one 
particle in a translational state. Hence, the right-hand side of (17.6.1) can be approx-
imated as the product of Ñ partition functions q k

Ek= −Σ e β . However, as explained 
in Box 17.2, such a product will have permutations between particles that are not 
in Qtrans. The overcounting is corrected by dividing qÑ by Ñ!. This leads to the 
relation

 Q
q
N

N

trans
trans=
�

� !
 (17.6.2)

Our task now is to calculate the single-particle translational partitions function qtrans. 
As shown in Box 17.1, for a gas of particles with mass m in a cubical box of sides 
lx, ly, lz, the translational states are specifi ed by the quantum numbers nx, ny, nz with 
energies
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To obtain qtrans, the following sum is to be evaluated:
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in which C = h2/8m. Each of these sums can be approximated by an integral because 
the energy level spacing is very small. The sum over nx can be written as the integral 
(which is evaluated using the table of integrals in Appendix 17.1):
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Box 17.2 Relation Between q and Q

The approximation Qtrans = qÑ
trans/Ñ! can be made clear by considering 100 translational 

states occupied by two identical particles. Every pair of energy states that the two 
particles occupy corresponds to a state of the system. In identifying distinct system 
states, every pair of energies should be counted only once; exchanging the two particles 
does not result in a different system state because the particles are identical.

For two particles and 100 states, there are 100 × 90/2! = 4500 system states in which 
the two particles occupy different energy states, but there are only 100 in which both 
particles are in the same system state. The corresponding terms in Q are

 Q
i k k

E E

k

Ei k k= +
> =

− +

=

−∑∑ ∑
100

1

100

1

100
2e eβ β( )  (A)

In the fi rst term, i > k assures that each pair of energy states is included only once. 

The single-particle partition function q k
Ek= =

−Σ 1
100 e β . Comparing Q with

q
i
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k
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E Ei k i k2
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we see that, when i ≠ k, each pair of Ei and Ek occurs twice in q2 but only once in Q. 
In q2, exchange of particles is counted as a different system state. We compensate for 
this overcounting by dividing q2 by 2! and get
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Comparing (A) and (B), we see that they differ only in the second term, which corre-
sponds to two particles in the same energy state. Since such states are far fewer than 
those in which the two particles are in different energy states, the difference between 
(A) and (B) is not signifi cant. The above argument can be extended to Ñ particles by 
replacing 2! with Ñ!. Thus, when the number of available states far exceeds the number 
of particles, Qtrans = qÑ

trans/Ñ! is a very good approximation.
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When similar integrals for ny and nz are evaluated, the partition function can be 
written as

 q
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h
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V
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3
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2 2( ) ( )π π  (17.6.3)

in which volume of the system V = lxlylz. The translational partition function of the 
gas is thus
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V
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( )π  (17.6.4)

This expression can be given another interpretation leading to another form in which 
Qtrans is often written. Since the average kinetic energy of a gas particle is 3kBT/2, 
the average momentum of particles at temperature T is (3mkBT)1/2. The de Broglie 
wavelength (l = h/p) associated with this momentum equals h/(3mkBT)1/2. For this 
reason, a thermal wavelength Λ = h/(2pmkBT)1/2 is defi ned (replacing 3 with 2p). In 
terms of Λ the partition function Qtrans can be written in the following simple 
form:
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V h
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 (17.6.5)

THERMODYNAMIC QUANTITIES

For particles that have no internal structure or for particles whose internal energy 
at the temperature of interest can be neglected, all the energy is translational (kinetic 
energy). A monatomic ideal gas is an example. The Helmholtz energy of a gas of 
such particles is

 F V T N k T Q k TN
V
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mk T k T( ) ( ), , ln ln lnB trans B B
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� � �= − = − 





+
3

2π NN !

Using Stirling’s approximation, ln(Ñ!) � ÑlnÑ − Ñ, the above expression can be 
written as
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(17.6.6)

Since the gas constant R = kBNA and amount in moles N = Ñ/NA, the above F can 
be expressed as

 F V T N RNT
V

NN h
mk T( ) ( ), , ln

A
B

3/2= − 





+





3

2 1π  (17.6.7)

Other thermodynamic quantities can now be obtained from F. For example, since 
p = −(∂F/∂V)T,N, it follows that
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 p
F
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RTN
VT N

= −





=∂
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 (17.6.8)

which is the ideal gas equation. Similarly, since entropy S = −(∂F/∂T)V,N, a simple 
calculation shows that the ideal gas entropy is

 S N R
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NN h
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+{ }ln
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3
2

5
2

( )π  (17.6.9)

This expression was obtained in 1911 by O. Sackur and H. Tetrode in the early stages 
of the development of quantum theory. It is called Sackur–Tetrode equation for the 
entropy of an ideal gas. It shows us that quantum theory (Planck’s constant being its 
signature) gives the absolute value of entropy without any arbitrary constants. In 
Chapter 3 we derived the following expression for the entropy of an ideal gas:

 S V T N N s R
V
N

C TV( ), , ln ln= + 



 +



0  (17.6.10)

in which s0 was an undetermined constant. Comparing (17.6.9) and (17.6.10), we see 
that CV = 3R/2 and
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We have noted that the energy U of the system can be obtained from Q using rela-
tion (17.5.4), U = −(∂lnQ/∂b), in which b = 1/kBT. Because lnQ = −F/kBT, using 
(17.6.6), Q can be expressed in terms of b thus:

 ln ln / 3/2Q N
V

Nh
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+{ }�
� 3

2 1( )π β

From this, it follows that the energy of an ideal gas of particles whose energy is 
entirely translational is

 U
Q

Nk T NRT= − = =∂
∂β
ln

B
3
2

3
2

�  (17.6.11)

From the fundamental quantities U and S, all thermodynamic quantities of an ideal 
gas of structureless particles are obtained.

ROTATIONAL PARTITION FUNCTION

For molecules, we must consider energy and entropy associated with rotational 
motion. At ordinary temperatures, a large number of rotational states above the 
lowest energy state are occupied by molecules (this can be seen by comparing kBT 
with rotational energy levels). For simplicity, we consider a diatomic molecule 
whose atoms have masses m1 and m2, as shown in Box 17.1. Since the rotational 
energies are EL = (–h2/2I)L(L + 1) with degeneracy g(EL) = 2L + 1, the single-molecule 
partition function is



 q L
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h I L L
rot
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For diatomic molecules with masses m1 and m2, the reduced mass m is defi ned as

 µ =
+

m m
m m

1 2

1 2

 (17.6.13)

If the distance between the two nuclei (bond length) is R, then the moment of inertia 
I is given by

 I R= µ 2  (17.6.14)

To compare the rotational energy level spacing with kBT, a characteristic tem -
perature qrot ≡ –h2/2IkB is defi ned. Then the rotational partition function qrot is 
written as

 q L
L

L L T
rot

/e= +
=

∞
− +∑
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12 1( ) ( )θ
 (17.6.15)

Using bond length data, and assuming R equals bond length, the moment of inertia 
I and qrot can be calculated. For H2 it is found that qrot = 87.5 K, and qrot = 2.1 K for 
O2. At very low temperature, i.e. when T << qrot, this sum can be approximated by

 q T T
rot

/ /e erot rot= + + +− −1 3 52 6θ θ . . .  (17.6.16)

At high temperature, i.e. when T >> qrot, the sum (17.6.15) may be approximated by 
the following integral:
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For diatomic molecules with identical atoms, such as H2 or N2, the quantum theory 
of identical particles stipulates that only half the rotational states are allowed. 
Hence, a factor of 2 has to be introduced in the denominator of the above expres-
sion. In general, when identical atoms are present in a molecule, a symmetry number 
s must be included in the expression for the partition function. Thus, the general 
expression for the partition function for a rotation around a given axis with moment 
of inertia I is

 q
Ik T

rot
B= 2
2σ�

 (17.6.18)

The symmetry number s for a larger molecule is determined by the symmetries of 
the molecule. It is equal to the number of proper rotations, including the identity, 
in the symmetry group of the molecule.
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VIBRATIONAL PARTITION FUNCTION

Molecules also have vibrational motions that stretch and bend bonds. Each vibra-
tion is associated with frequency n = w/2p. Box 17.1 lists expressions for the energy 
levels for the vibrational motion:

 E v vv = +



 =�ω 1

2
0 2,1, , . . .  (17.6.19)

Using this expression, the partition function for vibrational energies can easily be 
calculated because the energy levels are equally spaced. We shall assume that the 
degeneracy of the energy levels is 1. Then, the vibrational partition function is
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where x = e−b–hw. Since x < 1, the series on the right-hand side can be summed:

 q e x
xv

v
vib

/2 /2e= =
−

−

=

∞
−∑β ω β ω� �

0

1
1

Thus, the single-molecule vibrational partition function is
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At ordinary temperatures, the level spacing between vibrational energy states is 
generally larger than the thermal energy kBT. Hence, only very few energy states 
higher than the ground state are occupied by molecules. As was done for rotational 
states, this aspect can be quantifi ed by defi ning a characteristic temperature qvib ≡ 
–hw/kB. Then the partition function (17.6.20) can be written as
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The characteristic temperatures for some diatomic molecules are:*

 H N O Cl HCl CO NO
/K 6210 3340 2230 810 4140 3070 2690

2 2 2 2

vibθ
 (17.6.22)

Thus, at T in the range 200–400 K, only a few of the lowest vibrational states are 
occupied. The characteristic temperatures for electronic states are even higher, so 
electronic states are mostly in their lowest or ground state.

Combining all the partition functions for a diatomic molecule, we can write
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* Source: T.L Hill, Introduction to Statistical Thermodynamics. 1960, Reading, MA: Addison-Wesley.



From this partition function, thermodynamic quantities U, p, m, etc. can be calcu-
lated (see Exercises). The total energy of the system is the sum of energies in each 
mode of motion U = Utrans + Urot + Uvib + Uelec. The heat capacity CV = (∂U/∂T)V. By 
expressing U as the sum of energies, we can know the contribution of each of the 
modes of motion, i.e. translation, rotation, vibration, etc., to the heat capacity CV.

17.7 Equilibrium Constants

The formalism of statistical thermodynamics can also be used to relate equilibrium 
constants of chemical reactions to partitions functions. In doing so, we relate molec-
ular energies to equilibrium constants. Let us consider the simple reaction

 X Y�  (17.7.1)

At equilibrium, the chemical potentials of X and Y are equal. We use the subscripts 
X and Y to represent the quantities for the two species. The chemical potential of 
X is mX = (∂FX/∂NX)T,V; and since FX = −kBTlnQX, in which QX = qX

ÑX/ÑX!, we can 
establish a relationship between the qX and mX. Here, Ñ is the number of molecules 
and N is the amount in moles. Since Q is expressed as a function of Ñ, we note mX 
= (∂FX/∂NX) = (∂FX/∂ÑX)(∂ÑX/∂N) = NA(∂FX/∂ÑX).

