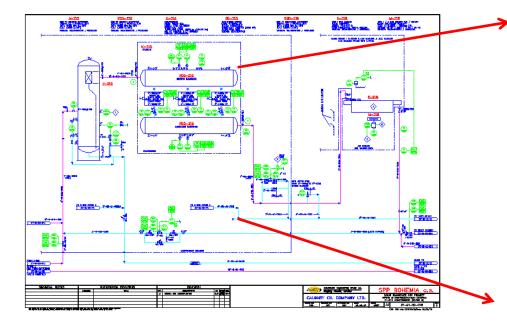

Design of Process Equipment

Piping Systems Lecture


doc. Ing. Martin Juriga, PhD. Bratislava, February 2024

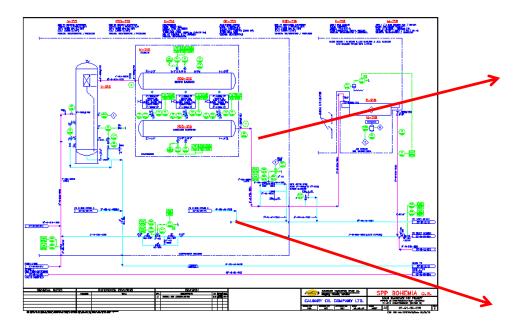
Piping system.

Piping system. Process design

P&ID

Process design for pipelines

Calculation of pipeline pressure losses


Design and optimization Controls valves and safety valves, etc.

Design and optimization of energy sources in pipeline systems (pumps, compressors, etc.)

Energy aspects of transport in pipelines (losses of energy to the surroundings, etc.)

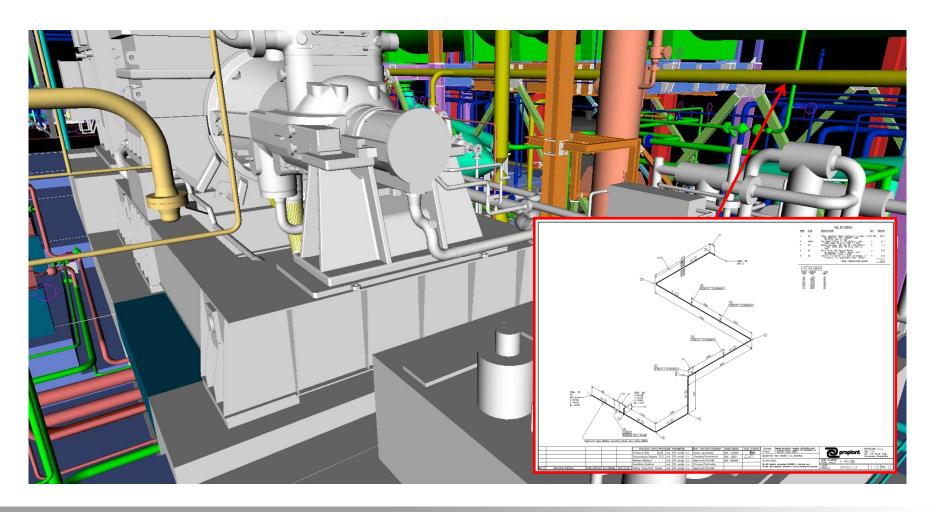
Piping system. Mechanical design

P&ID

Mechanical design of the pipeline

Design of Pipe Class and optimization

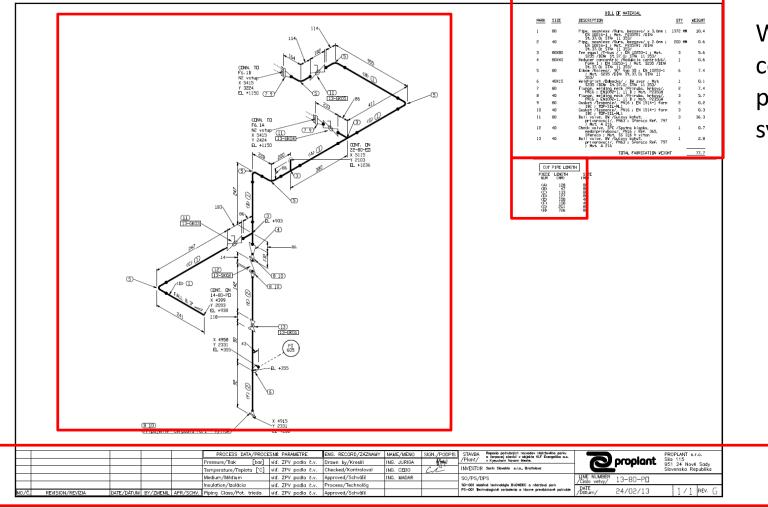
Calculation of wall thicknesses for individual pipeline components with respect to the chosen calculation standard (Europe: EN 13 480, USA: Power Piping 31.1, Process Piping 31.3)


Complete structural design - 3D model (assembly, production drawings)

Stress design of pipelines, determination of stress in pipeline, reactions to restrains, control of forces on apparatus nozzles.

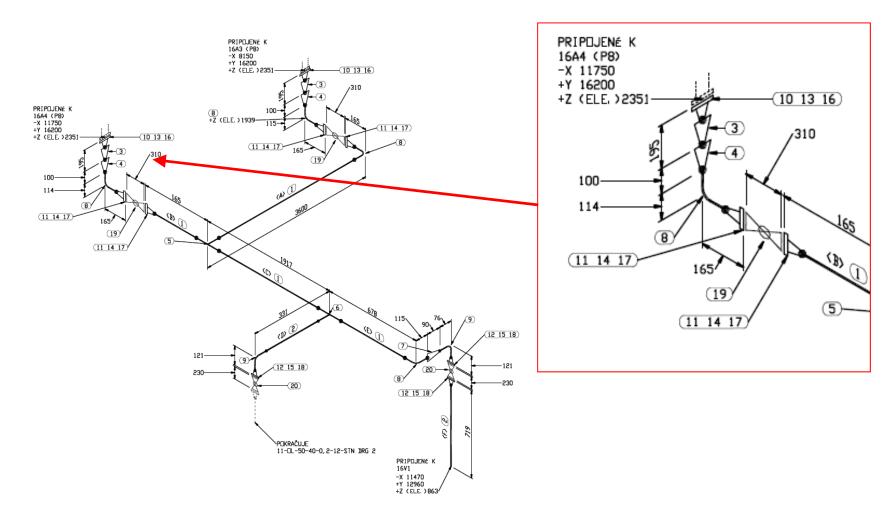
Solving dynamic tasks in pipelines (water hammer, vibrations, etc....)

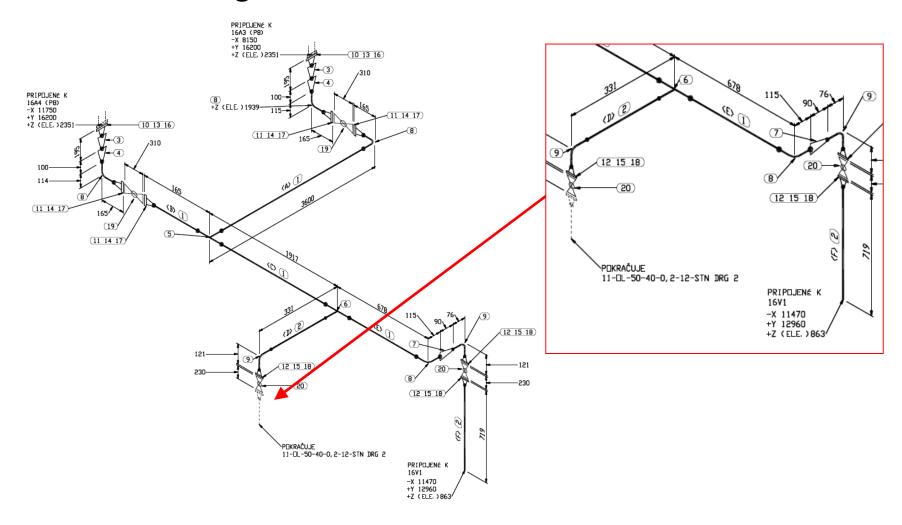
Piping system. Mechanical design

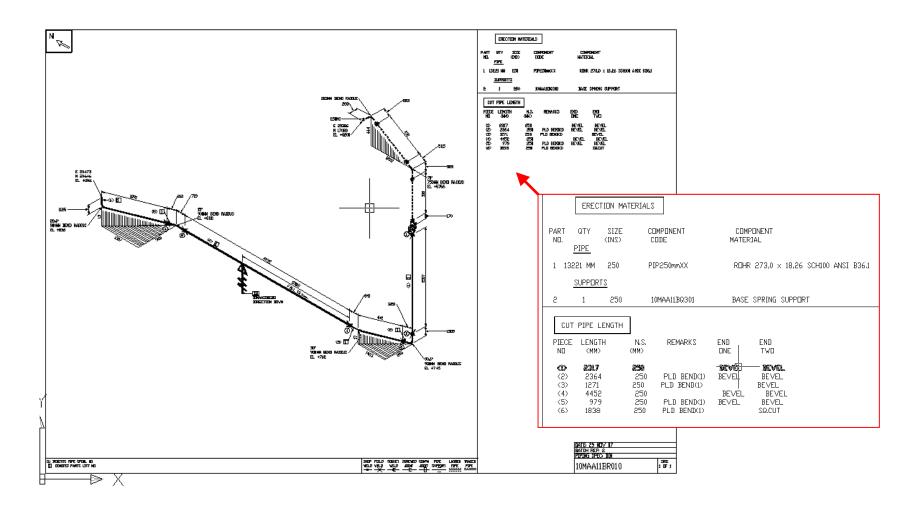

3D model and drawing outputs

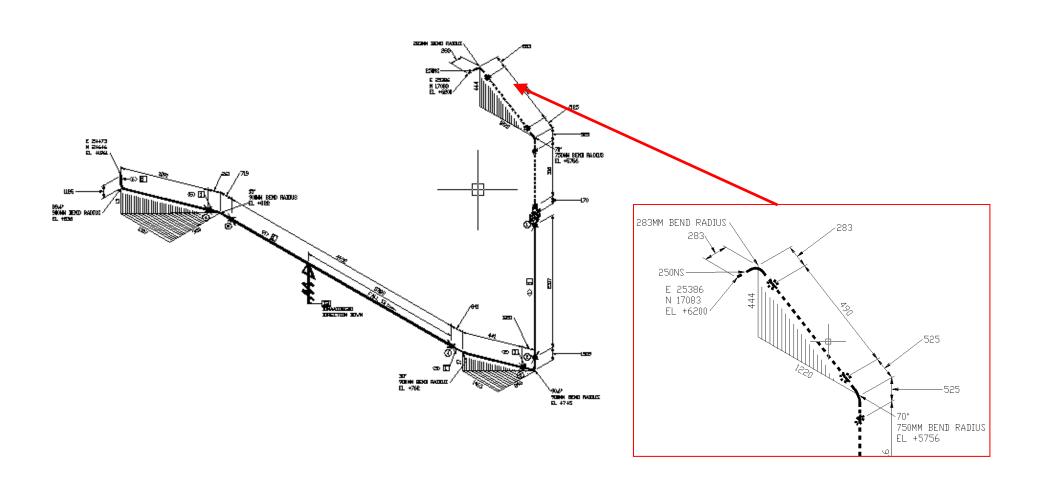
Piping system. Mechanical design

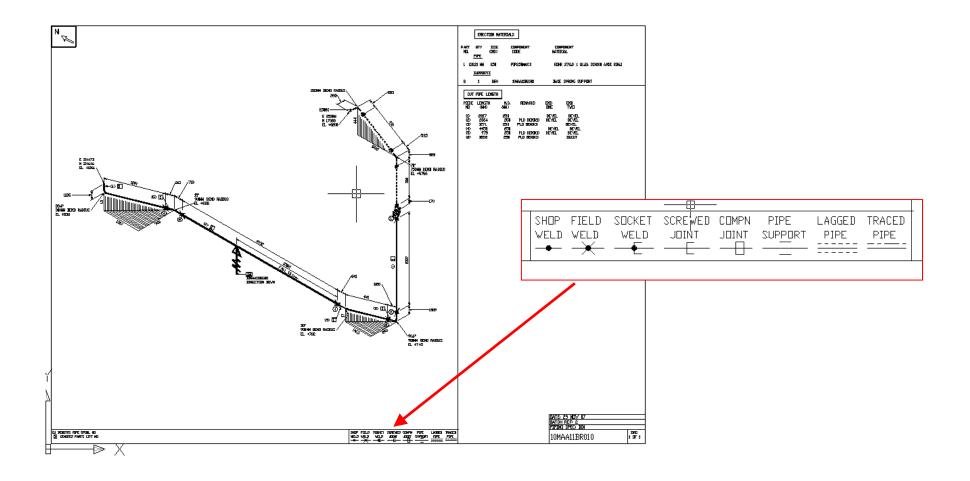
- a lot of attention, especially pipeline
 II. and III. Categories. (high temperature, high pressure)
- stress calculation (EN, ASME, BS)
- optimization
- design of suitable compensation elements / expansion joint ...etc/
- Design of pipe supports
- analysis of the nozzle connection
- detailed analysis of possible all load cases.

