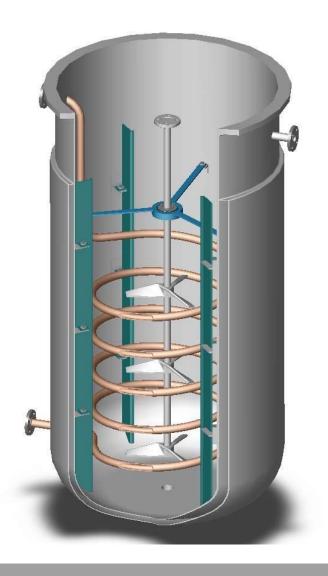
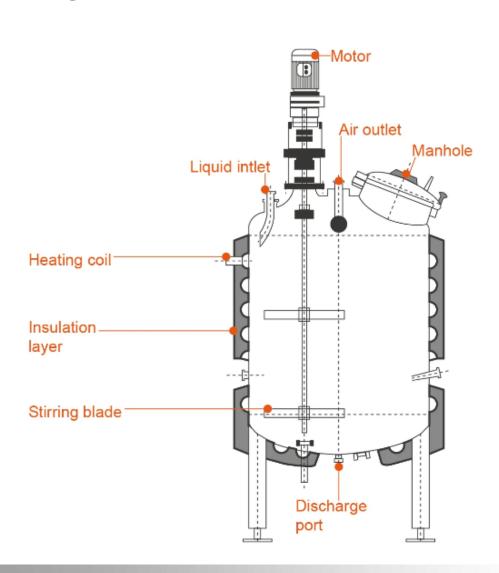
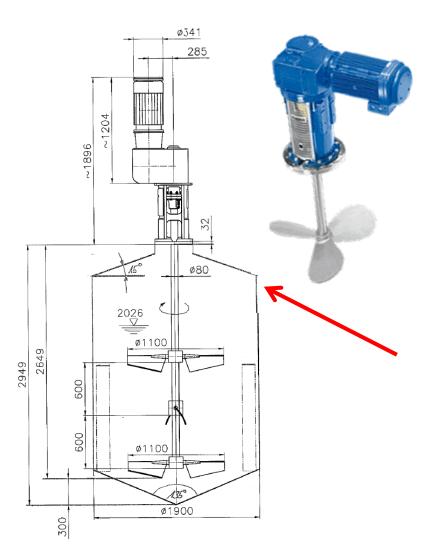
Design of Process Equipment

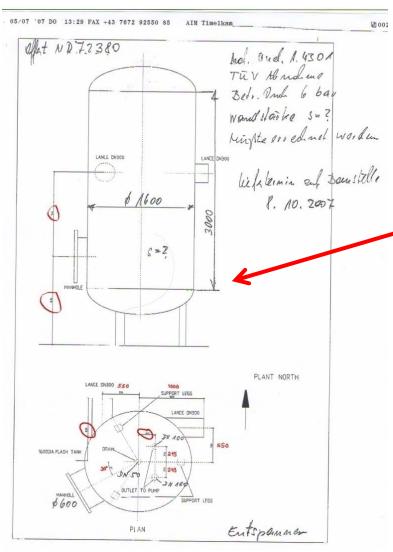

Mixing Tank /Vessel/, Agitator Lecture


doc. Ing. Martin Juriga, PhD. Bratislava, February 2024



Introduction:

- SHAPE (cylinder, square/rectangular/ container
- MATERIAL / steel, plastic, glass, FRP .../ + surface treatment
- CONNECTIONS / flange, clamp, etc.)
- EXTRA (e.g. special design (jacketed), reinforcement, interior construction, service platform, etc.)
- MIXER



Assignment:

- Text information about project
- Dimensional sketch
- Volume
- Main dimensions D/L
- Position and placement of nozzles
- Material design
- Equipment / flanges, sockets, anchoring, insulation, etc.)
- Control and Regulation
- MIXER
 often external supplier (e.g. EKATO)

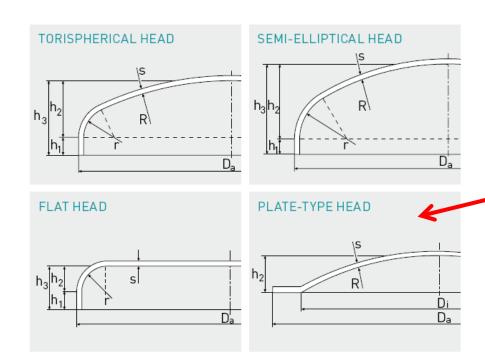
Process calculation:

- Check dimensions
- Correction of dimensions
- Optimization.