When considering a system of reactants and products that interconvert, care must 
be taken to use the same scale of energy for all molecules when computing partition 
functions. In the calculations of q presented in the previous sections, generally the 
zero of energy was taken to be the lowest energy or ground state of that molecule. 
When more than one molecule is involved, their energies must be measured using a 
common zero. The lowest energy of a molecule can then have a nonzero value with 
respect to the common zero. As shown in Figure 17.3, the lowest energy states of X 
and Y can be different. We shall use E0

X and E0
Y to represent the lowest energies of 

the X and Y respectively in the common energy scale. This means that the energies 
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Figure 17.3 Energy levels of two molecules 
X and Y in a common energy scale. E0

X and 
E0

Y are the ground states in a common energy 
scale
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of X will all get an additive term E0
Y and this in turn adds a factor exp(−bE0

X) to qX. 
Thus, with respect to the common zero of energy:
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The Helmholtz energy F is
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and a simple calculation shows that
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This expression relates the chemical potential to the partition function and the 
number of molecules Ñ. We can invert this equation and write

 �N q N E RT
X X

( /e A X
0

= −µ )  (17.7.5)

or in units of moles of X:

 N
q
N

U RT
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X

A

/e X= −( )µ 0  (17.7.6)

in which U0X = NAE0
X.

As a side remark, we note here that for a monatomic ideal gas qX = 
(V/h3)(2pmkBT)3/2. Using this expression in (17.7.6), we fi nd
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Thus, the molar density is related to the chemical potential. Equation (17.7.7) is the 
same as relation (12.6.4) if we identify z(T) in (12.6.4) with (1/NAΛ3) and U0 with 
MXc2. When the chemical potential is zero, the molar density is a function of T 
only.

For the reaction X ∫ Y, let us assume when equilibrium is reached that the moles 
of X and Y are NX,eq and NY,eq respectively. Using (17.7.4) and equating the chemical 
potentials of the two species, we obtain
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This expression can be rewritten as
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in which U0X = NAE0
X and U0Y = NAE0

Y. Since the equilibrium concentrations [X]eq = 
NX,eq/V and [Y]eq = NY,eq/V, we can relate the equilibrium constant Kc ≡ [Y]eq/[X]eq to 
the partition functions:

 K
N V
N V
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in which ∆U0 = U0Y − U0X is the difference in the ground-state energies of the reac-
tants and products. The above result can be generalized to the reaction

 a b c dX Y Z W+ +�  (17.7.10)
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in which ∆U0 = (cU0Z + dU0W − aU0X − bU0Y). Thus, if the partition functions and 
the ground-state energies of the reacting molecules are known, the equilibrium con-
stants can be calculated. The term ∆U0 is very nearly the heat released in the reaction, 
i.e., it is essentially the reaction enthalpy.

Appendix 17.1 Approximations and Integrals

STIRLING’S APPROXIMATION

When N is a large number, N! is a very large number. One can estimate the value 
of N! using Stirling’s approximation:

 N N nN N! ≈ −e 2π  (A17.1.1)

Using this approximation, we see that

 ln ln 1/2)lnN N N N N! ( ( )= − + 2π  (A17.1.2)

For large N, the last term in (A17.1.2) is small compared with the other two terms 
and it can be neglected. The resulting expression lnN! ≈ NlnN − N has been used in 
this chapter. One could also arrive at this result by using the approximation

 ln ln ln dy ln lnN k y y y y N N N
k

N N N! ( )|= ≈ = − = − +
=

∑ ∫
1

1
1 1  (A17.1.3)

in which the sum is approximated by an integral, an approximation valid for 
large N.

INTEGRALS USED IN STATISTICAL THERMODYNAMICS
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Examples

Example 17.1 For the gas N2 in a cube of side 10.0 cm, at T = 298 K, estimate the 
number of translational states that are below 3kBT/2 and compare this with the 
number of molecules in this cube at p = 1.0 bar.
Solution The translational energies for a cube (lx = ly = lz = 1) are given by 
(Box 17.1)

 E
h
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n n nn n n x y zx y z, , = + +
2

2
2 2 2

8
( )

The value of n2 = n2
x + n2

y + n2
z for which the energy is 3kBT/2 is
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3
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Substituting values kB = 1.38 × 10−23 J K−1, T = 298 K, h = 6.626 × 10−34 J s, m = (28 × 
10−3/NA) kg and l = 0.1 m, we fi nd n2 = 5.2 × 1019. That means all quantum states in 
the sphere of radius n have energies less than 3kBT/2. Since only positive values of 
nx, ny, and nz must be included:

Total number of states with energy E
k T< 3
2
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This calculation shows that the number of available translational states is much 
higher than the number of particles in a gas at ordinary pressures and 
temperatures.

Exercises

17.1 Obtain (17.4.5) using Stirling’s approximation.

17.2 Using an H—H bond length of 74 pm and an O�O bond length of 121 pm, 
calculate the characteristic rotational temperatures for H2 and O2.

17.3 Using qvib = e−b–hw/2[1/(1 − e−b–hw)] show that
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2 1

17.4 In earlier chapters we have expressed the chemical potential of an ideal gas 
m = m0(T) + RT ln(p/p0) (in which p0 is the pressure of the standard state). In 
expression (17.7.4) the chemical potential is expressed in terms of the parti-
tion function and other molecular quantities. For a monatomic gas, rewrite 
(17.7.4) in the form m = m0(T) + RT ln(p/p0) and identify m0(T) as a function 
of T.

17.5 The bond length of H2 is 74 pm. (a) Calculate the moment of inertia and 
express the rotational partition function as a function of T. (b) Obtain an 
expression for its molar energy as a function of T. (c) Calculate the molar 
heat capacity.

17.6 Calculate the equilibrium constant for the reaction H H H2 � + .
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 LIST OF VARIABLES

Variables
a van der Waals constant
ak activity of k
A affi nity
Ak affi nity of reaction k
b van der Waals constant
cx, [x] concentration of x (mol  L−1)
c0 standard state concentration
C heat capacity
Cm molar heat capacity
CmV  molar heat capacity at constant 

volume
Cmp  molar heat capacity at constant 

pressure
e electron charge
Ea activation energy
f fugacity
F Faraday constant
F Helmholtz energy
Fm molar Helmholtz energy
g acceleration due to gravity
G Gibbs (free) energy
Gm molar Gibbs (free) energy
∆Gf Gibbs (free) energy of formation
∆G0

f  standard Gibbs energy of 
formation

∆Gr Gibbs (free) energy of a reaction
∆Gvap enthalpy of vaporization
∆Gfus enthalpy of fusion
G† transition-state Gibbs energy
hT,p heat of reaction per unit x
h enthalpy density
H enthalpy
Hm molar enthalpy
Hmk partial molar enthalpy of k
∆Hf enthalpy of formation
∆H0

f standard enthalpy of formation
∆Hr enthalpy of a reaction

∆Hvap enthalpy of vaporization
∆Hfus enthalpy of fusion
H† transition-state enthalpy
I electric current
Jk thermodynamic fl ow
k rate constant
kB Boltzmann constant
K(T)  equilibrium constant at 

temperature T
Ki Henry’s constant of i
mk  molality, concentration (in 

moles of solute/kilogram of 
solvent)

m0 standard state molality
Mk molar mass of component k
nk concentration (mol  m−3)
N molar amount of substance
Ñ number of molecules
Nk total molar amount of k
NA Avogadro constant
p0 standard state pressure
p total pressure
pc critical pressure
pk partial pressure of k
q molecular partition function
Q total partition function
Rkf forward rate of reaction k
Rkr reverse rate of reaction k
s(x) entropy density at x
S total entropy
Sm molar entropy
S† transition-state entropy
T temperature
Tb boiling point
Tc critical temperature
Tm melting point
u energy density
U total internal energy
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Um total molar energy
v (dx/dt)  velocity of reaction or rate of 

conversion
V total volume
V voltage or potential difference
Vm molar volume

476 LIST OF VARIABLES

Vmk Partial molar volume of k
Vmc critical molar volume
[x], cx concentration of x (mol  L−1)
xk mole fraction of k
zk ion-number of k
Z compressibility factor

Greek letters
a coeffi cient of volume expansion
b Stefan–Boltzmann constant
f electrical potential
fk osmotic coeffi cient of k
g ratio of molar heat capacities
g surface tension
g± mean activity coeffi cient
gk activity coeffi cient of k
Γk general mobility of k in a fi eld
k coeffi cient of heat conductivity
kT isothermal compressibility
mk chemical potential of k
m0

k standard chemical potential of k
m± mean chemical potential

njk  stoichiometric coeffi cients of 
reaction k

p osmotic pressure
r density
Σ interfacial area
x extent of reaction
dx/dt (v)  velocity of reaction or rate 

of conversion
xk  extent of reaction of 

reaction k
dxk/dt (vk)  velocity of reaction k or rate 

of conversion k
tky  interaction energy per mole 

of k due to potential y



  STANDARD THERMODYNAMIC 
PROPERTIES

The standard state pressure is 100 kPa (1 bar). An entry of 0.0 for ∆fH0 for an element indicates the 
reference state of that element. Blanks indicate no data available.

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1

Compounds not containing carbon
Ac Actinium gas 406.0 366.0 188.1 20.8
Ag Silver cry 0.0 0.0 42.6 25.4
AgBr Silver bromide cry −100.4 −96.9 107.1 52.4
AgBrO3 Silver bromate cry −10.5 71.3 151.9
AgCl Silver chloride cry −127.0 −109.8 96.3 50.8
AgClO3 Silver chlorate cry −30.3 64.5 142.0
Al Aluminum cry 0.0 0.0 28.3 24.4

gas 330.0 289.4 164.6 21.4
AlB3H12 Aluminium borohydride liq −16.3 145.0 289.1 194.6
AlBr Aluminum bromide (AlBr) gas −4.0 −42.0 239.5 35.6
AlCl Aluminum chloride (AlCl) gas −47.7 −74.1 228.1 35.0
AlCl3 Aluminum trichloride cry −704.2 −628.8 110.7 91.8
AlF Aluminum fl uoride (AlF) gas −258.2 −283.7 215.0 31.9
AlF3 Aluminum trifl uoride cry −1510.4 −1431.1 66.5 75.1
All3 Aluminum triiodide cry −313.8 −300.8 159.0 98.7
AlO4P Aluminum phosphate 

(AlPO4)
cry −1733.8 −1617.9 90.8 93.2

AlS Aluminum sulfi de (AlS) gas 200.9 150.1 230.6 33.4
Al2O Aluminum oxide (Al2O) gas −130.0 −159.0 259.4 45.7
Al2O3 Aluminum oxide (Al2O3) cry −1675.7 −1582.3 50.9 79.0
Ar Argon gas 0.0 154.8 20.8
As Arsenic (gray) cry 0.0 35.1 24.6
AsBr3 Arsenic tribromide gas −130.0 −159.0 363.9 79.2
AsCl3 Arsenic trichloride gas −261.5 −248.9 327.2 75.7
AsF3 Arsenic trifl uoride lip −821.3 −774.2 181.2 126.6
As2 Arsenic (As2) gas 222.2 171.9 239.4 35.0
Au Gold cry 0.0 0.0 47.4 25.4
AuH Gold hydride (AuH) gas 295.0 265.7 211.2 29.2
B Boron cry (rhombic) 0.0 0.0 5.9 11.1
BCl Chloroborane (BCl) gas 149.5 120.9 213.2 31.7
BCl3 Boron trichloride liq −427.2 −387.4 206.3 106.7
BF Fluoroborane (BF) gas −122.2 −149.8 200.5 29.6
BH3O3 Boric acid (H3BO3) cry −1094.3 −968.9 88.8 81.4