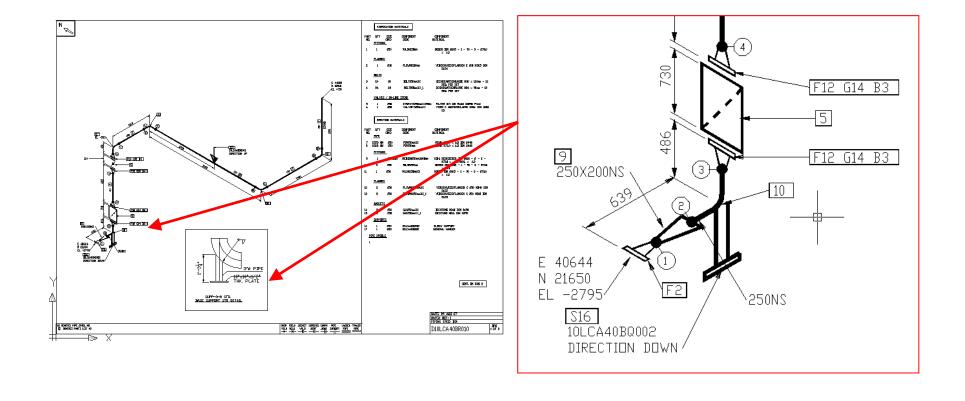


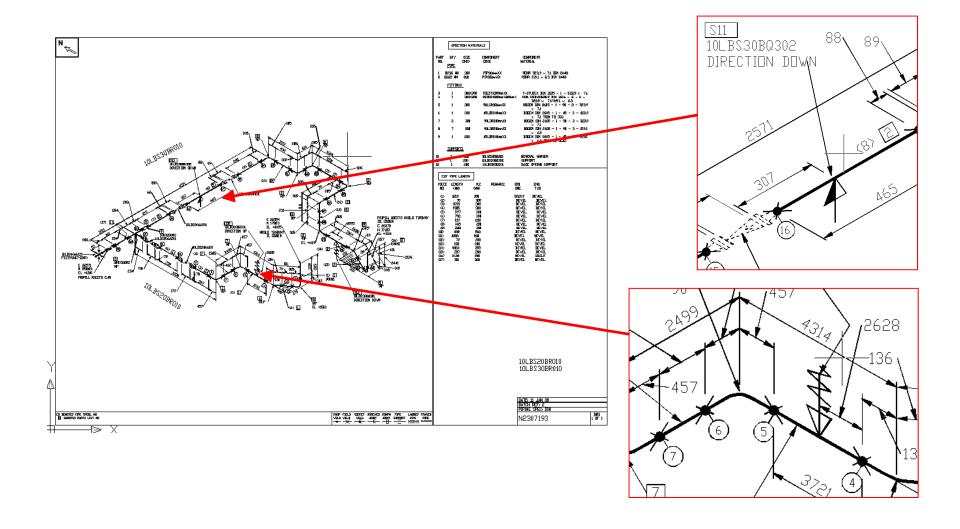

What does it consist of pipeline system?

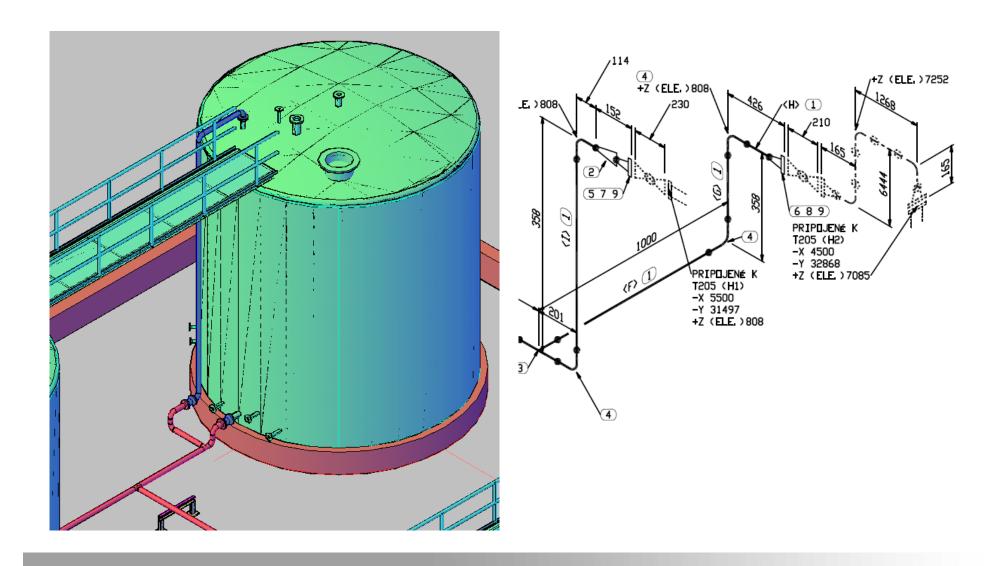

ZOZNAM MATERIÁLU

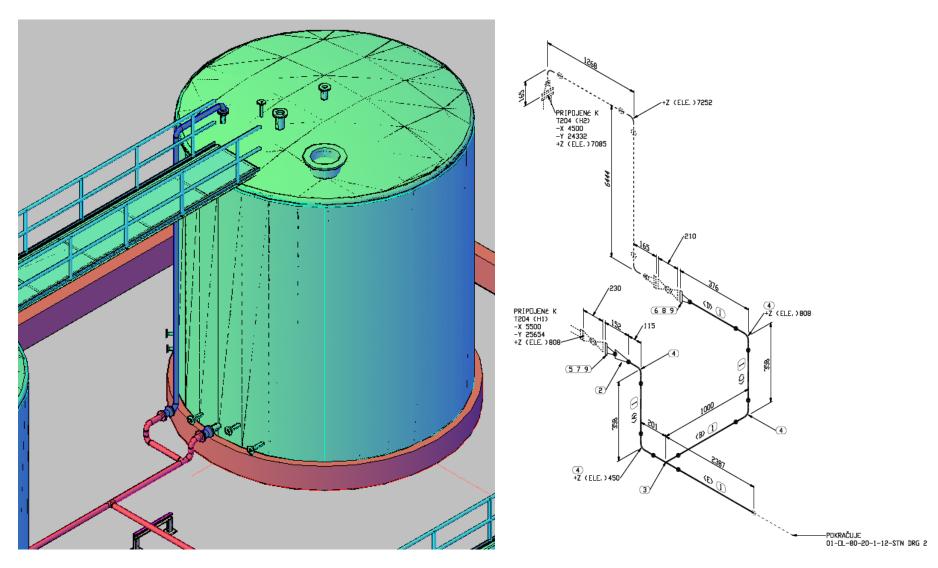

□ZN.	DN/ROZ.	POPIS	Q	Y HMOTN.
1 2 3 4 5 6 7 8	80 50 150X100 100X80 80X80 80X50 80X50 80	Rúrka, Hrúbka steny 3.6 Rúrka, Hrúbka steny 3.2 Reducia, centrická časť 1 DIN2616 Reducia, centrická časť 1 DIN2616 T-kus, štandart časť 1 DIN2615 T-kus, redukcia časť 1 DIN2615 Reducia, centrická časť 1 DIN2616 90° Koleno DIN2606, časť 1, typ 3,	5652 MM 853 MM 2 2 1 1 1 4	
9	50	90° Koleno DIN2606, čast 1, typ 3,	2	1. 0
10 11 12 13 14 15	150 80 50 150 80 50 20X110	R=1,5D Príruba krková, RFWN PN16 DIN 2633 Príruba krková, RFWN PN16 DIN 2633 Príruba krková, RFWN PN16 DIN 2633 Tesnenie, 3mm, DN16 Tesnenie, 3mm, DN16 Tesnenie, 3mm, DN16 (8) ks - Komplet	2432432	15. 5 14. 8 7. 6 2. 0 4. 0 3. 0 2. 0
17	16X65	(Skrutka, matica, podložka) pre PN16 (8) ks – Komplet	4	4, 9
18	16X60	(Skrutka, matica, podložka) pre PN16 (4) ks – Komplet	3	1. 8
19	80	(Skrutka, matica, podložka) pre PN16 Gulový kohút, PN 16 Prírubový, ZEUS Typ	2	85. 0
20	50	K91.1 (Armatury Group) Gulový kohút, PN 16 Prírubový, ZEUS Typ K91.1 (Armatury Group)	2	42, 6
		CELKOVÁ HMOTNOSŤ		уууууууу 246. 2 уууууууу

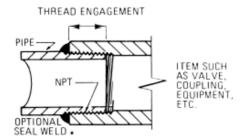

PRES	NÁ DLŽKA	RURKY
PIECE	LENGTH (MM)	SIZE
(A) (B) (C) (D) (E)	3400 29 1745 179 478	80 80 80 50 80
(F)	674	50

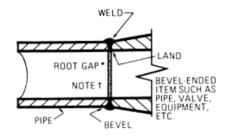


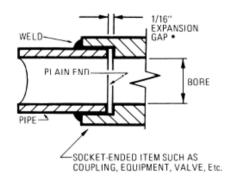




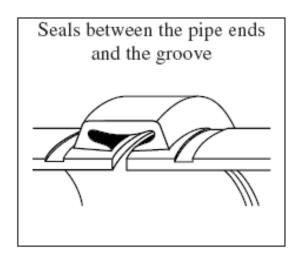


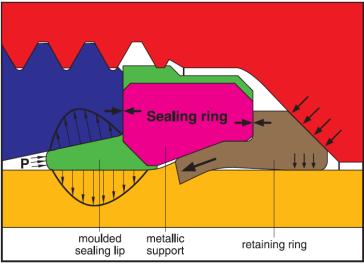


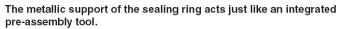



Piping system.

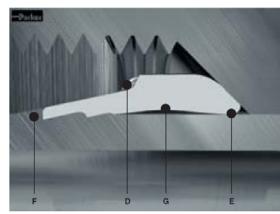
Screwed Piping S (THD Thread)

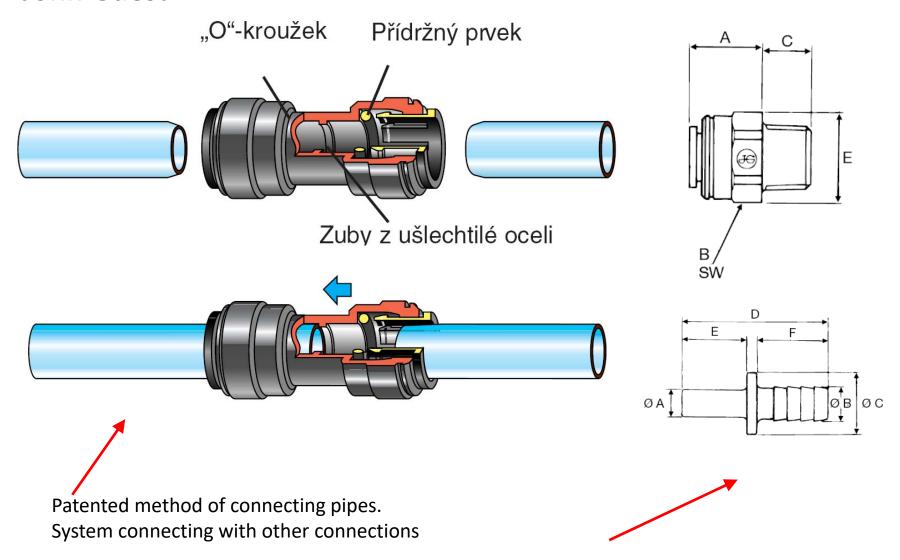


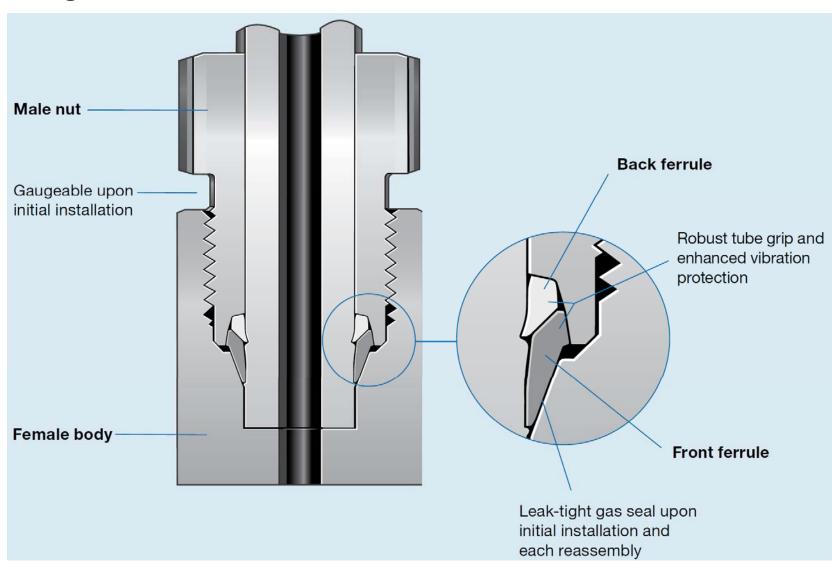

Butt-Welded Piping BW


Socket-Welded Piping SW

Piping system. Základné spôsoby spájania potrubí.