Strength calculation:

- p/T
- other loads
- special requirements (snow, wind, seismic analysis)
- Is it a pressure vessel according to EN 13 445?

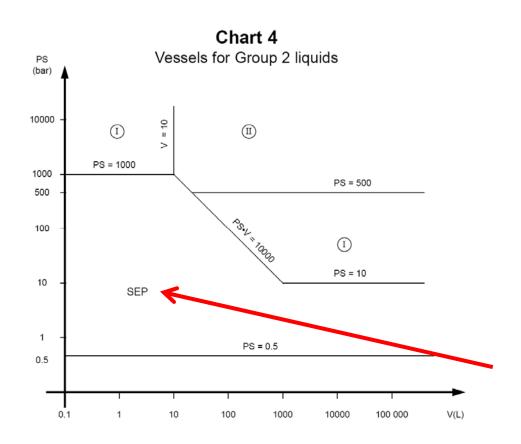
 $\pi.D$


Process calculation:

Change in dimensions

Reducing the number of welds

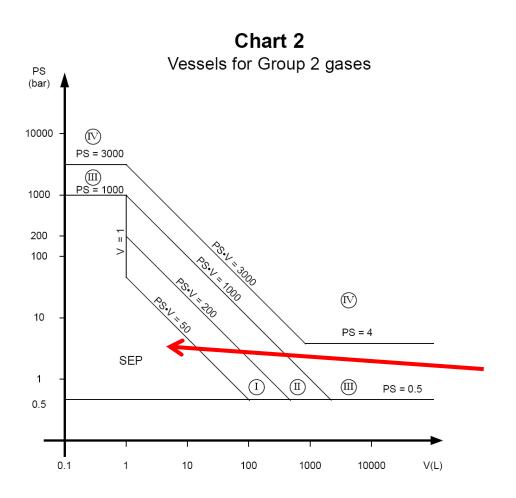
Adjustment to acceptable transport dimensions


Minimum number of loops

		Wölbungshöhe h₂ bei s =			bei	chnitt Ø h ₁ = 5 mm³)	Raum- inhalt ohne h ₁	Gewicht bei s = 1	
d _a ²) mm	r ₁ mm	r ₂ mm	3-5 mm	6-11 mm	12-20 mm	s = 3-4 mm	s = 5-7 mm	Ltr.	kg
500	500	50	95	93	90	610	610	12,5	2,3
600	600	60	114	112	109	720	720	21,6	3,7
700	700	70	134	132	129	830	830	34	4,2
800	800	80	153	151	148	940	940	51	5,4
900	900	90	172	170	167	1055	1055	73	6,9
1000	1000	100	192	190	187	1170	1170	100	8,4
1100	1100	110	211	209	206	1290	1290	133	10,3
1000	1000	400	000	000				74 - 4	

Process calculation

- Change in dimensions
- Adjustment due to realistically produced torispherical /spherical/ elliptical bottoms
- For example DIN 28 011 torispherical heads. (approx. up to 7000 mm)
- Normalized dimension



Strength calculation Categorization 13 445-7

Material group - 1 / 2
Medium g or I
p.V (product of working pressure /bar/ and working volume /lit/)

Is it a pressure vessel?

SEP – sound engineering practice

Strength calculation Categorization 13 445-7

Material group - 1 / 2
Medium g or I
p.V (product of working pressure /bar/ and working volume /lit/)

Is it a pressure vessel?

SEP – sound engineering practice

The conformity assessment modules available for the different categories of equipment are detailed below, along with a brief description in the key (fuller details are provided in Annex E). Manufacturers may choose the module(s) which best suit them, e.g. a manufacturer of Category II equipment may choose A1, D1 or E1.

Category I	Category II	Category III	Category IV		
Module	Modules	Modules	Modules		
А	A1	B1 + D	B + D		
	D1	B1 + F	B + F		
	E1	B + E	G		
		B + C1	H1		
		Н			

Module	Design	Production					
А	Technical documentation	Internal production control					
A1	Technical documentation	Internal production control with monitoring of the final assessment					
В	Type examination						
B1	Design examination						
C1		Monitoring of final assessment					
D		Quality assurance for production, final inspection and test					
D1	Technical documentation	Quality assurance for production, final inspection and test					
E		Quality assurance for final inspection and test					
E1	Technical documentation	Quality assurance for final inspection and test					
F		Product verification					
G	Unit verification	Unit verification					
Н	Quality assurance for design,	manufacture, final inspection and test					
H1		manufacture, final inspection and test monitoring of final assessment					

Strength calculation Categorization 13 445-7

Material group - 1 / 2
Medium g or I
p.V (product of working pressure /bar/ and working volume /lit/)

Is it a pressure vessel?