The following properties are listed at T = 298.15K:

∆fH0 Standard enthalpy of formation ∆fG0 Standard Gibbs energy of formation
S0

m Standard molar entropy Cmp Molar heat capacity at constant pressure
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BH4K Potassium borohydride cry −227.4 −160.3 106.3 96.1
BH4Li Lithium borohydride cry −190.8 −125.0 75.9 82.6
BH4Na Sodium borohydride cry −188.6 −123.9 101.3 86.8
BN Boron nitride (BN) cry −254.4 −228.4 14.8 19.7
B2 Boron (B2) gas 830.5 774.0 201.9 30.5
Ba Barium cry 0.0 0.0 62.8 28.1

gas 180.0 146.0 170.2 20.8
BaBr2 Barium bromide cry −757.3 −736.8 146.0
BaCl2 Barium chloride cry −858.6 −810.4 123.7 75.1
BaF2 Barium fl uoride cry −1207.1 −1156.8 96.4 71.2
BaO Barium oxide cry −553.5 −525.1 70.4 47.8
BaO4S Barium sulfate cry −1473.2 −1362.2 132.2 101.8
Be Beryllium cry 0.0 0.0 9.5 16.4
BeCl2 Beryllium chloride cry −490.4 −445.6 82.7 64.8
BeF2 Beryllium fl uoride cry −1026.8 −979.4 53.4 51.8
BeH2O2 Beryllium hydroxide cry −902.5 −815.0 51.9
BeO4S Beryllium sulfate cry −1205.2 −1093.8 77.9 85.7
Bi Bismuth cry 0.0 0.0 56.7 25.5
BiCl3 Bismuth trichloride cry −379.1 −315.0 177.0 105.0
Bi2O3 Bismuth oxide (Bi2O3) cry −573.9 −493.7 151.5 113.5
Bi2S3 Bismuth sulfi de (Bi2S3) cry −143.1 −140.6 200.4 122.2
Br Bromine gas 111.9 82.4 175.0 20.8
BrF Bromine fl uoride gas −93.8 −109.2 229.0 33.0
BrH Hydrogen bromide gas −36.3 −53.4 198.7 29.1
BrH4N Ammonium bromide cry −270.8 −175.2 113.0 96.0
BrK Potassium bromide cry −393.8 −380.7 95.9 52.3
BrKO3 Potassium bromate cry −360.2 −217.2 149.2 105.2
BrLi Lithium bromide cry −351.2 −342.0 74.3
BrNa Sodium bromide cry −361.1 −349.0 86.8 51.4
Br2Ca Calcium bromide cry −682.8 −663.6 130.0
Br2Hg Mercury bromide (HgBr2) cry −170.7 −153.1 172.0
Br2Mg Magnesium bromide cry −524.3 −503.8 117.2
Br2Zn Zinc bromide cry −328.7 −312.1 138.5
Br4Ti Titanium bromide (TiBr4) cry −616.7 −589.5 243.5 131.5
Ca Calcium cry 0.0 0.0 41.6 25.9
CaCl2 Calcium chloride cry −795.4 −748.8 108.4 72.9
CaF2 Calcium fl uoride cry −1228.0 −1175.6 68.5 67.0
CaH2 Calcium hydride (CaH2) cry −181.5 −142.5 41.4 41.0
CaH2O2 Calcium hydroxide cry −985.2 −897.5 83.4 87.5
CaN2O6 Calcium nitrate cry −938.2 −742.8 193.2 149.4
CaO Calcium oxide cry −634.9 −603.3 38.1 42.0
CaO4S Calcium sulfate cry −1434.5 −1322.0 106.5 99.7
CaS Calcium sulfi de cry −482.4 −477.4 56.5 47.4
Ca3O8P2 Calcium phosphate cry −4120.8 −3884.7 236.0 227.8
Cd Cadmium cry 0.0 0.0 51.8 26.0
CdO Cadmium oxide cry −258.4 −228.7 54.8 43.4
CdO4S Cadmium sulfate cry −933.3 −822.7 123.0 99.6
Cl Chlorine gas 121.3 105.3 165.2 21.8
ClCu Copper chloride (CuCl) cry −137.2 −119.9 86.2 48.5
CIF Chlorine fl uoride gas −50.3 −51.8 217.9 32.1

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1
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ClH Hydrogen chloride gas −92.3 −95.3 186.9 29.1
ClHO Hypochlorous acid 

(HOCI)
gas −78.7 −66.1 236.7 37.2

ClH4N Ammonium chloride cry −314.4 −202.9 94.6 84.1
ClK Potassium chloride (KCI) cry −436.5 −408.5 82.6 51.3
ClKO3 Potassium chlorate 

(KCIO3)
cry −397.7 −296.3 143.1 100.3

ClKO4 Potassium perchlorate 
(KCIO4)

cry −432.8 −303.1 151.0 112.4

ClLi Lithium chloride (LiCl) cry −408.6 −384.4 59.3 48.0
ClNa Sodium chloride (NaCl) cry −411.2 −384.1 72.1 50.5
ClNaO2 Sodium chloride (NaClO2) cry −307.0
ClNaO3 Sodium chlorate (NaClO3) cry −365.8 −262.3 123.4
Cl2 Chlorine (Cl2) gas 0.0 0.0 223.1 33.9
Cl2Cu Copper chloride (CuCl2) cry −220.1 −175.7 108.1 71.9
Cl2Mn Manganese chloride 

(MnCl2)
cry −481.3 −440.5 118.2 72.9

Cl3U Uraniam choride (UCl3) cry −866.5 −799.1 159.0 102.5
Cl4Si Silicon tetrachloride liq −687.0 −619.8 239.7 145.3
Co Cobalt cry 0.0 0.0 30.0 24.8
CoH2O2 Cobalt hydroxide 

(Co(OH)2)
cry −539.7 −454.3 79.0

CoO Cobalt oxide (CoO) cry −237.9 −214.2 53.0 55.2
Co3O4 Cobalt oxide (Co3O4) cry −891.0 −774.0 102.5 123.4
Cr Chromium cry 0.0 0.0 23.8 23.4
CrF3 Chromium fl uoride (CrF3) cry −1159.0 −1088.0 93.9 78.7
Cr2FeO4 Chromium iron oxide 

(FeCr2O4)
cry −1444.7 −1343.8 146.0 133.6

Cr2O3 Chromium oxide (Cr2O3) cry −1139.7 −1058.1 81.2 118.7
Cs Cesium cry 0.0 0.0 85.2 32.2
CsF Cesium fl uoride cry −553.5 −525.5 92.8 51.1
Cs2O Cesium oxide (Cs2O) cry −345.8 −308.1 146.9 76.0
Cu Copper cry 0.0 0.0 33.2 24.4
CuO Copper oxide (CuO) cry −157.3 −129.7 42.6 42.3
CuO4S Copper sulfate (CuSO4) cry −771.4 −662.2 109.2
CuS Copper sulfi de (CuS) cry −53.1 −53.6 66.5 47.8
Cu2 Copper (Cu2) gas 484.2 431.9 241.6 36.6
Cu2O Copper oxide (Cu2O) cry −168.6 −146.0 93.1 63.6
Cu2S Copper sulfi de (Cu2S) cry −79.5 −86.2 120.9 76.3
F2 Fluorine (F2) gas 0.0 0.0 202.8 31.3
F Fluorine gas 79.4 62.3 158.8 22.7
FH Hydrogen fl uoride gas −273.3 −275.4 173.8
FK Potassium fl uoride (KF) cry −567.3 −537.8 66.6 49.0
FLi Lithium fl uoride (LiF) cry −616.0 −587.7 35.7 61.6
FNa Sodium fl uoride (NaF) cry −576.6 −546.3 51.1 46.9
F2HK Potassium hydrogen 

fl uoride (KHF2)
cry −927.7 −859.7 104.3 76.9

F2HNa Sodium hydrogen fl uoride 
(NaHF2)

cry −920.3 −852.2 90.9 75.0

F2Mg Magnesium fl uoride cry −1124.2 −1071.1 57.2 61.6

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1



480 STANDARD THERMODYNAMIC PROPERTIES

F2O2U Uranyl fl uoride cry −1648.1 −1551.8 135.6 103.2
F2Si Difl uorosilylene (SiF2) gas −619.0 −628.0 252.7 43.9
F2Zn Zinc fl uoride cry −764.4 −713.3 73.7 65.7
F3OP Phosphoryl fl uoride gas −1254.3 −1205.8 285.4 68.8
F3P Phosphorus trifl uoride gas −958.4 −936.9 273.1 58.7
F4S Sulfur fl uoride (SF4) gas −763.2 −722.0 299.6 77.6
F6S Sulfur fl uoride (SF6) gas −1220.5 −1116.5 291.5 97.0
F6U Uranium fl uoride (UF6) cry −2197.0 −2068.5 227.6 166.8
Fe Iron cry 0.0 0.0 27.3 25.1
FeO4S Iron sulfate (FeSO4) cry −928.4 −820.8 107.5 100.6
FeS Iron sulfi de (FeS) cry −100.0 −100.4 60.3 50.5
FeS2 Iron sulfi de (FeS2) cry −178.2 −166.9 52.9 62.2
Fe2O3 Iron oxide (Fe2O3) cry −824.2 −742.2 87.4 103.9
Fe3O4 Iron oxide (Fe3O4) cry −1118.4 −1015.4 146.4 143.4
H2 Hydrogen (H2) gas 0.0 0.0 130.7 28.8
H Hydrogen gas 218.0 203.3 114.7 20.8
HI Hydrogen iodide gas 26.5 1.7 206.6 29.2
HKO Potassium hydroxide 

(KOH)
cry −424.8 −379.1 78.9 64.9

HLi Lithium hydride (LiH) cry −90.5 −68.3 20.0 27.9
HNO2 Nitrous acid (HONO) gas −79.5 −46.0 254.1 45.6
HNO3 Nitric acid liq −174.1 −80.7 155.6 109.9
HNa Sodium hydride cry −56.3 −33.5 40.0 36.4
HNaO Sodium hydroxide 