Other type of connection.

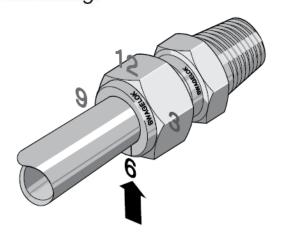




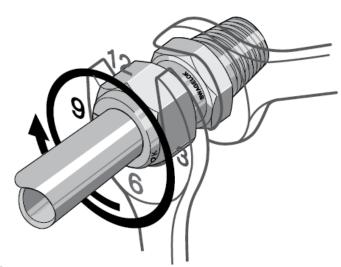
After tightening the nut

John Guest

Swagelok

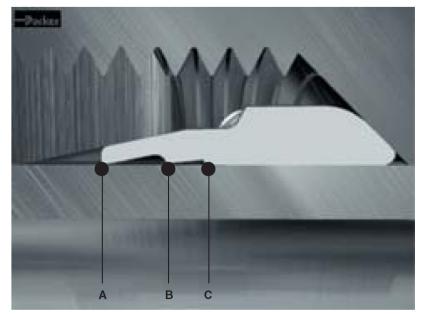

Swagelok

Fully insert the tube into the fitting and against the shoulder; rotate the nut finger-tight.

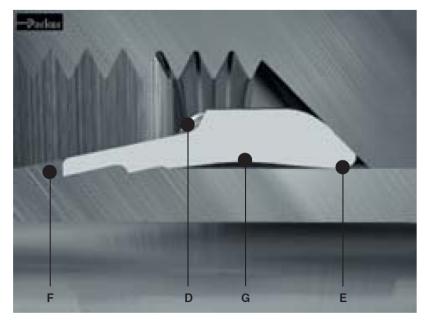

High-pressure
applications and
high safetyfactor systems:
Further tighten
the nut until the
tube will not turn

by hand or move axially in the fitting.

Mark the nut at the 6 o'clock position.



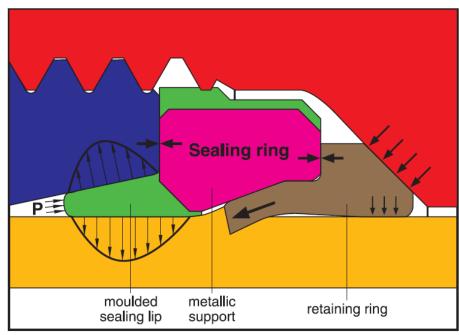
While holding the fitting body steady, tighten the nut one and one-quarter turns to the 9 o'clock position.



Parker

High pressure – Due to the application of even better materials combined with the special processing of individual components, EO-PSR can be used in applications of up to 800 bar (S series) and 500 bar (L series).

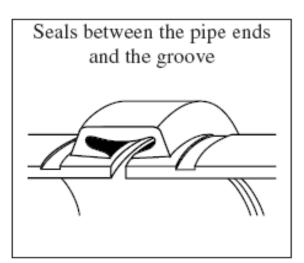
Before tightening the nut



After tightening the nut

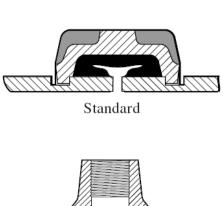
Parker

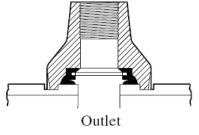
EO-2: Safe dry - clean - leakfree

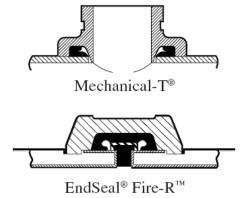


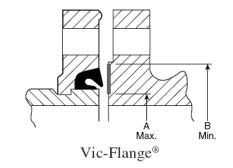
The metallic support of the sealing ring acts just like an integrated pre-assembly tool.

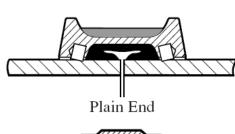
Increased pressure – Due to the application of even better materials combined with the special processing of individual components, EO-2 can be used in applications of up to 800 bar (S series) and 500 bar (L series).

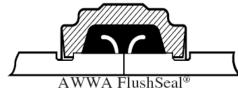

Victaulic

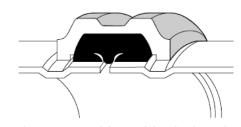


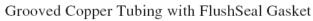


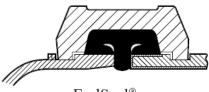

Victaulic







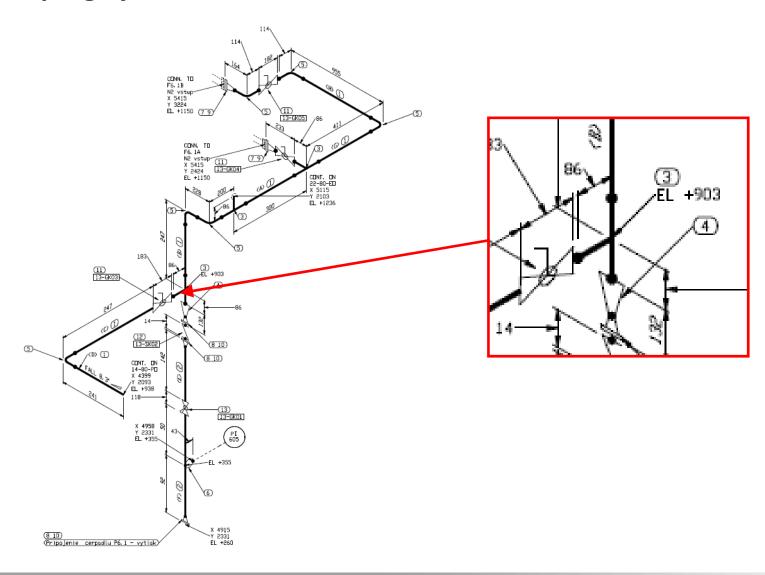




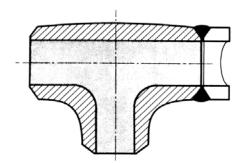
IPS to AWWA Transition

Piping system. Pipe

Wall thickness = mm Weight -kg/m (Plain end mass)													
Pipe Size (Inches)	Pipe OD (mm)	5S	105	10	20	30	STD	405	40	xs	805	80	xxs
3/8	17.10		1.65 0.64				2.31 0.84	2.31 0.86	2.31 0.84	3.20 1.10	3.20 1.12	3.20 1.10	
1/2	21.30	1.65 0.82	2.11 1.01				2.77 1.27	2.77 1.30	2.77 1.27	3.73 1.62	3.73 1.65	3.73 1.62	7.47 1.95
3/4	26.70	1.65 1.04	2.11 1.31				2.87 1.69	2.87 1.71	2.87 1.69	3.91 2.20	3.91 2.24	3.91 2.20	7.82 3.64
1	33.40	1.65 1.33	2.77 2.13				3.38 2.50	3.38 2.55	3.38 2.50	4.55 3.24	4.55 3.29	4.55 3.24	9.09 5.45
1 1/4	42.20	1.65 1.68	2.77 2.76				3.56 3.39	3.56 3.46	3.56 3.39	4.85 4.47	4.85 4.56	4.85 4.47	9.70 7.77
1 1/2	48.30	1.65 1.95	2.77 3.17				3.68 4.05	3.68 4.13	3.68 4.05	5.08 5.41	5.08 5.51	5.08 5.41	10.15 9.56
2	60.30	1.65 2.44	2.77 4.01				3.91 5.44	3.91 5.54	3.91 5.44	5.54 7.48	5.54 7.63	5.54 7.48	11.07 13.44
2 1/2	73.00	2.11 3.77	3.05 5.36				5.16 8.63	5.16 8.81	5.16 8.63	7.01 11.41	7.01 11.64	7.01 11.41	14.02 20.39
3	88.90	2.11 4.60	3.05 5.59				5.49 11.29	5.49 11.52	5.49 11.29	7.62 15.27	7.62 15.59	7.62 15.27	15.24 27.68
3 1/2	101.6	2.11 5.29	3.05 7.99				5.74 13.57	5.74 13.84	5.74 13.57	8.08 18.63	8.08 19.01	8.08 18.63	
4	114.3	2.11 5.96	3.05 8.52				6.02 16.07	6.02 16.40	6.02 16.07	8.56 22.32	8.56 22.77	8.56 22.32	17.12 41.03
5	141.3	2.77 9.67	3.40 11.82				6.55 21.77	6.55 22.20	6.55 21.77	9.53 30.97	9.53 31.59	9.53 30.97	19.05 57.43
6	168.3	2.77 11.55	3.40 14.13				7.11 28.26	7.11 28.83	7.11 28.26	10.97 42.56	10.97 43.42	10.97 42.56	21.95 79.22
8	219.1	2.77 15.09	3.76 20.37		6.35 33.31	7.04 36.81	8.18 42.55	8.18 43.39	8.18 42.55	12.70 64.64	12.70 65.95	12.70 64.64	22.23 107.92
10	273.1	3.40 23.08	4.19 28.34		6.35 41.77	7.80 51.03	9.27 60.31	9.27 61.52	9.27 60.31	12.70 81.55	12.70 83.19	15.90 96.01	25.40 155.15
12	323.9	3.96 31.89	4.57 36.73		6.35 49.73	8.35 65.20	9.53 73.88	9.27 75.32	10.31 79.73	12.70 97.46	12.70 99.43	17.48 132.08	25.40 186.97
14	355.6	3.96 35.06	4.78 42.14	6.35 54.69	7.92 67.90	9.53 81.33	9.53 93.27		11.13 94.55	12.70 107.39		19.05 158.10	
16	406.4	4.19 42.41	4.78 48.26	6.35 62.64	7.92 77.83	9.53 93.27	9.53 81.33		12.70 123.30	12.70 123.30		21.44 203.53	
18	457.0	4.19 47.77	4.78 54.36	6.35 70.57	7.92 87.71	11.13 122.38	9.53 105.16		14.27 155.80	12.70 139.15		23.38 254.55	
20	508.0	4.78 60.46	5.54 70.00	6.35 78.55	9.35 117.15	12.70 155.12	9.53 117.15		15.09 183.42	12.70 155.12		25.19 311.17	
22	559.0	4.78 66.57	5.54 77.06	6.35 86.54	9.35 129.13	12.70 171.09	9.53 129.13			12.70 171.09		28.58 373.83	
24	610.0	5.54 84.16	6.35 96.37	6.35 94.53	9.35 141.12	14.27 209.64	9.53 141.12		17.48 255.41	12.70 187.06		30.96 442.08	