SEP – sound engineering practice

7.4.2 Valcovité plášte

Požadovaná hrúbka sa musí vypočítať z jednej z nasledujúcich dvoch rovníc:

$$e = \frac{P \cdot D_i}{2f \cdot z - P} \tag{7.4-1}$$

alebo

$$e = \frac{P \cdot D_e}{2f \cdot T + P} \tag{7.4-2}$$

Pre danú geometriu:

$$P_{\text{max}} = \frac{2f \cdot z \cdot e_3}{D_{\text{obs}}}$$
 (7.4-3)

7.5.3 Tórisférické dná

7.5.3.1 Podmienky použiteľnosti

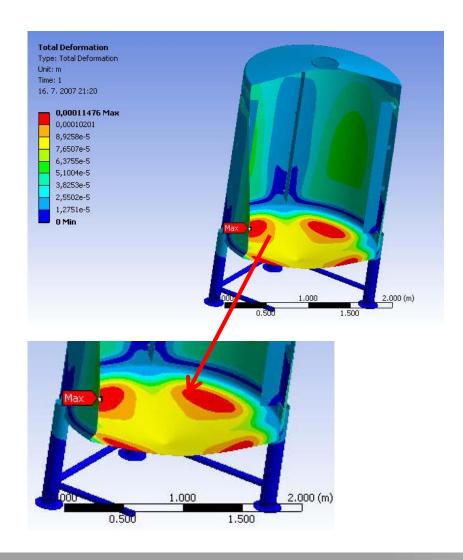
Nasledujúce požiadavky platia pre dná, pre ktoré sú splnené vsetky pasledujúce podmienky:

$$r \le 0.2 D_i$$

 $r \ge 0.06 D_i$
 $r \ge 2e$
 $e \le 0.08 D_e$
 $e_a \ge 0.001 D_e$
 $R \le D_e$

7.5.3.2 Navrhovanie

Požadovaná hrúbka e musí byť najväčšia z es, ev a eb kde:

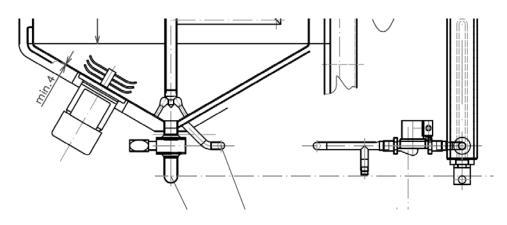

$$e_{s} = \frac{P \cdot R}{2f \cdot z - 0.5P} \tag{7.5-1}$$

$$e_{y} = \frac{\beta \cdot P(0,75R + 0,2D_{i})}{f}$$
 (7.5-2)

Strength calculation According to 13 445-3

The calculation can also be carried out according to other standards (ASME, BS, etc.) It depends on the investor

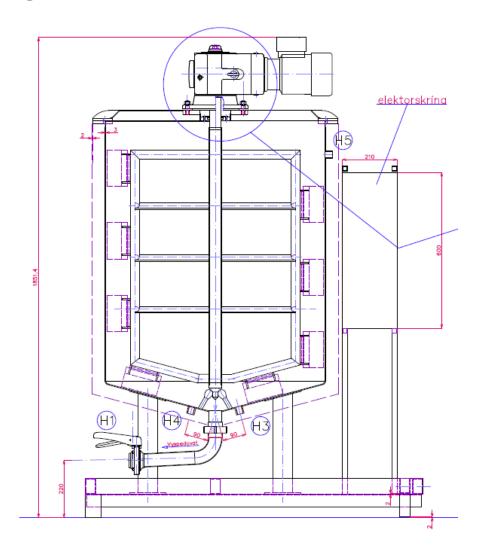
By calculation, document each standard part of the pressure vessel - cylindrical shell torispherical head etc.