(NaOH)
cry −425.6 −379.5 64.5 59.5

HO Hydroxyl (OH) gas 39.0 34.2 183.7 29.9
HO2 Hydroperoxy (HOO) gas 10.5 22.6 229.0 34.9
H2Mg Magnesium hydride cry −75.3 −35.9 31.1 35.4
H2MgO2 Magnesium hydroxide cry −924.5 −833.5 63.2 77.0
H2O Water liq −285.8 −237.1 70.0 75.3
H2O2 Hydrogen peroxide liq −187.8 −120.4 109.6 89.1
H2O2Sn Tin hydroxide (Sn(OH)2) cry −561.1 −491.6 155.0
H2O2Zn Zinc hydroxide cry −641.9 −553.5 81.2
H2O4S Sulfuric acid liq −814.0 −690.0 156.9 138.9
H2S Hydrogen sulfi de gas −20.6 −33.4 205.8 34.2
H3N Ammonia (NH3) gas −45.9 −16.4 192.8 35.1
H3O4P Phosphoric acid cry −1284.4 −1124.3 110.5 106.1

liq −1271.7 −1123.6 150.8 145.0
H3P Phosphine gas 5.4 13.4 210.2 37.1
H4IN Ammonium iodide cry −201.4 −112.5 117.0
H4N2 Hydrazine liq 50.6 149.3 121.2 98.9
H4N2O3 Ammonium nitrate cry −365.6 −183.9 151.1 139.3
H4Si Silane gas 34.3 56.9 204.6 42.8
H8N2O4S Ammonium sulfate cry −1180.9 −901.7 220.1 187.5
He Helium gas 0.0 126.2 20.8
HgI2 Mercury iodide (HgI2) 

(red)
cry −105.4 −101.7 180.0

HgO Mercury oxide (HgO) 
(red)

cry −90.8 −58.5 70.3 44.1

HgS Mercury sulfi de (HgS) cry −58.2 −50.6 82.4 48.4

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1
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Hg2 Mercury (Hg2) gas 108.8 68.2 288.1 37.4
Hg2O4S Mercury sulfate (Hg2SO4) cry −743.1 −625.8 200.7 132.0
I Iodine gas 106.8 70.2 180.8 20.8
IK Potassium iodide cry −327.9 −324.9 106.3 52.9
IKO3 Potassium iodate cry −501.4 −418.4 151.5 106.5
ILi Lithium iodide cry −270.4 −270.3 86.8 51.0
INa Sodium iodide cry −287.8 −286.1 98.5 52.1
INaO3 Sodium iodate cry −481.8 92.0
K Potassium cry 0.0 0.0 64.7 29.6
KMnO4 Potassium permanganate cry −837.2 −737.6 171.7 117.6
KNO2 Potassium nitrite cry −369.8 −306.6 152.1 107.4
KNO3 Potassium nitrate cry −494.6 −394.9 133.1 96.4
K2O4S Potassium sulfate cry −1437.8 −1321.4 175.6 131.5
K2S Potassium sulfi de (K2S) cry −380.7 −364.0 105.0
Li Lithium cry 0.0 0.0 29.1 24.8
Li2 Lithium (Li2) gas 215.9 174.4 197.0 36.1
Li2O Lithium oxide (Li2O) cry −597.9 −561.2 37.6 54.1
Li2O3Si Lithium metasilicate cry −1648.1 −1557.2 79.8 99.1
Li2O4S Lithium sulfate cry −1436.5 −1321.7 115.1 117.6
Mg Magnesium cry 0.0 0.0 32.7 24.9
MgN2O6 Magnesium nitrate cry −790.7 −589.4 164.0 141.9
MgO Magnesium oxide cry −601.6 −569.3 27.0 37.2
MgO4S Magnesium sulfate cry −1284.9 −1170.6 91.6 96.5
MgS Magnesium sulfi de cry −346.0 −341.8 50.3 45.6
Mn Manganese cry 0.0 0.0 32.0 26.3
MgNa2O4 Sodium permanganate cry −1156.0
MnO Maganese oxide (MnO) cry −385.2 −362.9 59.7 45.4
MnS Manganese sulfi de (MnS) cry −214.2 −218.4 78.2 50.0
Mn2O3 Manganese oxide (Mn2O3) cry −959.0 −881.1 110.5 107.7
Mn2O4Si Manganese silicate 

(Mn2SiO4)
cry −1730.5 −1632.1 163.2 129.9

N2 Nitrogen (N2) gas 0.0 0.0 191.6 29.1
N Nitrogen gas 472.7 455.5 153.3 20.8
NNaO2 Sodium nitrite cry −358.7 −284.6 103.8
NNaO3 Sodium nitrate cry −467.9 −367.0 116.5 92.9
NO Nitrogen oxide gas 90.25 86.57 210.8 29.84
NO2 Nitrogen dioxide gas 33.2 51.3 240.1 37.2
N2O Nitrous oxide gas 82.1 104.2 219.9 38.5
N2O3 Nitrogen trioxide liq 50.3
N2O4 Dinitrogen tetroxide gas 9.16 97.89 304.29 77.28
N2O5 Nitrogen pentoxide cry −43.1 113.9 178.2 143.1
Na Sodium cry 0.0 0.0 51.3 28.2
NaO2 Sodium superoxide (NaO2) cry −260.2 −218.4 115.9 72.1
Na2 Sodium (Na2) gas 142.1 103.9 230.2 37.6
Na2O Sodium oxide (Na2O) cry −414.2 −375.5 75.1 69.1
Na2O2 Sodium peroxide (Na2O2) cry −510.9 −447.7 95.0 89.2
Na2O4S Sodium sulfate cry −1387.1 −1270.2 149.6 128.2
Ne Neon gas 0.0 146.3 20.8
Ni Nickel cry 0.0 0.0 29.9 26.1
NiO4S Nickel sulfate (NiSO4) cry −872.9 −759.7 92.0 138.0
NiS Nickel sulfi de (NiS) cry −82.0 −79.5 53.0 47.1

Molecular 
formula Name State
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O Oxygen gas 249.2 231.7 161.1 21.9
OP Phosphorus oxide (PO) gas −28.5 −51.9 222.8 31.8
O2Pb Lead oxide (PO2) cry −277.4 −217.3 68.6 64.6
O2S Sulfur dioxide gas −296.8 −300.1 248.2 39.9
O2Si Silicon dioxide (α-quartz) cry −910.7 −856.3 41.5 44.4
O2U Uranium oxide (UO2) cry −1085.0 −1031.8 77.0 63.6
O3 Ozone gas 142.7 163.2 238.9 39.2
O3PbSi Lead metasilicate (PbSiO3) cry −1145.7 −1062.1 109.6 90.0
O3S Sulfur trioxide gas −395.7 −371.1 256.8 50.7
O4SZn Zinc sulfate cry −982.8 −871.5 110.5 99.2
P Phosphorus (white) cry 0.0 0.0 41.1 23.8

Phosphorus (red) cry −17.6 22.8 21.2
Pb Lead cry 0.0 0.0 64.8 26.4
PbS Lead sulfi de (PbS) cry −100.4 −98.7 91.2 49.5
Pt Platinum cry 0.0 0.0 41.6 25.9
PtS Platinum sulfi de (PtS) cry −81.6 −76.1 55.1 43.4
PtS2 Platinum sufi de (PtS2) cry −108.8 −99.6 74.7 65.9
S Sulfur cry (rhombic) 0.0 0.0 32.1 22.6

Sulfur cry 
(monoclinic)

0.3

S2 Sulfur (S2) gas 128.6 79.7 228.2 32.5
Si Silicon cry 0.0 0.0 18.8 20.0
Sn Tin (white) cry 0.0 51.2 27.0

Tin (gray) cry −2.1 0.1 44.1 25.8
Zn Zinc cry 0.0 0.0 41.6 25.4

gas 130.4 94.8 161.0 20.8
Compounds containing carbon
C Carbon (graphite) cry 0.0 0.0 5.7 8.5

Carbon (diamond) cry 1.9 2.9 2.4 6.1
CAgN Silver cyanide (AgCN) cry 146.0 156.9 107.2 66.7
CBaO3 Barium carbonate 

(BaCO3)
cry −1216.3 −1137.6 112.1 85.3

CBrN Cyanogen bromide cry 140.5
CCaO3 Calcium carbonate 

(calcite)
cry −1207.6 −1129.1 91.7 83.5

Calcium carbonate 
(aragonite)

cry −1207.8 −1128.2 88.0 82.3

CCl2F2 Dichlorodifl uoromethane gas −477.4 −439.4 300.8 72.3
CCl3F Trichlorofl uoromethane liq −301.3 −236.8 225.4 121.6
CCuN Copper cyanide (CuCN) cry 96.2 111.3 84.5
CFe3 Iron carbide (Fe3C) cry 25.1 20.1 104.6 105.9
CFeO3 Iron carbonate (FeCO3) cry −740.6 −666.7 92.9 82.1
CKN Potassium cyanide (KCN) cry −113.0 −101.9 128.5 66.3
CKNS Potassium thiocyanate 

(KSCN)
cry −200.2 −178.3 124.3 88.5

CK2O3 Potassium carbonate 
(KCO3)

cry −1151.0 −1063.5 155.5 114.4

CMgO3 Magnesium carbonate 
(MgCO3)

cry −1095.8 −1012.1 65.7 75.5

CNNa Sodium cyanide (NaCN) cry −87.5 −76.4 115.6 70.4

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1
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CNNaO Sodium cyanate cry −405.4 −358.1 96.7 86.6
CNa2O3 Sodium carbonate 

(NaCO3)
cry −1130.7 −1044.2 135.0 112.3

CO Carbon monoxide gas −110.5 −137.2 197.7 29.1
CO2 Carbon dioxide gas −393.5 −394.4 213.8 37.1
CO3Zn Zinc carbonate (ZnCO3) cry −812.8 −731.5 82.4 79.7
CS2 Carbon disulfi de liq 89.0 64.6 151.3 76.4
CSi Silicon carbide (cubic) cry −65.3 −62.8 16.6 26.9
CHBr3 Tribromomethane liq −28.5 −5.0 220.9 130.7
CHCIF2 Chlorodifl uoromethane gas −482.6 280.9 55.9
CHCl3 Trichloromethane liq −134.5 −73.7 201.7 114.2
CHN Hydrogen cyanide liq 108.9 125.0 112.8 70.6
CH2 Methylene gas 390.4 372.9 194.9 33.8
CH2I2 Diiodomethane liq 66.9 90.4 174.1 134.0
CH2O Formaldehyde gas −108.6 −102.5 218.8 35.4
CH2O2 Formic acid liq −424.7 −361.4 129.0 99.0
CH3 Methyl gas 145.7 147.9 194.2 38.7
CH3Cl Chloromethane gas −81.9 234.6 40.8
CH3NO2 Nitromethane liq −113.1 −14.4 171.8 106.6
CH4 Methane gas −74.4 −50.3 186.3 35.3
CH4N2O Urea cry −333.6
CH4O Methanol liq −239.1 −166.6 126.8 81.1
C2 Carbon (C2) gas 831.9 775.9 199.4 43.2
C2Ca Calcium carbide cry −59.8 −64.9 70.0 62.7
C2CIF3 Chlorotrifl uoroethylene gas −555.2 −523.8 322.1 83.9
C2Cl4 Tetrachloroethylene liq −50.6 3.0 266.9 143.4
C2Cl4F2 1,1,1,2-Tetrachloro-2,