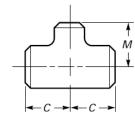

Schedule

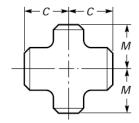
STD- standard


XS- extra strong

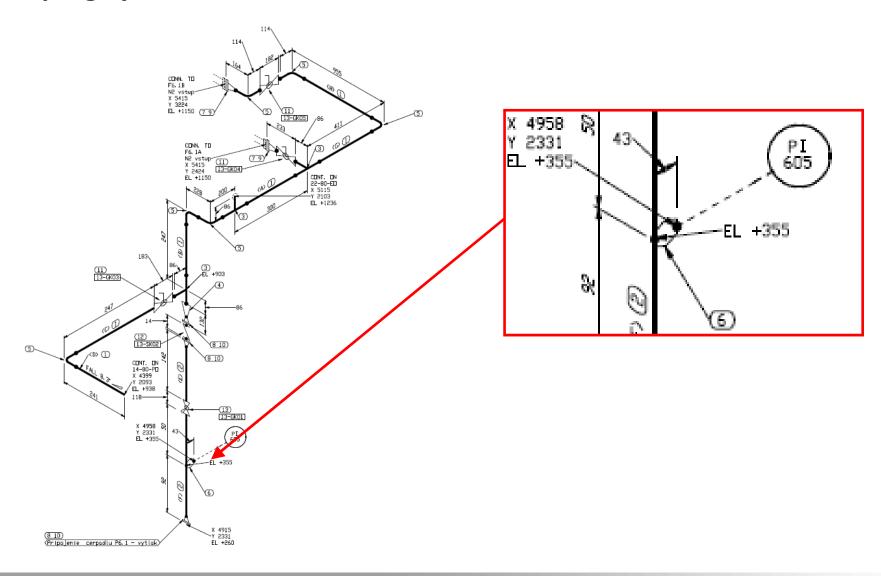
XXS – extra extra strong

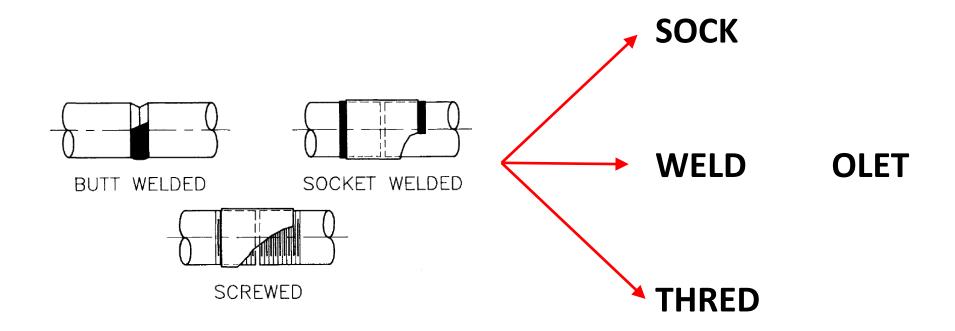
Piping system. Tee, Cross

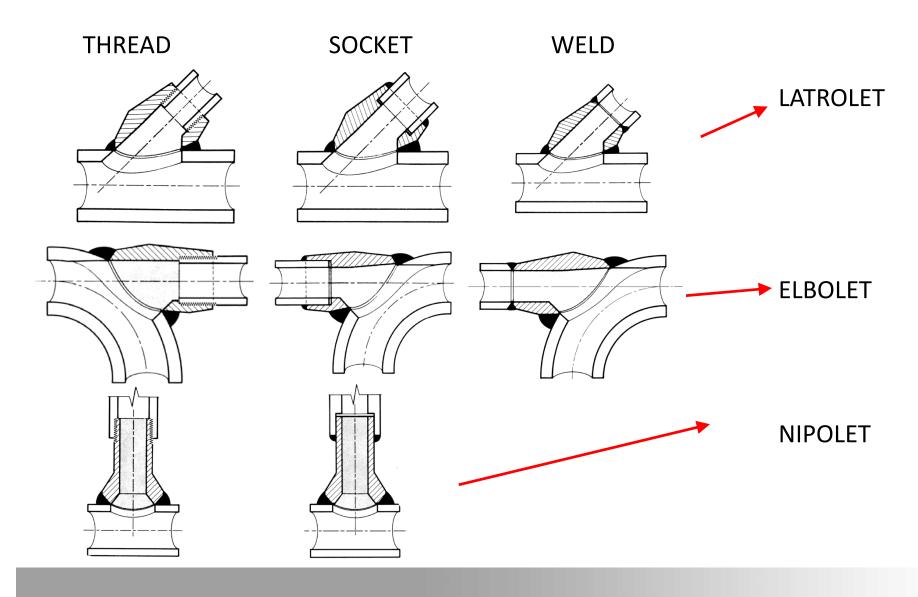


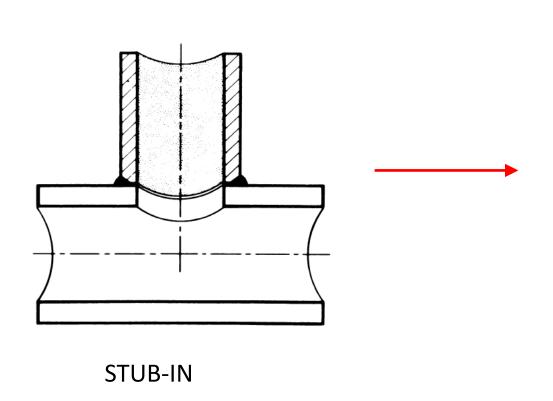

Piping system. Tee, Cross

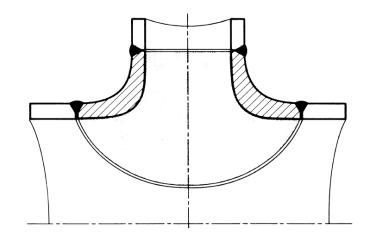
ASME B16.9-2001

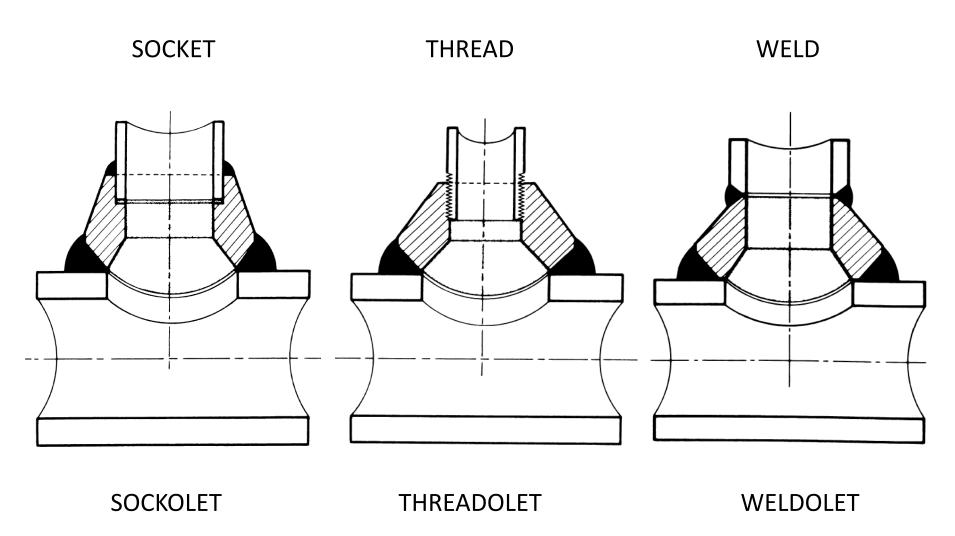


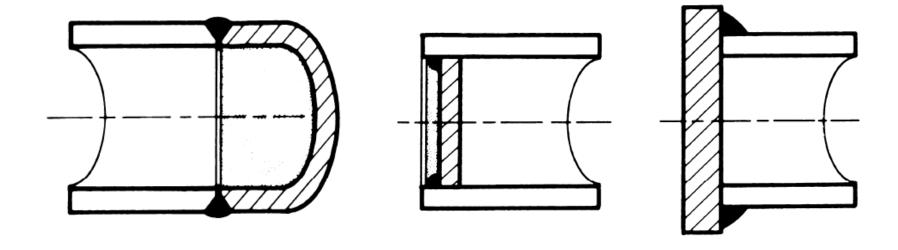


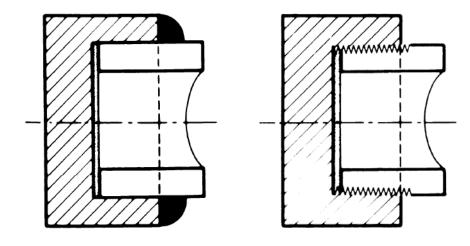





Nominal Pipe			Diameter at	Center-to-End		
Size (NPS)	DN	Run	evel Outlet	Run, <i>C</i>	Outlet, <i>M</i> [Note (1)]	
$\frac{1}{2} \times \frac{1}{2} \times \frac{3}{8}$	15 × 15 × 10	21.3	17.3	25	25	
$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{4}$	15 × 15 × 8	21.3	13.7	25	25	
$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{2}$	$20 \times 20 \times 15$	26.7	21.3	29	29	
$\frac{3}{4} \times \frac{3}{4} \times \frac{3}{8}$	$20 \times 20 \times 10$	26.7	17.3	29	29	
$1 \times 1 \times \frac{3}{4}$	$25 \times 25 \times 20$	33.4	26.7	38	38	
$1 \times 1 \times \frac{1}{2}$	25 × 25 × 15	33.4	21.3	38	38	
$1\frac{1}{4} \times 1\frac{1}{4} \times 1$	$32 \times 32 \times 25$	42.2	33.4	48	48	
$1\frac{1}{4} \times 1\frac{1}{4} \times \frac{3}{4}$	32 × 32 × 20	42.2	26.7	48	48	
$1\frac{1}{4} \times 1\frac{1}{4} \times \frac{1}{2}$	32 × 32 × 15	42.2	21.3	48	48	
$1\frac{1}{2} \times 1\frac{1}{2} \times 1\frac{1}{4}$	$40 \times 40 \times 32$	48.3	42.2	57	57	
$1\frac{1}{2} \times 1\frac{1}{2} \times 1$	$40 \times 40 \times 25$	48.3	33.4	57	57	
$1\frac{1}{2} \times 1\frac{1}{2} \times \frac{3}{4}$	$40 \times 40 \times 20$	48.3	26.7	57	57	
$1\frac{1}{2} \times 1\frac{1}{2} \times \frac{1}{2}$	40 × 40 × 15	48.3	21.3	57	57	
$2 \times 2 \times 1\frac{1}{2}$	50 × 50 × 40	60.3	48.3	64	60	
$2 \times 2 \times 1\frac{1}{4}$	$50 \times 50 \times 32$	60.3	42.2	64	57	
$2 \times 2 \times 1$	$50 \times 50 \times 25$	60.3	33.4	64	51	
$2 \times 2 \times \frac{3}{4}$	$50 \times 50 \times 20$	60.3	26.7	64	44	

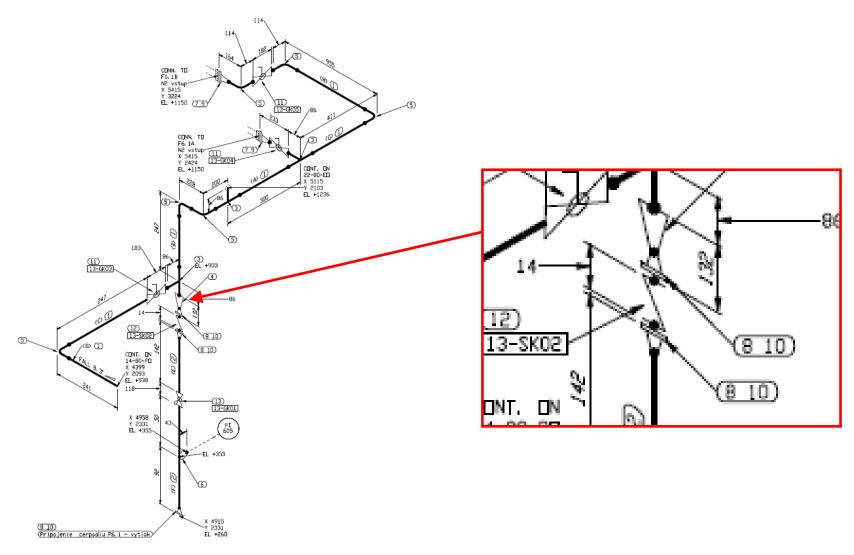


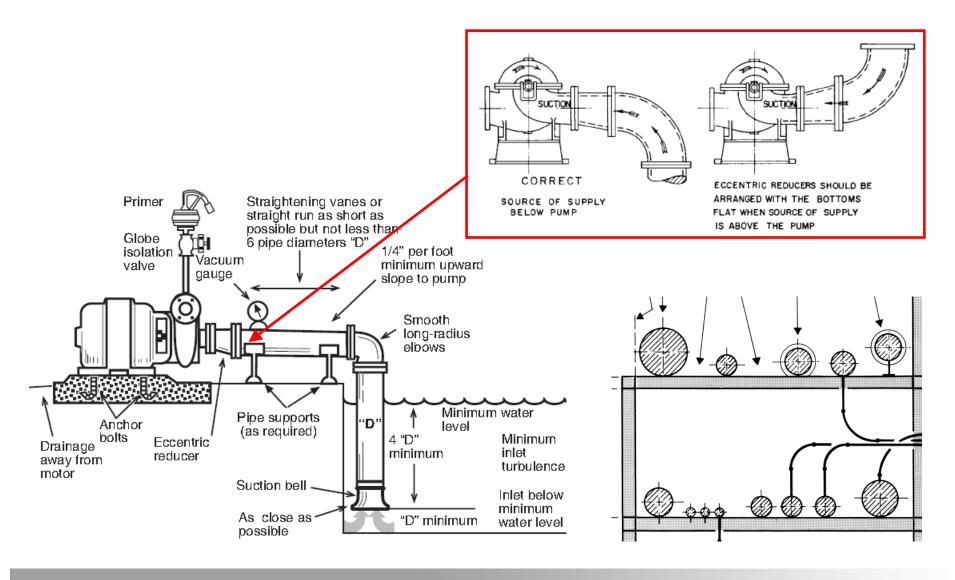

SWEEPOLET



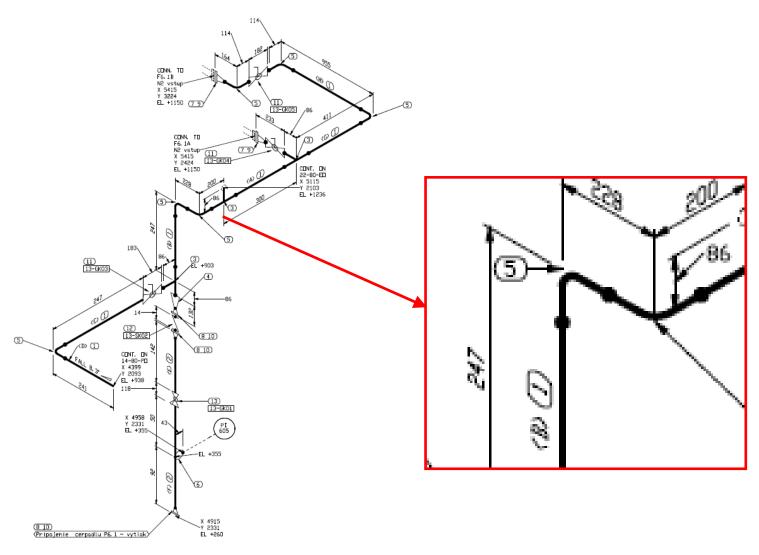
WELDOLET

Piping system. Cap

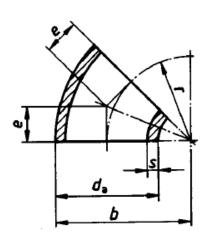



Torispherical, straight, elliptical ... Etc.