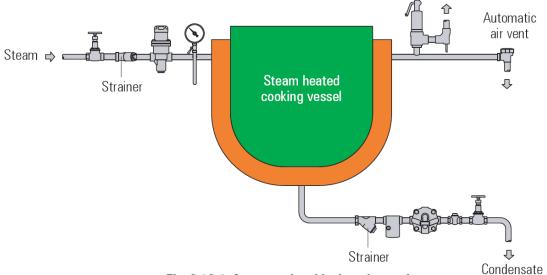


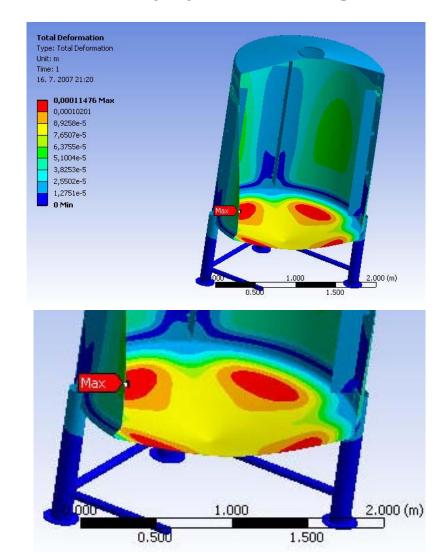
Strength calculation According to 13 445-3

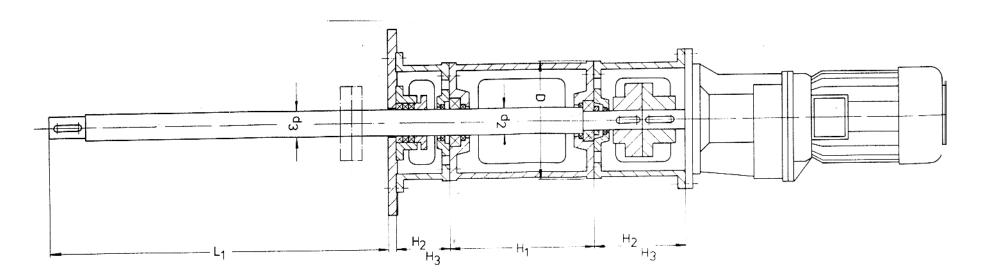
Specific segments of the pressure vessel are most often dealt with by FEM. / finite element method/

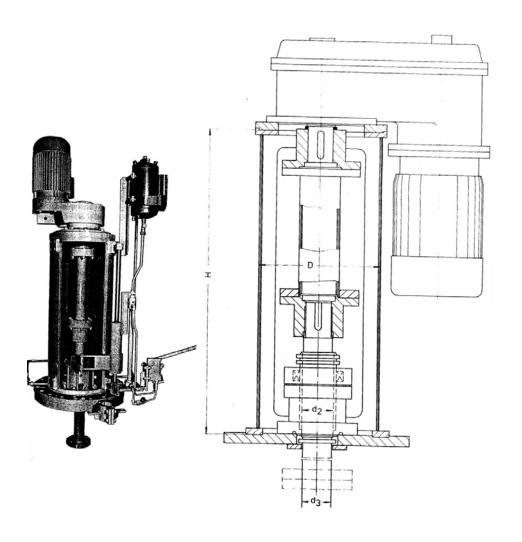
- Extremely important nodes.
- Analysis of the impact of additional stress from e.g. pipes
- Etc ..