2-difl uoroethane
gas −489.9 −407.0 382.9 123.4

C2H2 Acetylene gas 228.2 210.7 200.9 43.9
C2H2Cl2 1,1-Dichloroethylene liq −23.9 24.1 201.5 111.3
C2H2O Ketene gas −47.5 −48.3 247.6 51.8
C2H2O4 Oxalic acid cry −821.7 109.8 91.0
C2H3Cl3 1,1,1-Trichlorothane liq −177.4 227.4 144.3

gas −144.6 323.1 93.3
C2H3N Acetonitrile liq 31.4 77.2 149.6 91.4
C2H3NaO2 Sodium acetate cry −708.8 −607.2 123.0 79.9
C2H4 Ethylene gas 52.5 68.4 219.6 43.6
C2H4Cl2 1,1-Dichloroethane liq −158.4 −73.8 211.8 126.3

gas −127.7 −70.8 305.1 76.2
C2H4O2 Acetic acid liq −484.5 −389.9 159.8 123.3

gas −432.8 −374.5 282.5 66.5
C2H5I Iodoethane liq −40.2 14.7 211.7 115.1
C2H6 Ethane gas −83.8 −31.9 229.6 52.6
C2H6O Dimethyl ether gas −184.1 −112.6 266.4 64.4
C2H6O Ethanol liq −277.7 −174.8 160.7 112.3
C2H6S Ethanethiol liq −73.6 −5.5 207.0 117.9
C2H7N Dimethylamine gas −18.5 68.5 273.1 70.7
C3H7N Cyclopropylamine liq 45.8 187.7 147.1
C3H8 Propane gas −104.7
C3H8O 1-Propanol liq −302.6 193.6 143.9

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1
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C3H8O3 Glycerol liq −668.5 206.3 218.9
C4H4O Furan liq −62.3 177.0 115.3
C4H4O4 Fumaric acid cry −811.7 168.0 142.0
C4H6 1,3-Butadiene liq 87.9 199.0 123.6
C4H6O2 Methyl acrylate liq −362.2 239.5 158.8
C4H8 Isobutene liq −37.5
C4H8 Cyclobutane liq 3.7
C4H8O Butanal liq −239.2 246.6 163.7
C4H8O Isobutanal liq −247.4
C4H8O2 1,4-Dioxane liq −353.9 270.2 152.1
C4H8O2 Ethyl acetate liq −479.3 257.7 170.7
C4H10O 1-Butanol liq −327.3 225.8 177.2
C4H10O 2-Butanol liq −342.6 214.9 196.9
C4H12Si Tetramethylsilane liq −264.0 −100.0 277.3 204.1
C5H8 Cyclopentene liq 4.4 201.2 122.4
C5H10 1-Pentene liq −46.9 262.6 154.0
C5H10 Cyclopentane liq −105.1 204.5 128.8
C5H12 Isopentane liq −178.5 260.4 164.8
C5H12 Neopentane gas −168.1
C5H12O Butyl methyl ether liq −290.6 295.3 192.7
C6H6 Benzene liq 49.0 136.3
C6H6O Phenol cry −165.1 144.0 127.4
C6H12O6 α-D-Glucose cry −1274.4 −910.52 212.1
C7H8 Toluene liq 12.4 157.3
C7H8O Benzyl alcohol liq −160.7 216.7 217.9
C7H14 Cycloheptane liq −156.6
C7H14 Ethylcyclopentane liq −163.4 279.9
C7H14 1-Heptene liq −97.9 327.6 211.8
C7H16 Heptane liq −224.2
C8H16 Cyclooctane liq −167.7
C8H18 Octane liq −250.1 254.6

gas −208.6
C9H20 Nonane liq −274.7 284.4
C9H20O 1-Nonanol liq −456.5
C10H8 Naphthalene cry 77.9 167.4 165.7
C10H22 Decane liq −300.9 314.4
C12H10 Biphenyl cry 99.4 209.4 198.4
C12H22O11 Sucrose cry −2222.1 −1544 360.2
C12H26 Dodecane liq −350.9 375.8

Molecular 
formula Name State

∆fH0 
kJ mol−1

∆fG0 
kJ mol−1

S0
m 

J mol−1 K−1
Cmp 

J mol−1K−1



Speed of light c = 2.997925 × 108 m s−1

Gravitational constant G = 6.67 × 10−11 N m2 kg−1

Avogadro’s number NA = 6.022 × 1023 particles/mol
Boltzmann’s constant kB = 1.38066 × 10−23 J K−1 
Gas constant R = 8.314 J mol K−1

    = 1.9872 cal kmol−1 K−1

Planck’s constant h = 6.6262 × 10−34 Js
Electron change e = 1.60219 × 10−19 C
Electron rest mass me = 9.1095 × 10−31 kg

     = 5/486 × 10−4 u
Proton rest mass mp = 1.6726 × 10−21 kg

       = 1.007276 u
Neutron rest mass mn = 1.6749 × 10−27 kg

       = 1.008665 u
Permittivity constant e0 = 8.85419 × 10−12 C2 N−1 m−2

Permeability constant m0 = 4p × 10−7 N A−2

Standard gravitational acceleralion g = 9.80665 m s−1 = 32.17 ft s−1

Mass of Earth 5.98 × 1024 kg
Average radius of Earth 6.37 × 106 m
Average density of Earth 5.57 g cm−3

Average Earth-Moon distance 3.84 × 108 m
Average Earth-Sun distance 1496 × 1011 m
Mass of Sun 1.99 × 1030 kg
Radius of Sun 7 × 108 m
Sun’s radiation intensity at the Earth 0.032 cal cm−2 s−1 = 0.134 J cm−2 s−1
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NAME INDEX

Andrews, Thomas 20, 23
Arrhenius, Svante 269, 285
Avogadro, Amedo 15

Bernoulli, Daniel 29, 31, 451
Berthelot, Mercellin 70, 141
Black, Joseph 11, 12, 19, 20, 50, 97, 128, 215
Boltzmann, Ludwig Eduard 29, 32, 124, 361, 422, 

451–2
Boyle, Robert 13, 29, 31, 50
Braun, Karl Ferdinand 277

Carnot, Hippolyte 101
Carnot, Lazare 98–9
Carnot, Sadi 51, 90, 98–9, 101–2, 136
Charles, Jacques 15
Clapeyron, Émile 99, 102
Clausius, Rudolf 27, 108, 110, 115–16
Crick, Francis 342, 380

Davy, Sir Humphry 11
De Donder, Théophile 119, 141–2, 144–7
de la Tour, Cagniard 20
Debye, Peter 211, 254
Duhem, Pierre 119, 173, 223

Einstein, Albert 3, 79, 423
Emanuel, Kerry 110, 135

Faraday, Michael 49
Fermat, Pierre 163
Fourier, Jean Baptiste Joseph 51, 83
Fowler, R.H. 446

Galileo Galilei 11
Galvani, Luigi 49
Gay-Lussac, Joseph-Louis 16–17, 107n
Gibbs, Josiah Willard 141–3, 173
Guggenheim, E.A. 306, 324, 446

Helmholtz, Hermann von 55–6, 141
Hess, Germain Henri 55, 68, 69, 141
Hill, Terrell 411
Hückel, Erich 254

Joule, James Prescott 16, 50–1, 53, 55

Kalckar, Herman 394
Kelvin, Lord (William Thomson) 102, 106, 

333–4
Kirchhoff, Gustav 75, 361–2, 363

Landau, Lev 231, 233
Laplace, Pierre-Simon 51, 68, 185
Lavoisier, Antoine Laurent 51, 68, 141
Le Châtelier, Henri 143, 277
Lehninger, Albert 385
Lewis, Gilbert Newton 149, 177, 206–7, 239
Lipmann, Fritz 393–4

Maxwell, James Clerk 29, 32, 179, 451
Mayer, Julius Robert von 55, 69
Menten, Maude 399
Michaelis, Leonor 399

Nernst, Walther 123, 141

Oersted, Hans Christian 49
Onnes, Kamerlingh 200
Onsager, Lars 4, 332–3, 335
Ostwald, Wilhelm 69, 143

Pascal, Blaise 8
Pasteur, Louis 342
Pauli, Wolfgang 77, 80
Planck, Max 3, 55, 58, 116, 118, 125, 364–5, 422, 

453
Poisson, Siméon-Denis 51
Prigogine, Ilya 4, 119–20, 329, 339, 348, 379

Randall, Merle 149
Raoult, François-Marie 241
Reines, Frederick 80
Rumford, Count (Sir Benjamin Thompson) 52

Sackur, O. 466
Schrödinger, Erwin 379
Seebeck, Thomas 49
Shelley, Mary 49

Note: Figures and tables are indicated by italic page numbers, boxes by bold numbers.
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488 NAME INDEX

Skou, Jens Christian 397
Smith, Adam 3
Stefan, Josef 361, 366

Tetrode, H. 466
Thompsen, Julius 70, 141
Thompson, Sir Benjamin (Count Rumford) 52
Thomson, James 441
Thomson, William (Lord Kelvin) 333

van der Waals, Johannes Diderik 18, 20, 22
van Larr, J.J. 249
van’t Hoff, Jacobus Henricus 245–6
Volta, Alessandro 49

Watt, James 3, 19, 97
Wien, Wilhelm 361, 369



SUBJECT INDEX

absolute scale of temperature 12, 102
absolute zero of chemical potential 375
achiral molecules, meaning of term 343
action, minimization of 165
activation energy 269, 285
activity 177–8

for component of ideal solution 243
for liquids and solids 210
and reaction rate 272

activity coeffi cient(s) 240
of electrolytes 253

adenosine diphosphate see ADP
adenosine triphosphate see ATP
adiabatic processes

and entropy 385
in ideal gas 68, 196
in real gas 202–4

ADP 394
in photosynthesis 387, 392

affi nity 143, 145–7, 149–51
additivity of affi nities 150
in biological systems 381
coupling between affi nities 151
and direction of reaction 150
general properties 151–1
liquid–vapor transformation 216
and osmosis 245, 247
of real gas 208
relation to Gibbs energy 168, 285
relation to reaction rates 281–2

example 281–2
see also entropy production; Gibbs free energy

amino acids, as chiral molecules 342, 379
antiparticles 53, 54
Arrhenius equation 269, 270

pre-exponential factor in 269, 286–7
Arrhenius rate constant 286, 288
Arrhenius theory 285, 288
athermal solutions 259
atmosphere see Earth’s atmosphere
atmosphere (unit of pressure) 14
atmospheric pressure 8
atomic mass unit (amu) 80

ATP 394–5
as energy carrier 393
hydrolysis of 395

ATP–ADP cycle 396
in photosynthesis 387

ATP-driven ‘ion pumps’ 396, 397
ATP-driven reactions 394, 396, 397
ATP-producing reactions 385
autotrophs 386
average values 39
Avogadro number 14, 30, 124
Avogadro’s hypothesis 30
azeotropes 224–6

examples 226, 260
azeotropic composition 259
azeotropic transformation 259
azeotropy 259

bar (unit of pressure) 14
barometric formula 307, 308

example of application 181
Belusov–Zhabotinsky reaction 354

FKN model 348, 349–50
Mathematica code for 296–7

Berthelot equation 200, 212
‘big bang’, events following 55, 266
binary solutions, critical phenomena 444–6
binary systems

liquid mixtures in equilibrium with vapor 
223

solution in equilibrium with solids 225
binding energy per nucleon 266
binomial distribution 40
biochemical kinetics 399, 401, 403
biochemical standard state 384, 385
biological systems 9, 380–98

energy fl ows in 86
Gibbs energy fl ow in 385–97

biomolecules, determination of molecular 
weight 248

black body 363, 364
blackbody radiation 55

interaction of two-level atom with 372

Note: Figures and tables are indicated by italic page numbers, boxes by bold numbers, footnotes by 
suffi x ‘n’.
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boiling point 220, 224
changes in 244–5
listed for various substances 143, 243
plot vs composition of liquid mixture 224