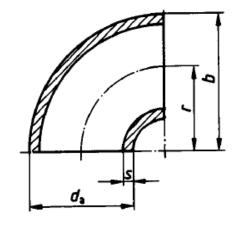
Design: Weld, Socket, Thread


Piping system. Reducer CON, ECC

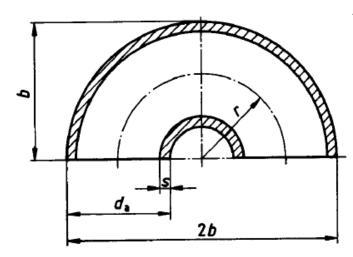
Piping system. Reducer CON, ECC



Piping system. Elbow, R=1D, R=1,5D



Piping system. Elbow, R=1D, R=1,5D


45° elbow

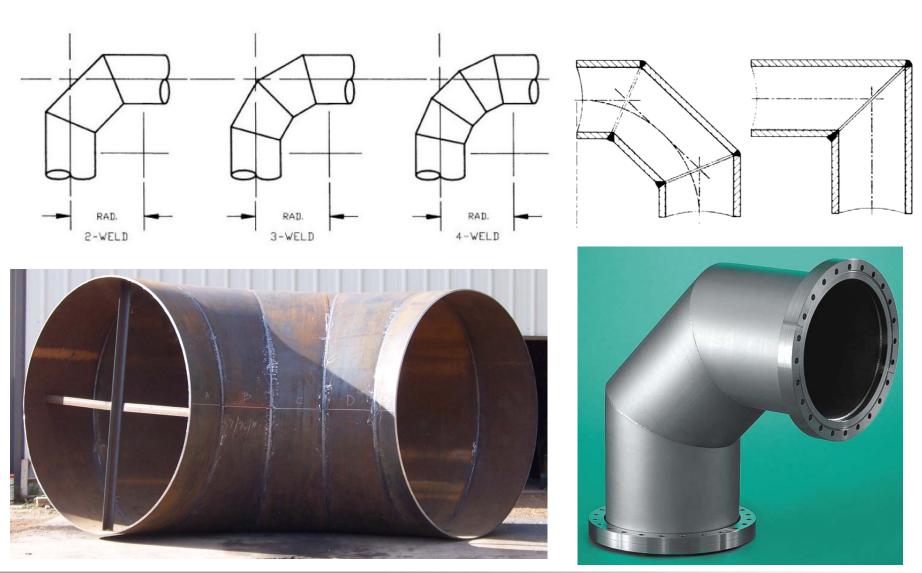
90° elbow

180° bend

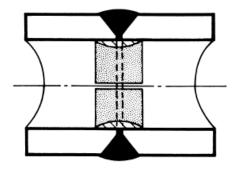
r is to be calculated as follows: type $2: r \approx 1.0 \cdot d_a$

type 2:
$$r \approx 1.0 \cdot d_s$$

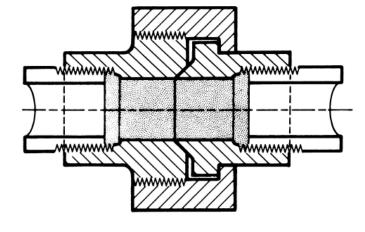
type 3:
$$r \approx 1.5 \cdot d_a$$


type 5:
$$r \approx 2.5 \cdot d_a$$

type 10:
$$r \approx 5.0 \cdot d_a$$

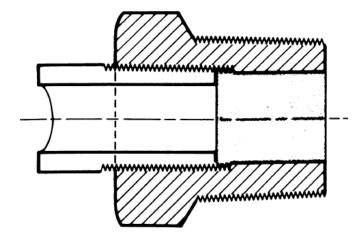

type 20:
$$r \approx 10.0 \cdot d_a$$

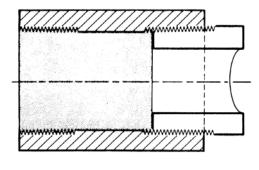
Steel butt-welding pipe fittings Elbows and bends with reduced pressure factor

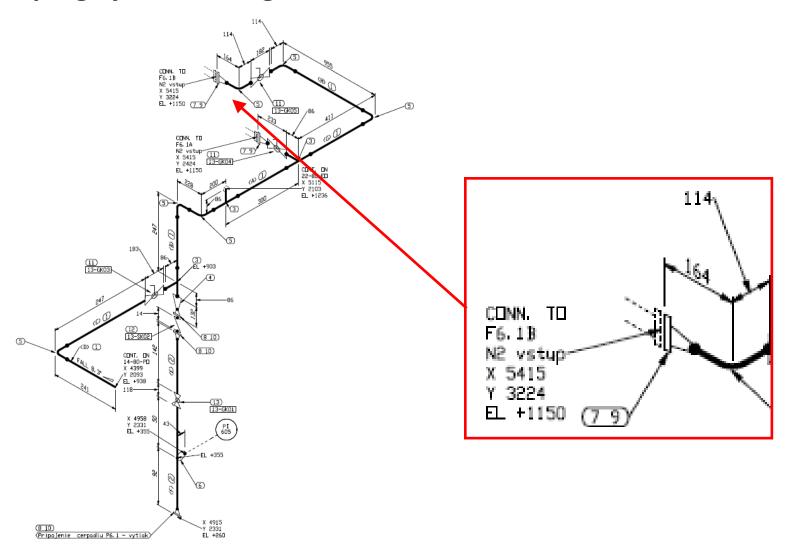

Piping system. Mitter Elbow

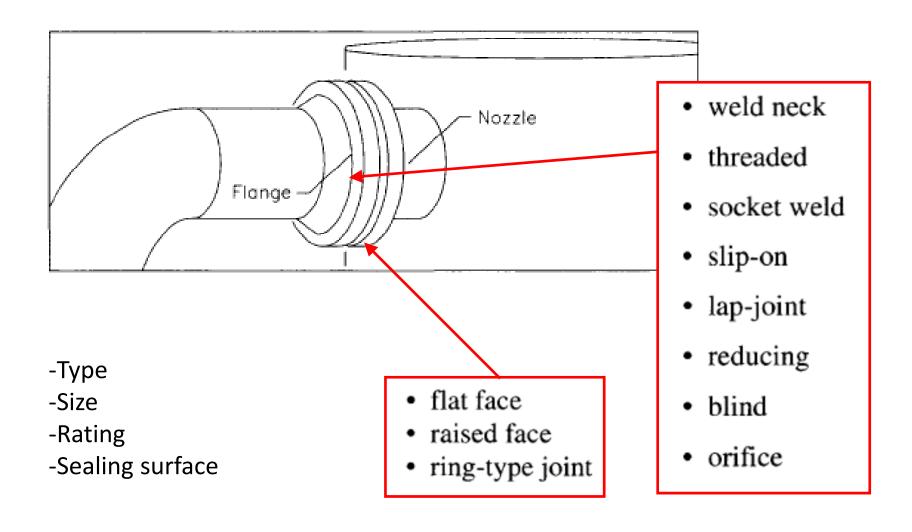


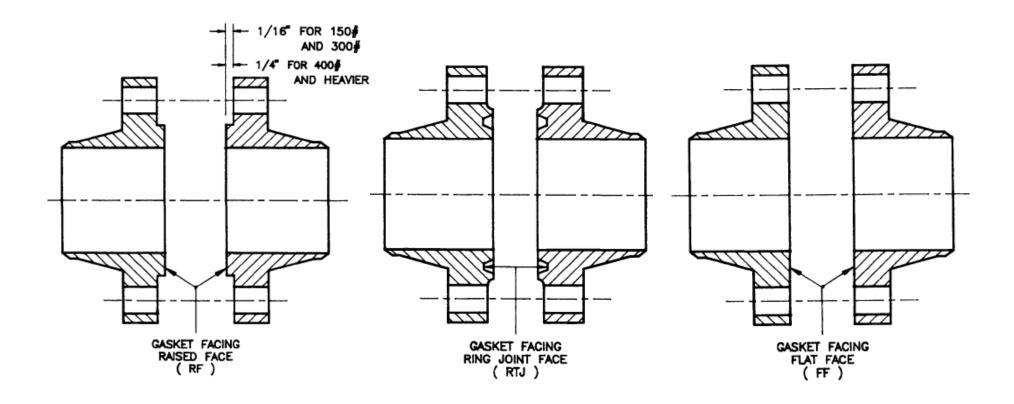
Piping system. Coupling, Connector

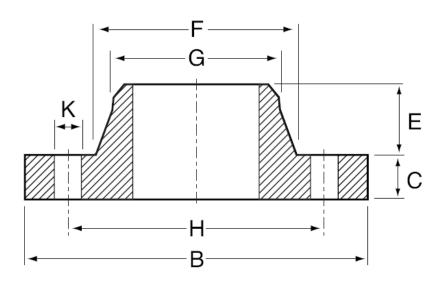



Butt-Welded Piping BW

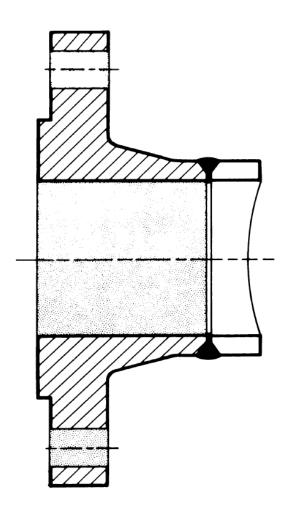



Socket-Welded Piping SW





Screwed Piping S (THD Thread)

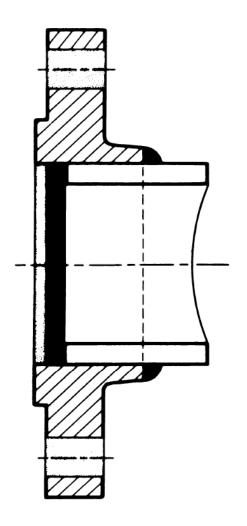

PLATE SLIP-ON WELDING

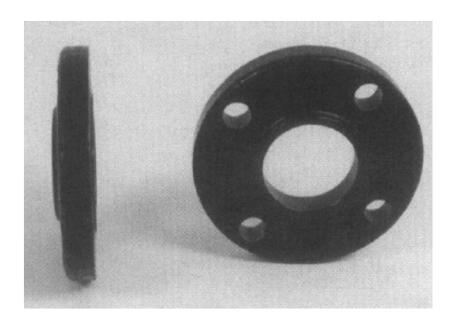
WELDING NECK

Main dimensions:

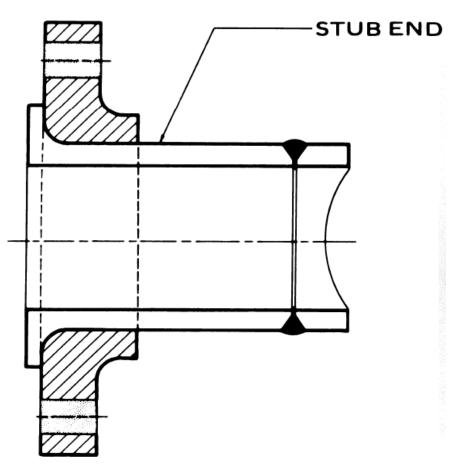
- Bolt circle
- Number of Bolts
- Outside dimension