Boltzmann constant 14, 31, 124, 270, 365, 422, 
451, 476

Boltzmann principle 33, 455
Boltzmann probability distribution 453

average values calculated using 457
Boltzmann’s relation between entropy and 

probability 125, 422, 452–3
application in calculation of entropy of mixing 

197
bomb calorimeter 63
bond enthalpy 76

listed for various bonds 77
Boyle’s law 15–16
Brownian motion 172, 422
Brusselator model 346

Mathematica code for 350–3
bulk chemical potential 412
bulk modulus, for adiabatic process 67

caloric theory of heat 11, 51, 52, 101
calorie 52
calorimetry 63
canonical ensemble 457
canonical partition function 461

and thermodynamic quantities 462
capillary rise 185–6
carbohydrates, energy content 392
carbon dioxide concentration, effect on plant 

growth rate 482
Carnot cycle(s) 103, 105

combination of 111
hurricance as 132

Carnot’s theorem (for effi ciency of heat engine) 
102

Clausius’s generalizations 111–19
hurricance wind speed estimated using 108, 

109–110, 132–7
and second law of thermodynamics 116

catalyst, effects 269, 270
cell diagrams, conventions used 315
cell membranes, transport across 396
Celsius temperature scale 12, 14
characteristic temperature

in expression for vibrational partition function 
468

listed for various diatomic molecules 468
Charles’s law 15
chemical affi nity 312

of real gas 208
see also affi nity

chemical equilibrium 273–8
chemical kinetics 267

chemical oscillations 345–51
chemical potential 7, 112, 141, 143–4, 239

absolute zero 375
bulk 412
computation of 179
diffusion described in terms of 154
of dilute solution 250, 253
in fi elds 307–10, 319, 322
of ideal gas 197, 374
of ideal solution 243
of nonideal solution 239
of nonthermal radiation 375, 388, 390, 407
of perfect solution 239
of pure liquids and solids 208
of real gas 204–7
relation to Gibbs energy 168–9
of small systems 411
of solvent in osmosis 245
see also mean chemical potential

chemical reaction rates
Arrhenius theory 269, 270, 285, 288
transition state theory 269, 270, 288
see also reaction rates

chemical reactions
conservation of energy in 68–71, 79
coupled 288, 290, 294
and entropy 144, 179
entropy production due to 147, 149, 153, 280, 

282
fl uctuations in extent of reaction 425
irreversibility in 144
rate laws 332
rates 265–73
reactive collisions in 330
steady-state assumption 292, 303
temperature range 266
thermodynamic forces and fl ows 331
see also extent of reaction; fi rst-order reactions; 

second-order reactions; zero-order reactions
chemical stability 437
chemical transformations 265–6, 268, 305

Gibbs energy change in 382, 384–5
reaction rates 266, 269, 271–3

chemoautotrophs 386
chiral asymmetry 380
chiral molecules, meaning of term 342, 380
chirality 341
chirally autocatalytic reactions 342
chlorophyll, photo-excitation of 387, 389
Clapeyron equation 219–20
classical electrodynamics 366
classical nucleation theory 418
classical stability theory 433

applications 411, 454
classical thermodynamics 116, 119, 122, 196, 266, 

342
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Clausius–Clapeyron equation 220
examples of application 259

Clausius inequality 118
closed systems 4, 5

chemical reactions in 149
energy change in 59, 61
entropy changes 120

coeffi cient of thermal expansion 208
listed for various liquids and solids 209

coeffi cient of volume expansion 180, 202
coexistence curve (in phase diagram) 215, 218–19, 

444
colligative properties 243, 245, 247, 249
collision cross-section 287
collision frequency 287
competitive inhibition of enzymes 402–4, 406
compressibility factor 25–6, 206
concentration cell 317
condensation of vapor into liquid 418
condensed phase, standard state of substance 

72
condensed phases 208

see also liquids; solids
conduction, law governing 83
confi gurational heat capacity 441–2, 444, 446–8
consecutive fi rst-order reactions 290
conservation of energy

in chemical reactions 68–9, 71–3, 75, 77–80
law of 55–6

elementary applications 64–5, 67
in nuclear reactions 79

consolute point 443
contact angle

interfacial 183
values listed 187

continuous systems, entropy production in 135
convection law 83
convection patterns 81, 132, 340–1, 344
conversion rate, in chemical reaction 75, 179
cosmic microwave background 265
cosmological principle(s) 116
coupled reactions 288

entropy production in 151–2
critical constants 23–5, 27, 194, 200

listed for various gases 19
see also molar critical volume

critical nucleation radius 419
critical parameter (in dissipative structure) 340, 

341
critical phenomena 235, 441, 443
critical point (in phase diagram) 216, 218, 233, 

441
thermodynamic behavior near 231

critical pressure 23
listed for various gases 19

critical solution point 443, 445

critical temperature 23, 216, 229, 441, 443
in binary solutions 443, 445
listed for various gases 19

cross-effects 333–4, 338
cryoscopic constant 245

listed for various liquids 209
crystallization from solution 418

Dalton’s law of partial pressures 16
dark energy 265
dark matter 265
Debye–Hückel theory 255
Debye’s theory of molar heat capacities of solids 

210
degeneracy of energy levels 453
degrees of freedom 32, 221–3, 225, 228, 235–6, 305
density of states 33
detailed balance, principle of 278–80, 334
Dieterici equation 200, 213
diethylamine/water solutions 444, 445
diffusion

condition for stability 435–7, 444
in continuous system 331
entropy production due to 149, 153, 158
Fick’s law 310, 319, 320–3, 332
fl uctuations due to 426
as irreversible process 117, 158
law governing 309, 319, 331
thermodynamic description 380, 387, 441

diffusion coeffi cient 320
listed for various molecules 320

diffusion equation 321–2
dilute solutions

chemical potential 251
thermodynamics of mixing 255

dissipative structures 9, 339, 379
general features 340–1

drift velocity 322
Duhem–Jougeut theorem 439
Duhem’s theorem 221
Dulong and Petit’s law 211
Earth, physical data 485

Earth’s atmosphere 7, 8, 44, 307
pressure variation 8, 311
temperature variation 8, 307, 308

ebullioscopic constant 245
listed for various liquids 241

Einstein formula for probability of fl uctuation that 
causes entropy change 427, 429

Einstein relation 322
electrical conduction 332

law governing 82, 309, 331
electrochemical affi nity 312–14
electrochemical cell 312, 315

half-reactions 312
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electrochemical potential 306
electrolytes 251
electrolytic cell 316
electromagnetic radiation 53

pressure exerted by 366
electromotive force (EMF) 312
electron charge 475
electron–positron pairs

production of 266, 298, 373
thermal photons in equilibrium with 373

electron rest mass 485
electroneutrality 251, 307
elementary reactions 271
elementary step (of chemical reaction) 269

reaction rate for 282
emissive power 364
emissivity 363, 364

values listed 364
enantiomers 283, 342–3

racemization of 283–4
energy 3–5

as extensive function 131
minimization of 165, 166

energy change, examples 56–7, 59
energy conservation

in chemical reactions 55
law of 55

elementary applications 64
in nuclear reactions 79–80

energy density, relationship to spectral radiance 
362, 388

energy fl ows 81, 85
in biological systems 86, 380
in process fl ows 82
self-organized patterns and 81
solar energy fl ows 85

enthalpy 71–2, 74, 170, 196
minimization of 165–6, 169
variation with pressure 74
variation with temperature 74
see also standard molar enthalpy of formation

enthalpy of formation, of ions 252
enthalpy of fusion 128, 417

listed for various substances 128
enthalpy of reaction 71
enthalpy of vaporization 128

in hurricane system 134
listed for various substances 128

entropy 3, 5, 108, 112–14
absolute value calculation 466
as extensive function 131, 157
general properties 155–8
of ideal gas 129–30, 196
maximization of 163
of mixing 197–9
modern approach 119

of pure liquids and solids 208–9
of real gas 204
statistical interpretation 124, 422

entropy changes 120
fl uctuation-associated 424–5, 433
in irreversible processes 113–14, 119–23

examples 125–9
and phase transformations 128–9

entropy density 11
entropy production

in chemical reactions 145–6, 280–5
in continuous systems 135–6, 307–9
in coupled reactions 151–3
diffusion-caused 153–5
due to electrical conduction 309–410
effect of catalyst 402
at equilibrium state 126, 127, 163–4
and heat fl ow 126, 368
in irreversible chemical reactions 144–9
in irreversible processes 121, 310
by living cell 380–1, 381
local 331
per unit length due to particle fl ow 309
stability theory based on 423–4

enzyme-catalyzed reactions 289
kinetics 399–406

enzyme inhibition mechanisms 402–6
competitive inhibition 402
noncompetitive inhibition 404
uncompetitive inhibition 403, 406

equation of state 26, 365–9
for ideal gases 195
Mathematica codes evaluating and plotting 

pressure using 44–5
for pure solids and liquids 208–9
for real gases 199–201, 211
for thermal radiation 368, 371

equilibrium constant(s) 274–5
for electrolytes 254
examples 276
relation to partition functions (in statistical 

thermodynamics) 471
relation to rate constants 276–7
in statistical thermodynamics 469–70
in terms of partial pressures 275

equilibrium state(s) 10, 164
affi nity in 147
enthalpy minimization of in 171
entropy at 127, 127
entropy production in 126, 127, 163, 164
response to perturbation from 277–8
restoration by irreversible processes 130, 172
stability of 171–2, 423–4, 433
thermal fl uctuations in 433–4

equilibrium systems 7, 9
equipartition theorem 32
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Euler’s theorem 156, 173, 182
eutectic composition 226

ternary systems 223, 227
eutectic point 226, 227
eutectic temperature 226

ternary systems 223, 227
eutectics 225
excess enthalpy, of solutions 259
excess entropy, of solutions 258–9
excess Gibbs energy, of solutions 258
extended irreversible thermodynamics 331
extensive functions 131, 181
extensive variables 6
extensivity 131, 181
extent of reaction 77–80

fl uctuations in 425, 426–8, 437
rate equations using 269–70, 272

extremum principles
in Nature 163
and Second Law 163–73
and stability of equilibrium state 171–2

Fahrenheit temperature scale 12, 14
far-from-equilibrium nonlinear regime 327
Faraday constant 251, 305
fats, energy content 392
Fick’s law of diffusion 310, 320, 332

applications 322
limitations 321

Field–Körös–Noyes model see Belusov–
Zhabotinsky reaction, FKN model

First Law of thermodynamics 55–71
elementary applications 64
as local law 331n

fi rst-order phase transitions 232
fi rst-order reactions 290

consecutive 290
reversible 289

fl ow reactors 293
fl uctuations

probability of 422
small systems 421
thermodynamics theory 419

Fourier’s law of heat conduction 83, 126, 136, 
332, 335

free energy see Gibbs free energy; Helmoltz free 
energy

freezing point
changes in 243
listed for various liquids 245
see also melting point

fugacity 206
functions of state variables 5

galvanic cell 316
gas constant 14, 16, 124, 485

gas laws 14–19
gas phase, standard state of substance 72
gas thermometer 18, 107n
gases

ideal, thermodynamics 195
mixing of, entropy change due to 197–8
real, thermodynamics 199–208
solubility of 242

Gaussian distribution 40, 426
general thermodynamic relations 173
Gibbs–Duhem equation 173–7

calculations using 173, 184–5, 206, 215, 226
Gibbs–Duhem theory of stability 424
Gibbs free energy 149, 167–9, 188

calculation using van der Waals equation 
205

changes during chemical transformations 
378–81

irreversible transformation 382–3
reversible transformation 382, 383
standard transformation 382, 384

fl ow in biological systems 385–97
minimization of 165–9
photochemical transfer of 389
for real gas 201
relation to affi nity 164, 281
relation to chemical potential 169
tabulation for compounds 178
see also affi nity

Gibbs free energy of formation, of ions 252
Gibbs free energy of reaction 270
Gibbs–Helmoltz equation 175–7, 251
Gibbs–Konovolow theorem 225
Gibbs paradox 197
Gibbs phase rule 221–3

applications 219, 221–2
Gibbs–Thompson equation 415
glass–liquid interface

contact angle at 186
values listed 187

glucose, photosynthetic production of 386
glutamine, formation of 395
glycolysis 385, 394
gravitational constant 485

half-life 271
half-reactions (in electrochemical cell) 312–13
handedness see chirality
heat

mechanical equivalence of 55
nature of 11, 18, 53

heat capacity 52
at constant composition 448
at constant pressure 65, 73
at constant volume 64, 202, 435
experimental determination of 62, 74
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solids 210–11
see also confi gurational heat capacity; molar 

heat capacity
heat conduction 332

entropy change and 123–5
law governing 82, 278

heat convection, law governing 83
heat engines 99–100

effi ciency 101–7
hurricanes as 108, 109–10, 132–5

heat fl ow
entropy change due 120
as irreversible process 117
laws governing 82
self-organized patterns and 81

heat radiation see thermal radiation
Helmholtz equation 174, 195, 201, 366
Helmholtz free energy 165–6, 187, 210

calculation using van der Waals equation 205
effect of liquid–glass interfacial area in capillary 

181–2
minimization of 165–6, 184
for real gas 201
relation to partition function 454

Henry’s law 242, 243
constant(s) 242

listed for various gases 243
deviation from 242, 243
example of application 260

Hess’s experiments 70
Hess’s law 70–1
heterogeneous nucleation 421
heterotrophs 386
n-hexane/nitrobenzene solutions 443, 445
homogeneous nucleation 420
hurricane, as heat engine 108, 109–10, 132–5
hydrogen, reaction with nitrogen 266
hydrogen bonds 266
hydrogen–platinum electrode 318

standard electrode potential 318, 318

ideal gas law 14, 16, 195
examples of calculations using 45
osmotic pressure obeying 248
van der Waals’ modifi cation 23

ideal gases
chemical potential 197
entropy 129, 196
entropy of mixing 197–9
heat capacities 196
thermodynamic potentials 196
total internal energy 195–6

ideal mixtures, chemical potential of each 
component 170

ideal solutions
chemical potential 239

osmotic pressure 249
thermodynamics of mixing 256

independent intensive variables 221
infl ection point 23
integrals (listed) 39

in statistical thermodynamics 471
intensive variables 6, 120, 173–4
interfacial energy 412, 413

listed for various silver halides 413
interfacial Helmoltz energy, minimization of 184
ion numbers 251
‘ion pumps’ 396–7
ionic mobility 323–4
ionic solutions, solubility equilibrium 250–2
irradiance 361, 368
irreversible chemical reactions, entropy changes 

due to 144–9
irreversible expansion of gas 127
irreversible processes 6–7, 81

entropy changes in 113, 120
examples 125–7

examples 121, 125
not considered in classical thermodynamics 

58
irreversible transformation, Gibbs energy change 

during 382, 383
isolated systems 4, 5

entropy changes 122, 433
isothermal calorimeter 63
isothermal compressibility 180, 202, 436

listed for various liquids and solids 207, 208
isothermal diffusion 319–24
isothermal expansion of gas

entropy change due to 127
work done during 61, 89

isothermal volume change 61

joule (SI unit of heat energy) 14

kelvin scale of temperature 14
kinetic theory of gases 29–37
Kirchhoff’s law 75, 363, 364

Lagrange’s method 459
Landau theory of phase transitions 231, 233

failure vs experimental data 233–4
Laplace equation 185
latent heat 11, 19–20, 20, 128, 215
law of conservation of energy 49–50, 55–63
law of corresponding states 25–7

limitations 27
Mathematica code for 43
molecular forces and 27–9

law of mass action 273–4
Le Chatelier–Braun principle 277–8, 380
least action, principle of 163
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Legendre transformations 172
listed in thermodynamics 173

Lennard-Jones energy 27–8
lever rule 231, 443
libration 448
libration–rotation equilibrium 448
light propagation, Fermat’s principle of least time 

163
linear phenomenological coeffi cients 310, 333
linear phenomenological laws of nonequilibrium 

thermodynamics 310, 323, 333
Lineweaver–Burk plots 401, 403, 404
lipid bilayer membranes 396
liquid drop, excess pressure in 185, 413
liquid junctions (in electrochemical cells) 315
liquid–vapor phase equilibrium 217, 220, 221
liquid-to-vapor transition 19, 20, 127, 442, 443

enthalpies of vaporization 127, 128, 219
experimental discrepancy from classical 

(Landau) theory 233–4
transition temperatures listed for various 

substances 128, 219
liquids

coeffi cient of thermal expansion 207, 208
isothermal compressibility 207, 208
thermodynamic quantities 208–9

living cells
biochemical reactions in 381
as open systems 379, 381, 386, 396

local conservation law 63–4
local equilibrium 119–20, 328–31
lower critical solution temperature 444, 445

mass action law 274–5
Mathematica codes

Belusov–Zhabotinsky reaction, FKN model 
354–5

Brusselator 353–4
chiral symmetry breaking 352–3
critical constants for van der Waals equation 42
evaluating and plotting pressure using equation 

of state 41–2
evaluating work done in isothermal expansion 

of gas 87–8
law of corresponding states 43
linear kinetics 295–6
Maxwell–Boltzmann speed distribution plot 43
racemization kinetics 297–8
reversible reaction kinetics 296–7

maximum entropy 164
Maxwell–Boltzmann velocity distribution 32–4, 

37, 53, 285, 286
Maxwell construction 229–31
Maxwell relations 179–81
Maxwell velocity distribution 34, 35, 36–7, 329, 

370

mean chemical potential, ionic solutions 251–3
mean ionic activity coeffi cient(s), of electrolytes 

253
melting point

listed for various substances 128, 219
particle size effect 416–17
see also freezing point

membrane permeability, living cells 396, 397
membrane potentials 311–12

calculation in example 324–5
metastable region

liquid–vapor transitions 442, 443
strictly regular solutions 446–7

metastable state 442, 443
Michaelis–Menten constant 400

experimental determination of 401
Michaelis–Menten mechanism 292, 399–400
Michaelis–Menten rate law 293, 399–400
microscopic consequences of laws of 

thermodynamics, methods of analyzing 
369–70

microstates 124, 451, 456–7
minimum energy 164, 165
minimum Helmoltz energy 165–7
mixing of gases, entropy change due to 197–9
modern thermodynamics 4
modes of action 451
molality scale 244–5, 252, 253, 254
molar critical volume 23, 24

listed for various gases 19
molar energy 16
molar enthalpy of fusion 127
molar enthalpy of vaporization 127
molar entropy of fusion 127
molar entropy of vaporization 127–8
molar Gibbs energy 169–70, 174, 178, 188, 244

of formation 179
of mixing

nonideal solutions 257
perfect solutions 255–6

of solution 414
molar heat capacity 52, 62, 64

at constant pressure (Cmp) 52, 64
listed for various substances 65
real gases 202
relation with CmV 64–6, 180, 196, 202
for solids 210

at constant volume (CmV) 52, 62, 64
listed for various substances 65
for real gases 202
relation with Cmp 64–6, 180, 196, 202
for solids 210

experimental determination of 63, 74
ratio 66, 196

listed for various gases 67
molar volume, fl uctuations in 435–6
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mole numbers, fl uctuations in, stability w.r.t. 
437–9

molecular volume 27n

nano-science 411
nanothermodynamics 411
near-equilibrium linear regime 327, 336
Nernst equation 315

application(s) 316
Nernst heat theorem 123–4
neutrino 80–1, 264
neutron rest mass 485
Newton’s laws of motion 50
nitrogen, reaction with hydrogen 278
noncompetitive inhibition of enzymes 404–6, 405
nonequilibrium systems 7–9, 327–57

entropy changes 9, 10
examples 9, 10
far-from-equilibrium nonlinear regime 327, 377
living cells as 377–9
near-equilibrium linear regime 327

nonideal solutions
chemical potential 239–40
osmotic pressure 249
thermodynamics of mixing 257–9

nonionic solutions, solubility equilibrium 250–1
nonthermal electromagnetic radiation

chemical potential 375–6, 388–9
see also solar radiation

nonthermal solar radiation, chemical potential 
389, 407–8

normalization constant 453
normalization factor 34
nuclear reactions, conservation of energy in 79–80
nucleation 418–21
nucleation rate equation 419–20

pre-exponential factor 420
nucleation sites 421
nucleosynthesis 79

occupation number 455
Ohm’s law 63, 310, 332
ohmic heat 310
Onsager coeffi cients 333
Onsager reciprocal relations 334

in thermoelectric phenomena 334–8
open systems 4–5, 5, 9

energy change in 59
entropy changes 120
living cells as 379, 381, 386

order parameter (in dissipative structure) 340, 341
order of reaction 268–9
origins of thermodynamics 3
oscillating reactions 346–51
osmosis 245, 247
osmotic coeffi cient 242

osmotic pressure 245–50
calculations 247–8

in example 261–2
defi nition 247
experimentally determined values compared with 

theory 248–9
van’t Hoff equation 248

Ostwald–Freundlich equation 415
Ostwald ripening 416
oxidation and reduction reactions (in 

electrochemical cell) 312–13

p–V isotherms 22, 216, 217, 442
van der Waals isotherm 229, 230

partial derivatives 37–9
partial molar enthalpy 177, 183
partial molar Gibbs energy 182–3
partial molar Helmholtz energy 183
partial molar volume 182, 208
partial pressures, Dalton’s law of 16, 44
particle–antiparticle pairs, creation by thermal 

photons 373–4
partition function(s) 454

calculating 462–9
factorization of 454–5
see also canonical partition function; rotational 

partition function; translational partition 
function

pascal (SI unit of pressure) 14
Peltier effect 333, 337–8
Peltier heat 337
perfect binary solution, vapor pressure diagram 