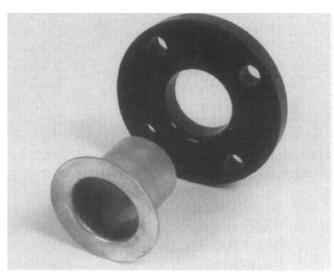
Piping system. Flange Welding Neck



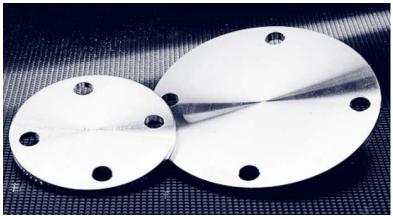


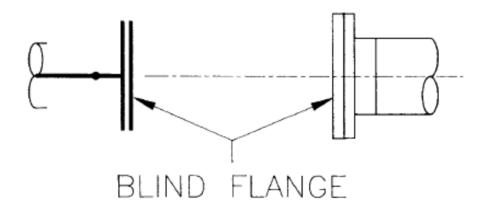
Identification

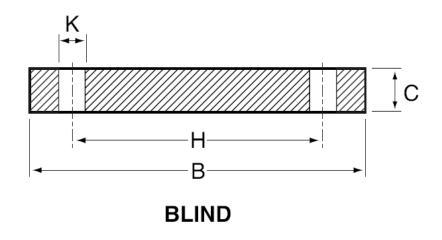

Piping system. Slip-on flange



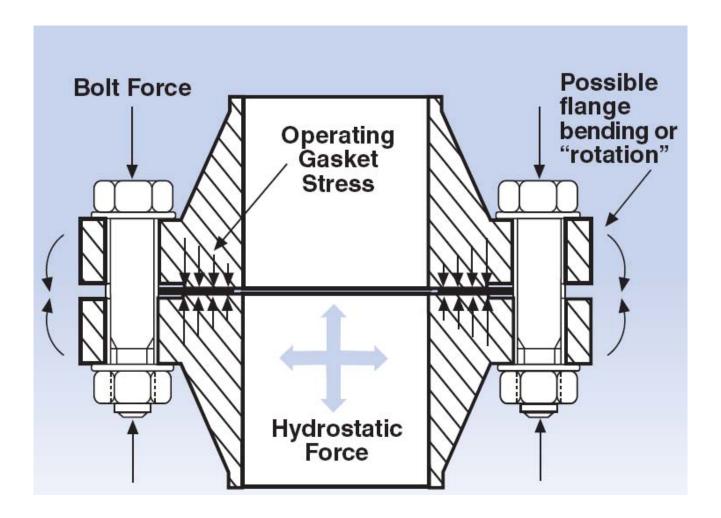
Piping system. Lap-joint flange



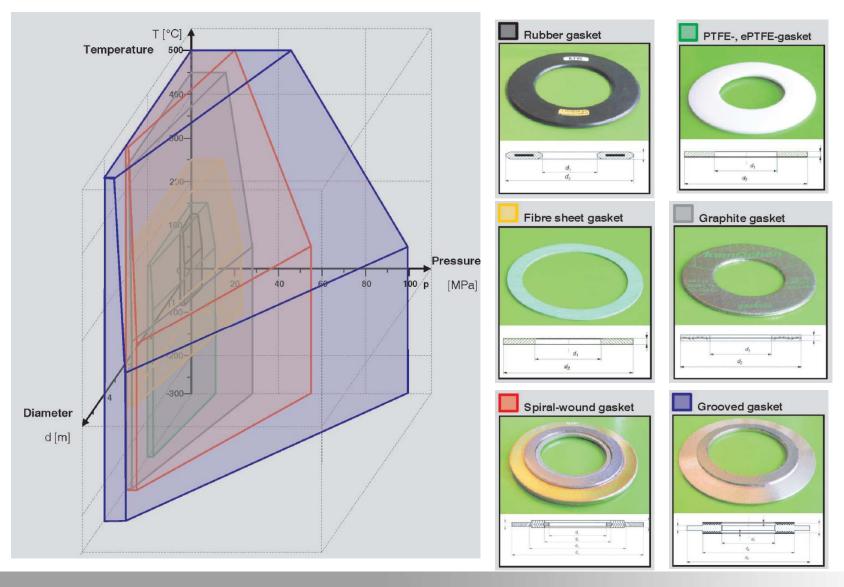




Piping system. Blind flange



Piping system. Gasket



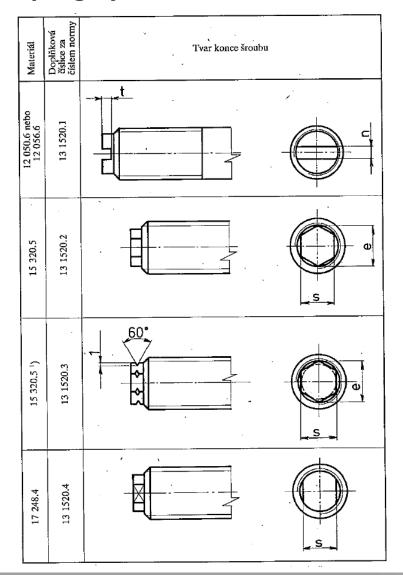
A seal is a component ensuring the tightness of two surfaces, using the stored energy between them.

We divide materials for seals into:

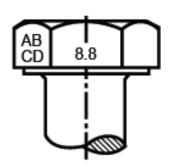
Non-metallic types Semi-metallic types Metallic types

Piping system. Gasket

Piping system. Bolt-Nut

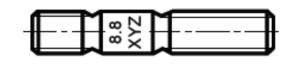

		Property class												
Sub-	Mask spiral and physical an	3.6	4.6	4.8	5.6	5.8	6.8	8.	81)	9.82)	10.9	12.9		
clause number	Mechanical and physical pro-							d≤	d >					
Humber								16mm ³⁾	16mm ³⁾					
5.1 und	Tensile strength Rm	nominal value	300	40	00	50	00	600	800	800	900	1000	1200	
5.2	in Wmm ^{2 4), 5)}	min.	330	400	420	500	520	600	800	830	900	1040	1220	
5.3	Vickers hardness HV	min.	95	120	130	155	160	190 250	250	255	290	320	385	
5.0	F ≥ 98 N	max.	220 ⁶⁾						320	335	360	380	435	
5.4	Brinell hardness HB	min.	90	114	124	147	152	181	238	242	276	304	366	
0.4	$F = 30 D^2$	max.			2096)			238	304	318	342	361	414	
		min. HRB	52	67	71	79	82	89	_	_	_	_	_	
5.5	Rockwell hardness HR	HRC	_		_		_	99.5	22	23	28	32	39	
		HRB	95 ⁶⁾									_	_	
		max. HRC max.			_			_	32	34	37	39	44	
5.6	Surface hardness HV 0,3			_	-					7)				
5.7	lower yield stress R _{el^(b)} in N/mm ²	nominal value	180	240	320	300	400	480	_	_		_	_	
	,	min.	190 240 340 300 420					480	_	_		_	_	
5.8	Stress at 0,2% non-proportional	nominal value	_						640	640	720	900	1080	
	elongation R _{p0,2} 9 in N/mm ²	min.	0.04	0.04	_	0.00	0.0	_	640	660	720	940	1100	
- 0	0, , , , , , , ,	S _p / R _{eL} or	0,94	0,94	0,91	0,93	0,9	0,92	0,91	0,91	0,9	0,88	0,88	
5.9	Stress under proofing load S _P	Sp / Rp0,2	400	205	010	000	200	440	500	000	650	000	070	
5.10	Descripe toward Af New pain	N/mm²	180	225	310	280	380	440	580	600		830	970	
5.10	Breaking torque, M _B Nm min.		25 22 - 20 -						see ISO 898-7 - 12 12 10 9 8				0	
5.11	Percent elongation after fracture A in %	min.	25	22	_	20	_	_		12		9	8	
5.12	Reduction area after fracture Z	% min.				-				2	48	48	44	
5.13	Strength under wedge loading ⁵⁾	The values for full size bolts and screws (not studs) shall not be smaller than the minimum values for tensile strength shown in 5.2												
5.14	Impact strength, <i>KU</i> in J	J min.		_		25	-	-	30	30	25	20	15	
5.15	Head soudness	no fracture												
	Minimum height of non-decarburized				_					1/2 H1		2/3 H1	3/4 H1	
5.16	thread zone, E													
3.10	Maximum depth of complete decarburization, G	-							0,015					
5.17	Hardness after retempering —									Reduction of hardness 20 HV max.				
5.18	Surface integrity		In accordance with ISO 6157-1 or ISO 6157-3 as appropriate											

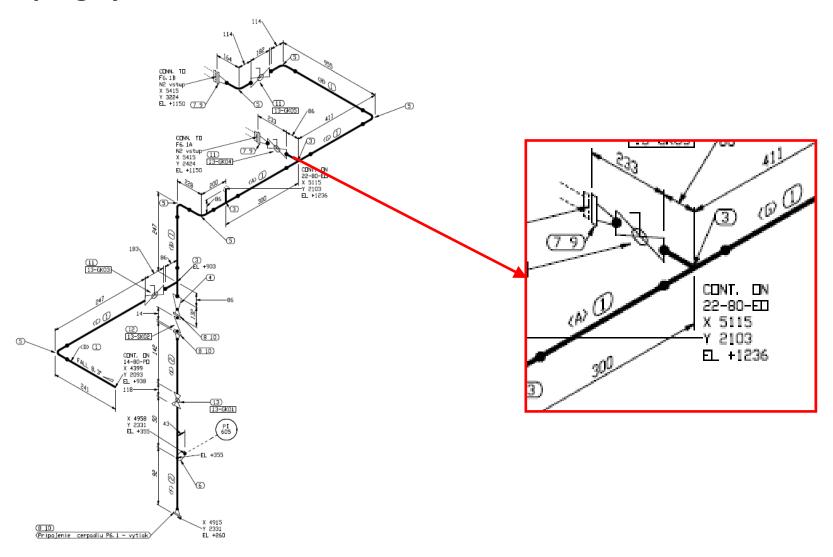

Screw connection


Selection of suitable material

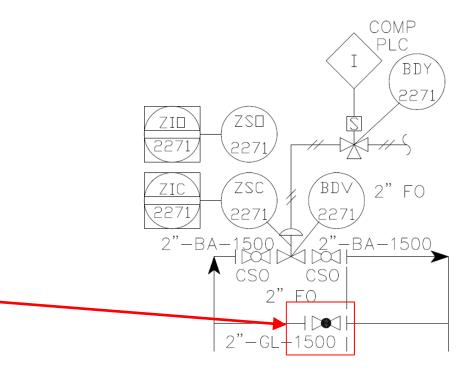
Mechanical properties
High temperatures
Low temperatures
Corrosive environment

Piping system. Bolt





Examples of marking on hexagon screws



What influences the correct choice of fittings?

- function
- material design
- T/p
- security
- lifespan
- connection
- operation
- weight
- maintenance
- the price

Multiple alternatives for one position Compromise

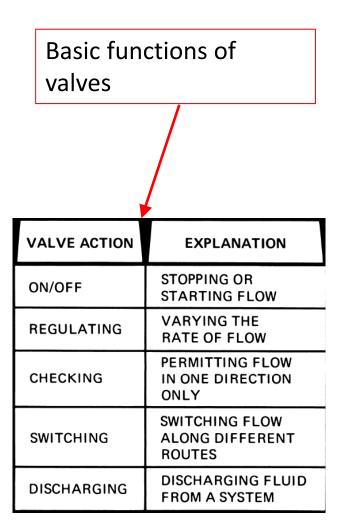
Table 5: Loss coefficients & for various types of valves and fittings (referred to the velocity of flow in the line connection nominal diameter DN)

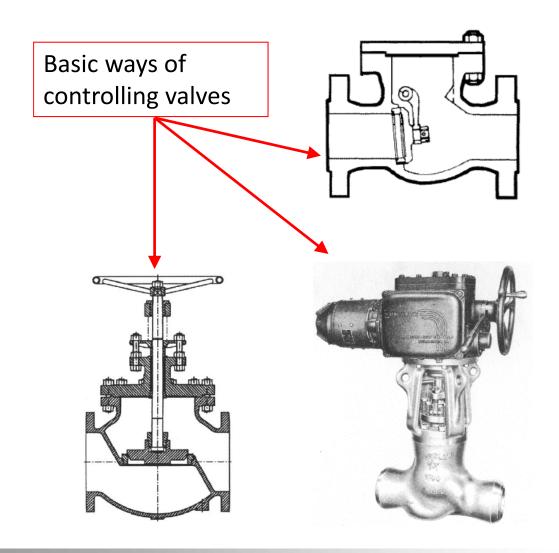
	Type of valve / fitting				Loss coefficient \$\zeta\$ for DN = 15 20 25 32 40 50 65 80 100 125 150 200 250 300 400 500 600 800 10																			
			sign		20	25	32	40	50	65	80	100	125	150	200	250	300	400	500	600		1000	Comment	
	Slide disc valves (d _E = DN)	min max	1	0.1	0.6	0.55	0.5	0.5	0.45	0.4	0.35	0.3										0.1	For d _E < DN	
	Round-body gate valves (d _F = DN)	min max	2							0.24								0.15					f. footnote 1)	
	Ball and plug valves (dg = DN)	min max	3	0.10		0.09	0.09	0.08	0.08	0.07	0.07	0.06	0.05	0.05	0.04	0.03		0.02					For d _E < DN ζ = 0.4 to 1.1	
	Butterfly PN 2.5 10	min max								0.38							0.37	0.33	0.33	0.33		0.06 0.28		
0	valves PN 16 25	min max	4							1.80								0.40 0.83	0.76	0.71		0.40	* Also for PN 40	
200	Globe valves, forged	min max	5			6.0	:		6.0															
Shut-off	Globe valves, cast	min max	6	3.0 6.0	=												3.0 6.0						$\zeta = 2$ to 3 can be achieve for optimized valve	
	Compact valves	min max	7.	0.3	0.4	0.6	0.6	1.0	1.1	1.9	2.2	2.2	2.3	2.5	1.1 2.5								, i	
	Angle valves	min max	8	2.0 3.1	=	-	3.1	3.4	3.8	4.1	4.4	4.7	5.0	5.3	5.7	6.0	6.3	2.0						
	Y-valves	min max	9	1.5 2.6	:												1.5 2.6							
	Straight-through valves	min max	10	0.6 1.6	=													0.6						
	Diaphragm valves	min max	11	0.8 2.7	₽									0.8 2.7										
	Non-return valves, straight seat	min max	12	3.0 6.0	=									⇉	3.0 6.0									
9	Non-return valves, axial	min max	13	3.2	3.4	3.5	3.6	3.8	3.2 4.2	3.7 5.0	5.0 6.4	7.3 8.2	4.3	:		-	4.3 4.6						Axially expanded as from DN 125	
II valves	Non-return valves, slanted seat	min max	14	2.5 3.0	2.4	2.2	2.1	2.0	1.9	1.7	1.6	1.5	•			-	3.0							
A AOIL TORNILL	Foot valves	min max	1.5						1.0 3.0	0.9	0.8	0.7	0.6	0.5	0.4	-	510		(0.00)	(5.5)	(4.5)		() In groups	
104.7	Swing check valves	min max	16	0.5 3.0	=		•	0.5	0.4	•							0.4	0.3	•		=;	0.3 3.0	Swing check valves with- out levers and weights 2)	
	Hydrostops $v = 4 \text{ m/s}$ v = 3 m/s v = 2 m/s		17						0.9 1.8 5.0			3.0 4.0 6.0		3.0 4.5 8.0	2.5 4.0 7.5		1.2 1.8 6.0	2.2 3.4 7.0						
	Filters		18					2.8	4			200		200	-		-	-					In clean condition	
	Strainers		19					1.0	4							-	1.0						in cican condition	

If the narrowest shut-off diameter dg is smaller than the line connection nominal diameter DN, the loss coefficient ζ must be increased by (DN/dg)^x with x = 5 to 6.
 When the valve is partially open, i.e. low flow velocities, the loss coefficients increase to the "max" values. With increasing flow velocities v (in mb) the loss coefficients decrease roughly as ζ 3/v.
 See Fig. 13 for designs.

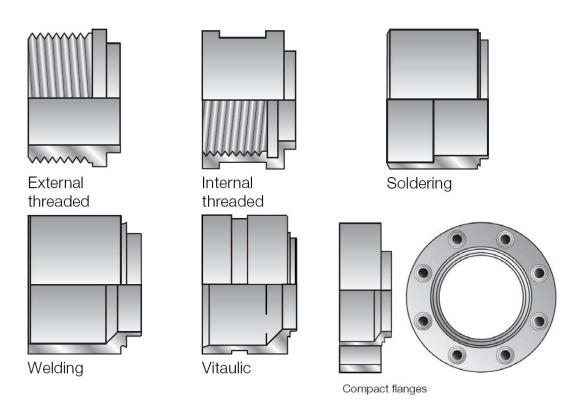
Prietokový súčiniteľ - charakteristický prietok danou armatúrou za presne definovaných podmienok pri menovitom Kv – m3/hod.
Cv- US gal/min.

Procesné parametre:

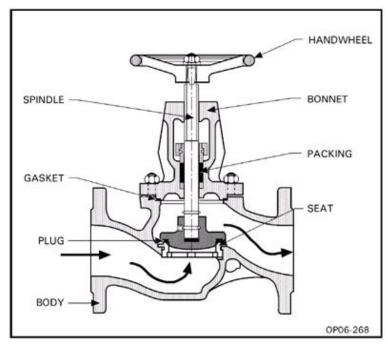

Tlaková strata ξ


Pre regulačné Valves Prietokový súčiniteľ Kv, Cv.

$$Kv = \frac{1}{100} \cdot Q \cdot \sqrt{\frac{\rho_1}{\Delta p}}$$
 [m³.h¹]


kde		
Q	je objemový prietok	[m³.h ⁻¹]
ρ	je objemová hmotnosť	[kg.m ⁻³]
Δр	je tlaková strata armatúry	[MPa]

Handwheel rotation	Kv-value (m³/h)
0.5	1.1
1.0	2.2
1.5	3.2
2.0	4.3
2.5	5.4
3.0	6.45
3.4	7.2


	OPERA [*]	SELF-OPERATED VALVES			
GATE	GLOBE	ROTARY	DIAPHRAGM	CHECK	REGULATING
	W			X	
SOLID-WEDGE GATE	GLOBE	ROTARY-BALL	DIAPHRAGM (SAUNDERS TYPE)	SWING CHECK	PRESSURE REGULATOR
SPLIT-WEDGE GATE	ANGLE GLOBE	BUTTERFLY	PINCH	BALL CHECK	PISTON CHECK
	<	Q	PRESSURIZING FLUID		< <
SINGLE-DISC SINGLE-SEAT GATE	NEEDLE	PLUG or COCK	*Central seat is optional SQUEEZE	TILTING DISC CHECK	STOP CHECK

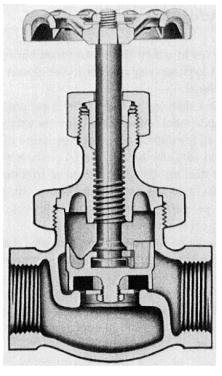
Connection dimension:

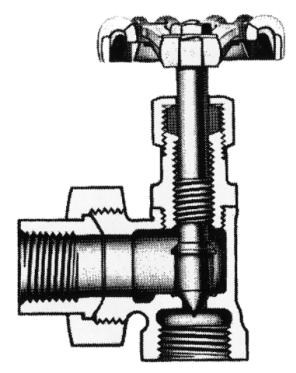
- Flange
- Thread
- Weld
- Other connections (Parker, Swagelock, Clamp, aseptic program...)

Valves. Globe Valve

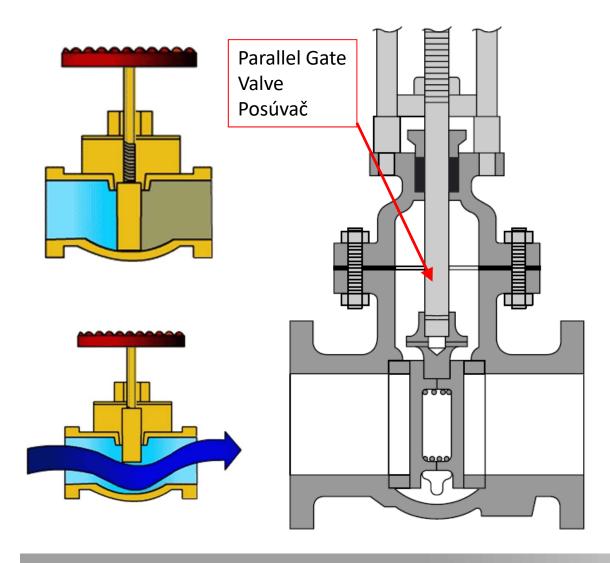
Function

- -Control
- -ON/OFF
- -Časté otváranie a zatváranie


Application


(g) a (I)

Vacuum


Valve Body Pattern:

- -Standard
- -Angle
- -Oblique "Y"

Valves. Parallel Gate Valve

Advantages:

- low pressure loss at 100% opening.
- suitable for slurries, pastes, suspensions, and difficult-totransport materials

Disadvantages:

- unsuitable for frequent opening. Seal damage.
- Not suitable for regulation.
 Effective regulation starts at 50% closure
- at high speeds the tendency to vibrate

Function

- -ON/OFF
- Control, špeciálna konštrukcia

Application

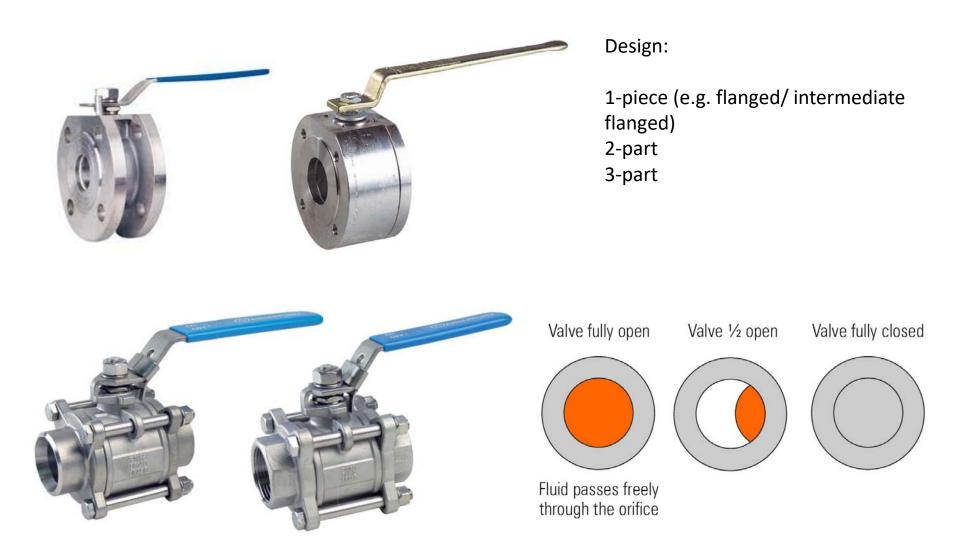
- -(g),(I) . Also suspensions, slurries, pastes
- -Vacuum

Valves. Ball Valve

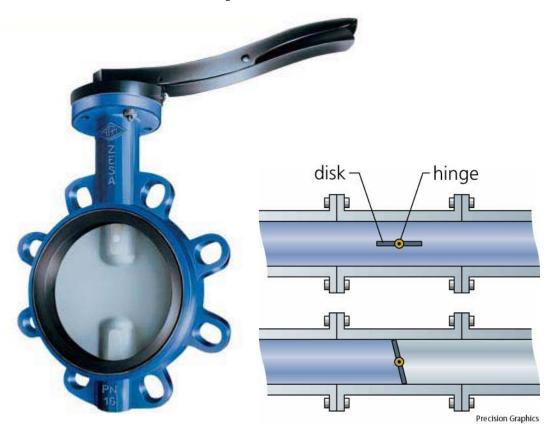
Advantages:

- quick opening/closing 90°-
- about higher pressures
- low pressure loss at 100% opening

Disadvantages:


- mostly for lower temperatures
- unsuitable for regulation.

Function


-ON/OFF, Switching function **Application**

-(g),(l),

Valves. Ball Valve

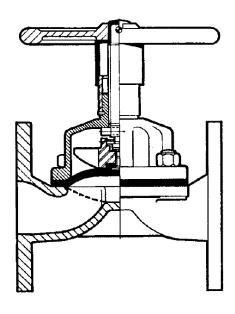
Valves. Butterfly Valve

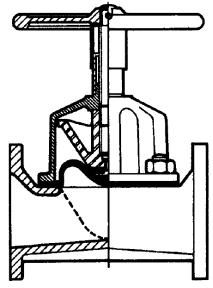
Advantages:

- simple, cheap
- low weight
- opening/closing 90°
- low pressure loss at 100% opening
- implemented seal
- also suitable for regulation

Disadvantages:

- mostly for lower temperatures/pressures
- "pigging", the middle part


Function


-ON/OFF, Control

Application

-(g),(l),

Valves. Diaphragm valve

Straight line movement.

Compression of the flexible membrane element

Advantages:

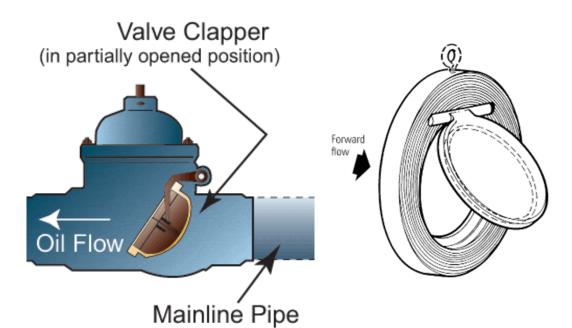
- for extremely corrosive and abrasive materials.
- low weight
- simple
- also suitable for regulation

Disadvantages:

-temperature restrictions, lower temperatures (up to 160 $^{\circ}\text{C}$) - membrane

-pressurizing the system.