241
perfect solutions

chemical potential 239
thermodynamics of mixing 255–7

periodic phenoena in chemical systems 346–51
permeability constant 485
permittivity of vacuum 255, 485
perpetual motion

of fi rst kind 58
of second kind 115

phase change, thermodynamics 215–37
phase diagrams 215, 216

binary solutions 445
binary systems 216, 218, 227
strictly regular solutions 447
ternary systems 229
water 218

phase equilibrium 216, 220, 221
phase separation 172, 444
phase transitions 19–20, 23

classical (Landau) theory 231, 233
limitations 234

entropy changes associated with 128–9
fi rst-order 232
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general classifi cation 232
modern theory 231, 234
second-order 232
thermodynamics 128–9, 231–4

phases 19
phosphate group, transfer of 395–6
photoautotrophs 386
photochemical transfer of Gibbs energy 389–93
photon gas pressure 366, 367
photons 53, 55

conversion of Gibbs energy to chemical energy 
390

photosynthesis 86–7, 381, 386–7
Gibbs free energy fl ow in 386, 389–93
hydrogen donors 387
rate, factors affecting 392

physical constants and data 485
Planck’s constant 269, 270, 365, 456, 485
Planck’s distribution/formula 365

applications 388, 408
plasma 266
Poisson distribution 40
positive defi nite matrix 334
pre-exponential factor

in chemical reaction rate equation 269, 286–8
in nucleation rate equation 420

pressure
defi nition 14
in Earth’s atmosphere 8, 14
kinetic theory 29–34
units 14

pressure coeffi cient 180
principle of detailed balance 278–80, 334
principle of least action 163
probability density 32
probability distributions 40

of molecular velocity 32, 33
probability of fl uctuation 422–3

general expression for 429
probability theory, elementary concepts 39–41
process fl ows 82–5
proteins, energy content 392
proton rest mass 485

quantum fi eld theory 53
quantum theory 364, 466

racemization of enantiomers 283, 342
entropy production due to 282–5
Mathematica code fofr 297–8

radiance 361
radiant emittance 361
radiation 361–78

law governing 83
radiation fl ux density 361
radiation intensity 361

radioactive elements 79
Raoult’s law 241, 243

deviation from 242, 243
example of application 262

rate constant (for chemical reaction) 268
temperature dependence 269, 270, 286

rate of conversion 77, 147
rate equations

extent of reaction in 269–70, 272
steady-state solutions 347

reaction enthalpy, calculation using bond 
enthalpies 76

reaction rate(s) 268
and activities 272–3
Arrhenius theory 269, 270, 285–7
determination of 269
relation to affi nity 282–3

example 282–5
transition state theory 269, 270, 288

reaction velocity 77, 141, 267
effect of catalyst 402
and reaction rate 268

reactive collisions (in chemical reactions) 330
Redlich–Kwong equation 27, 211
reduced mass 287
reduced variables 26
reduction and oxidation reactions (in 

electrochemical cell) 312, 313
regular solutions 258–9

see also strictly regular solutions
relativity theory 64n, 80
renormalization group 234
residence time (in reactor) 293
reversible fi rst-order reactions 289–90
reversible heat engines 107, 109

effi ciency 102–6
reversible processes

entropy change in 113–14, 116, 118
examples 101, 117

reversible transformation, Gibbs energy change 
during 381, 382

root-mean-square (RMS) fl uctuations 330
rotational energy levels 456
rotational partition function, calculating 466–7

Sackur–Tetrode equation 466
Safi r–Simpson hurricance intensity scale 133
salt bridge (in electrochemical cell) 315, 316
salt effect 273
saturated vapor pressure 217, 221
seaweed cells 396
Second Law of thermodynamics 114–16

extremum principles associated with 163–73
as local law 331n
modern statement 121
universality 130
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second-order phase transitions 232
second-order reactions 271
Seebeck effect 333, 336–7, 338
self-organization 81–2, 130, 132, 340–1

examples 9, 81, 82
semi-permeable membranes 245, 247, 382
sequential transformations 290
silver halides

interfacial energies 412
solubility 415

size-dependent properties 414–17
small systems

chemical potential 411–13
fl uctuations in 421–2
thermodynamics 411–31

sodium–potassium pump (SPP) 397–9
mechanism 398

solar energy 385
capture effi ciency 392
fl ows 85–6

solar radiant fl ux 86, 392, 393
solar radiation 376, 389

chemical potential of nonthermal 389, 407–8
example calculations 406–7

solid–melt interfacial energy 417
solid-to-liquid transition 19, 20, 128

enthalpies of fusion 128, 129, 219
transition temperatures listed for various 

substances 129, 219
solidifi cation of melt 418

solids
coeffi cient of thermal expansion 208, 209
heat capacities 210–11
isothermal compressibility 208, 209
thermodynamic quantities 209–10

solubility 250
of AgCl (silver chloride) 255
particle size effect 414–16

solubility equilibrium 250–5
ionic solutions 251–3
nonionic solutions 250–1

solubility product 254
solute in solution, standard state of 72
solution–vapor equilibrium 240
solutions, thermodynamics 239–64
‘solvent’, meaning of term 241
solvent effect 288
sound intensity, unit of 67
sound propagation 67–8
sound, speed of 68

listed for various gases 67
specifi c enthalpy 85
specifi c heat(s) 11, 52

ratio 66, 89
listed for various gases 67

spectral absorptivity 363

spectral energy density 360
frequency dependence 389–91

spectral intensity 362
spectral irradiance 362
spectral radiance 362

relationship to energy density 362, 388
speed of light 485
speed of sound 68, 89

listed for various gases 68
spontaneous symmetry breaking 341
stability theory 433–40

applications 441–9
stability of thermodynamic system 423–4
standard affi nity 384
standard cell potential 315

calculation in example 325
standard deviation 39
standard electrode potentials 318–19

listed for various electrodes 326
standard entropy, listed for various elements and 

compounds 477–84
standard Gibbs free energy change(s) 384–5

listed for various bioreactions 382
standard gravitational acceleration 481
standard heats of formation, listed for various 

elements and compounds 477–84
standard molar enthalpy of formation 72, 73

listed for various elements and 
compounds 477–84

standard molar Gibbs energy of formation 177, 
274

listed for various elements and compounds 
477–84

standard state(s)
basic defi nitions 72, 384
entropy of 116
of ideal dilute solution 252

standard thermodynamic properties 477–84
standard transformation, Gibbs energy change 

during 382, 384–5
stars and galaxies 265
state of equilibrium see equilibrium state(s)
state functions 6, 164, 166–7, 167–8
state of system 5
state variables 5, 76–9
states of matter 19
statistical ensemble 451, 458

see also canonical ensemble
statistical entropy 459
statistical thermodynamics 124–5, 422–3, 

451–73
fundamentals 451–4

steady-state assumption (in chemical reactions) 
151, 292–3

‘steam tables’ 85, 91–2
Stefan–Boltzmann constant 83, 368
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Stefan–Boltzmann law 364, 368
applications 377, 388, 406

Stirling approximation 199
Stirling’s approximation 459, 469
Stokes–Einstein relation 321–4
strictly regular solutions 446–7
sugar cane, growth rate 393
sugars, as chiral molecules 342, 379
Sun, physical data 485
supersaturation 415
surface energy 131, 166
surface entropy 131
surface tension 166, 183–7

capillary rise due to 185–7
values listed for various liquids 187

symmetry-breaking transition 341–5
symmetry number, in expression for rotational 

partition function 467

temperature
absolute scale 12, 106
in Earth’s atmosphere 8
and heat 11
measurement of 12, 14, 103n

temperature fl uctuations 425–6
terminal velocity 322
ternary systems 226–8

phase diagram 229
theorems of moderation 278
thermal equilibrium 6
thermal photons 371

electron–positron pairs in equilibrium with 373–4
thermal radiation 52, 53, 54, 265, 361, 388

chemical potential of 371–3, 388
energy density 361–5
heat fl ow law governing 83
intensity 361–5
pressure exerted by 368

thermal stability 433–5
thermal wavelength 465
thermochemistry, basic defi nitions 73
thermodynamic equilibrium 6
thermodynamic fl ow(s) 120–1, 127, 273, 332

examples 332
see also reaction velocity

thermodynamic force(s) 120–1, 127, 273, 332
examples 332
see also affi nity

thermodynamic mixing
ideal solutions 257
nonideal solutions 257–9
perfect solutions 255–7

thermodynamic potentials 164, 196
extremization of 163–73
see also enthalpy; Gibbs energy; Helmholtz 

energy

thermodynamic probability 424, 453
calculation of 124–5

thermodynamic stability 172, 423–4
thermodynamic systems 4–6
thermodynamic theory of fl uctuation 419, 423
thermodynamic variables 6
thermoelectric effect 333, 336–7, 338
thermoelectric phenomena, Onsager reciprocal 

relations in 334–8
thermoelectric power 337
thermometer, early scientifi c use 11
theta temperature 250
‘third law of thermodynamics’ 124
m-toluidine/glycerol solutions 444, 445
torr (unit of pressure) 14
total internal energy

ideal gas 62, 195–6
real gas 201–2, 212

total solar radiance 85
transformation of matter 265–6

at various temperatures 266
see also chemical transformations

transformation of state, energy change associated 
with 55–6

transition state theory 269, 270, 288
pre-exponential factor in 288

translational energies 455, 456, 460
translational partition function, calculating 463–5
transport properties 451
tri-molecular model 346
triple point (in phase diagram) 216, 222, 233
two-level atom, interaction with thermal radiation 

372–3

‘uncompensated heat’ 119, 128, 144, 145
uncompetitive inhibition of enzymes 343–404, 

405
universal gas equation 24
upper critical solution temperature 444, 445

van der Waals constants 18, 19, 23–4, 201
van der Waals equation 18, 21–2, 199, 201, 441

entropy of real gas calculated using 205
example calculations 44
Gibbs energy of real gas calculated using 205
Helmholtz energy of real gas calculated using 

205
limitations 26, 200
p–V isotherm 229, 230

van der Waals forces 26
van’t Hoff equation 277

deviation from 249
example of application 299
for osmosis 248

example of application 261–2
van’t Hoff reaction chambers 382–3, 382, 390, 391
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vapor pressure diagrams
perfect binary solution 241
real binary solution 243

variables (listed) 475–6
velocity of reaction 77, 147
vibrational energy levels 456
vibrational partition function, calculating 468–9
virial coeffi cients 200–1
virial expansion 200

osmotic pressure of nonideal solution 249–50
vitreous state 448
volume change, mechanical work due to 

60, 61
volume expansion, coeffi cient of 180, 202

volume of universe, relation to temperature of 
thermal radiation 369

water
phase diagram 218
triple point 222

Wien’s theorem 369–71
work, equivalence with heat 51

zero-order reactions 289
zeroth law 7

Index compiled by Paul Nash
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