Inner liner


Function

-ON/OFF, Control

Application

- (I),(g) + corrosion medium.

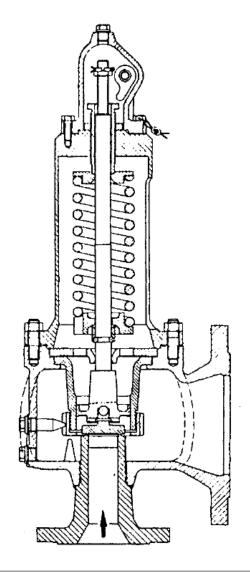
Valves. Swing Check Valve

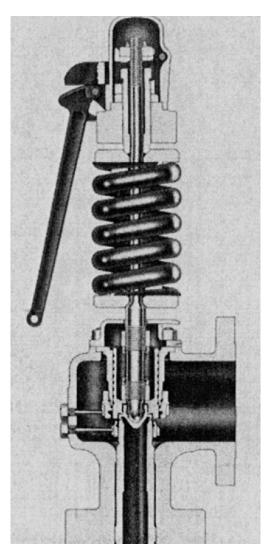
Swing Check Valve
The closing element is rotated by
the flow of the medium, in reverse
flow it is, on the contrary, pushed
onto the contact surface.

Advantages:

- greater distance of movement of the closing element.
- little tendency to clogging

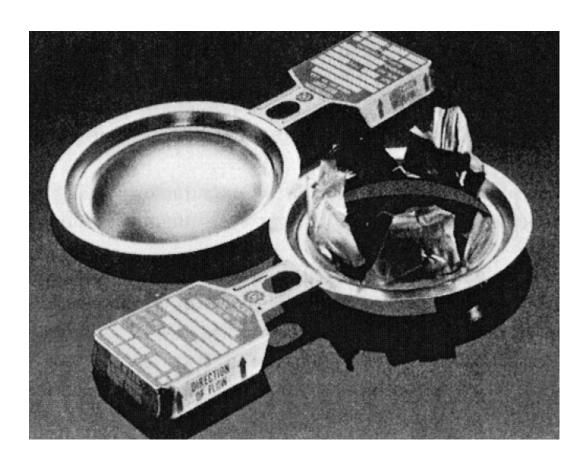
Disadvantages:


keep mounting position


FunctionBackflow prevention **Application**

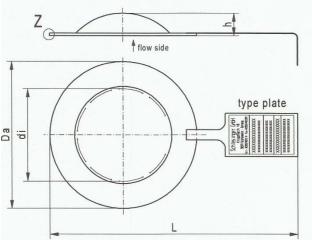
- (I),(g)

Valves. Pressure Relief Valve

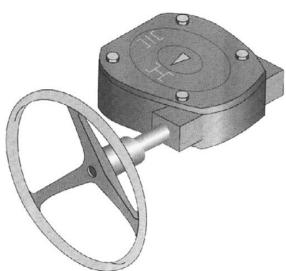

Pressure Relief Valve
Automatic valve, when the
permissible pressure is exceeded,
the valve opens and reduces the
pressure.

Types:

- -directly controlled PV (pressure usually opens through a spring or a counterweight)
- indirectly controlled PV (Valve socalled "pilot", which controls the cone of the main valve.

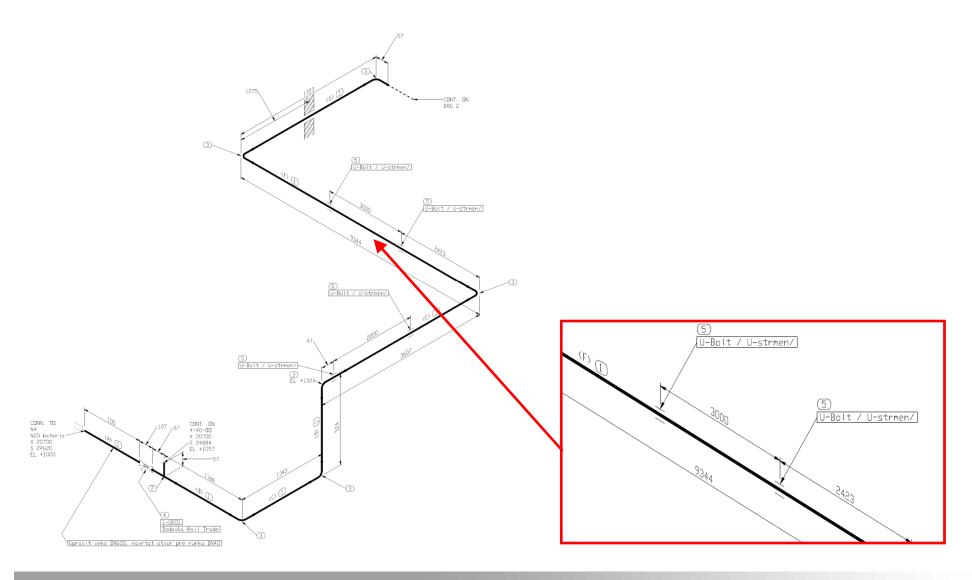

Function
Safe function.
Application
(g), (l)

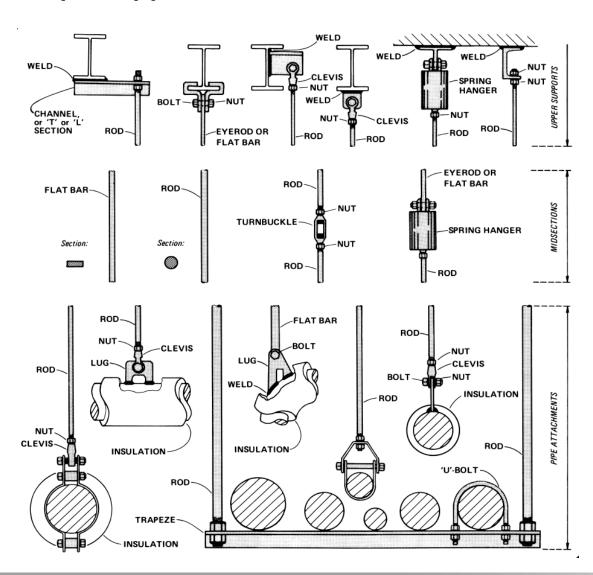
Valves. Rapture disk


If the safety valve is not enough:

- A ruptured membrane
- Huge capacity.
- Extremely fast.
- Even in a vacuum
- At extremely low temperatures
- As another level of protection
- Mechanical damage.
 Replacement required.

Valves. Actuator

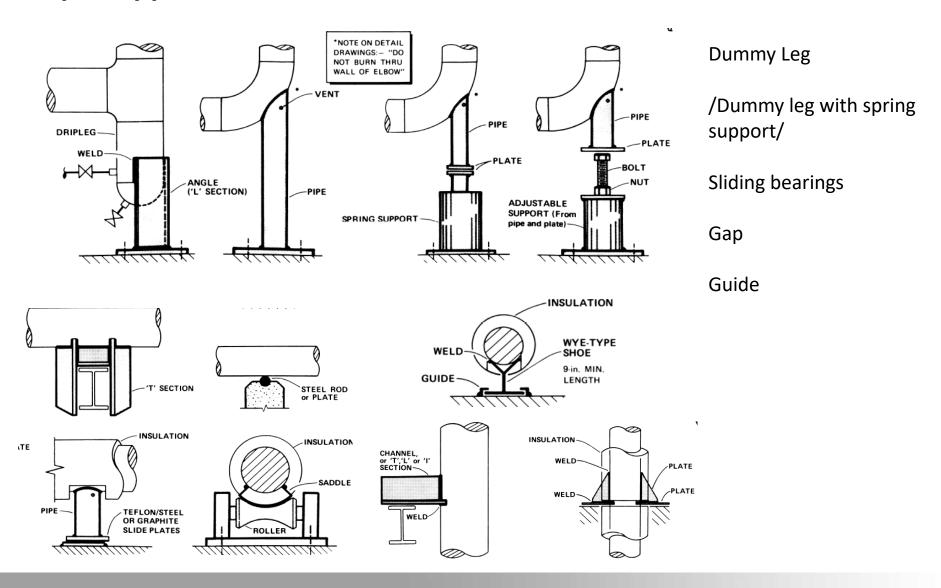


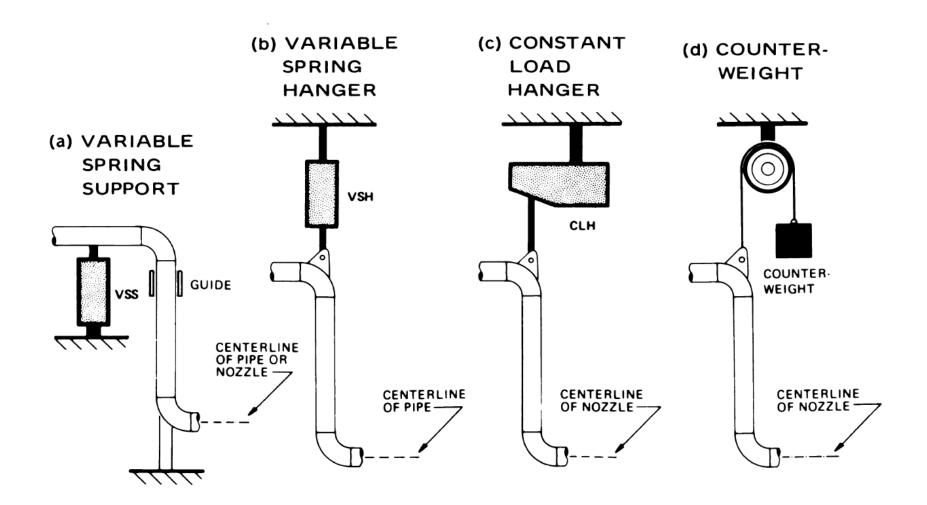


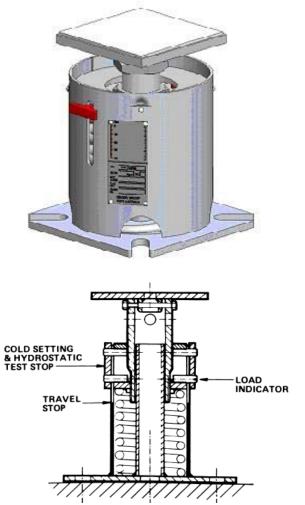
Basic division

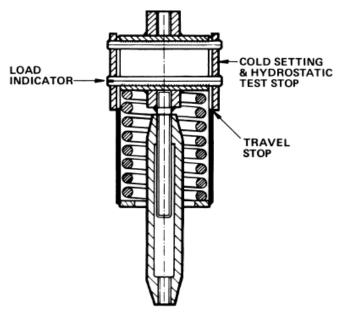
Manual drive: It requires human power and a mechanical element connected to the armature (e.g. lever, handle, wheel)

Controlled drive.
It requires an energy source
(e.g. electrical energy,
compressed air) a mechanical
element connected to the
fitting. A control system is
required for control.



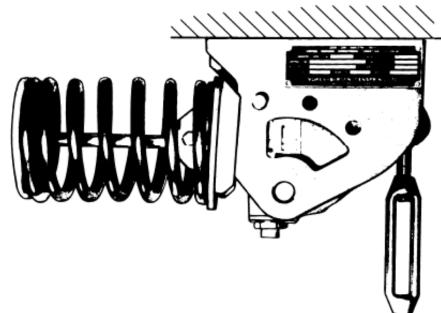

Pipe support


- capturing the weight of the pipeline (+ weight of medium, insulation, all other loads)

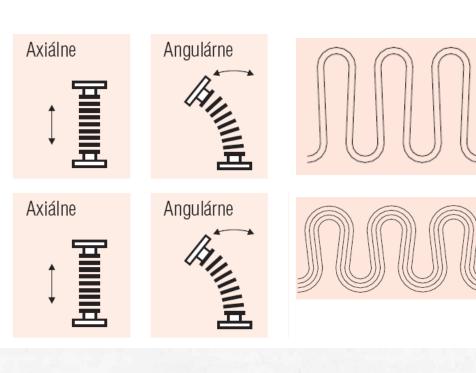

The calculation model will determine the exact location of attachment as well as the removed degree of freedom

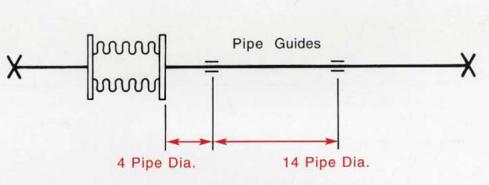
Supports
Hanger
Flexible (Spring support and hangers)





VSH - Variable Spring Hanger


- The most common
- Limitation, 25%-30% of the spring range.



CSH – Constant Load Hanger