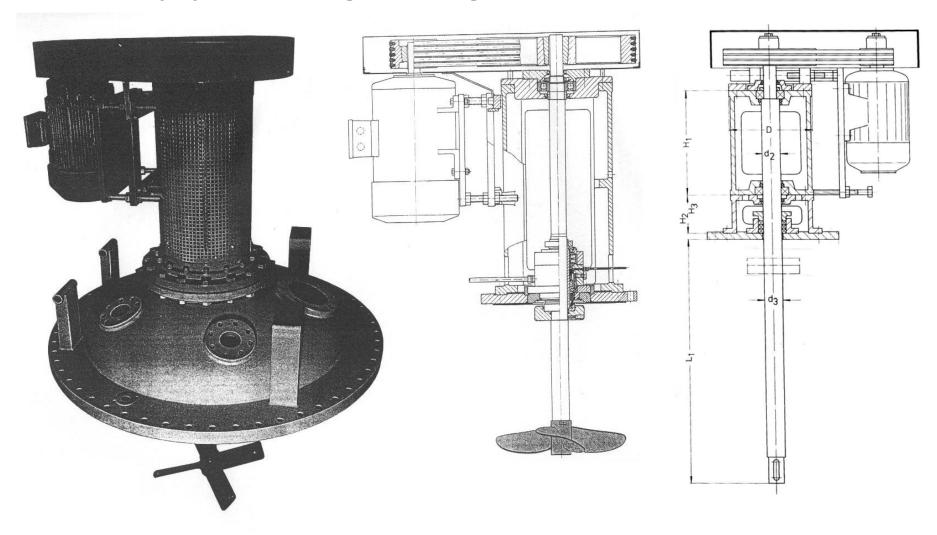


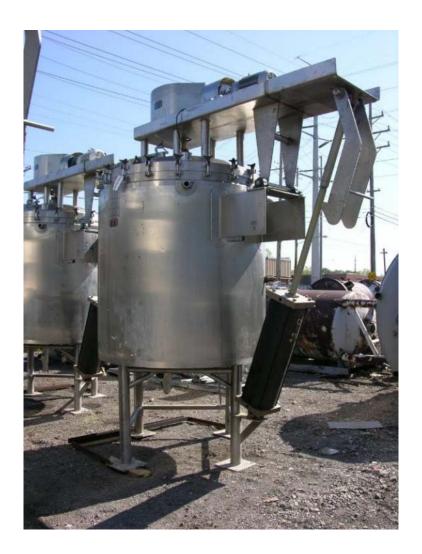


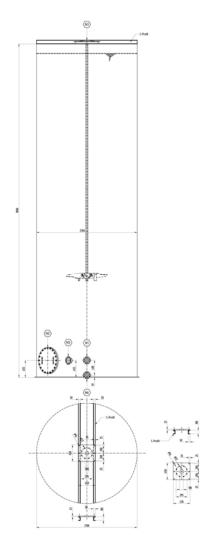


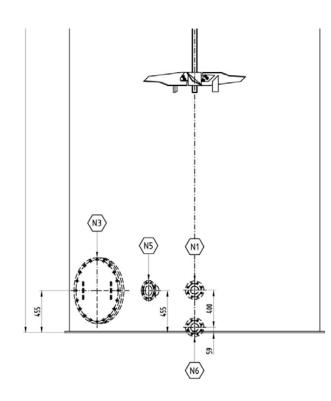


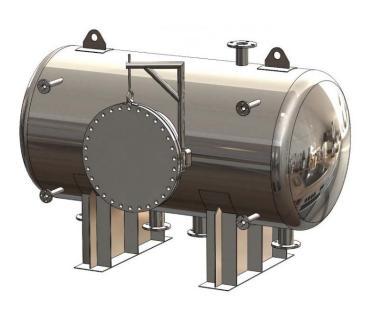


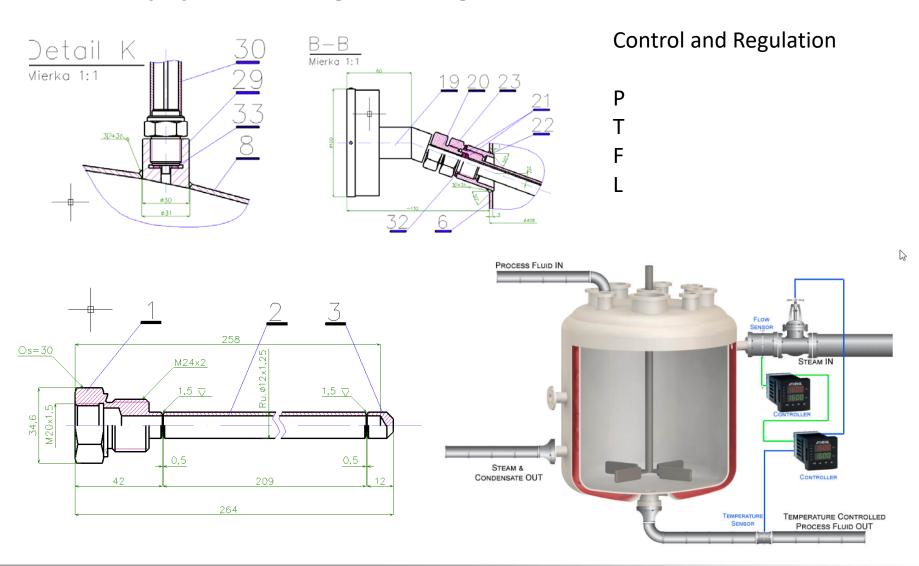


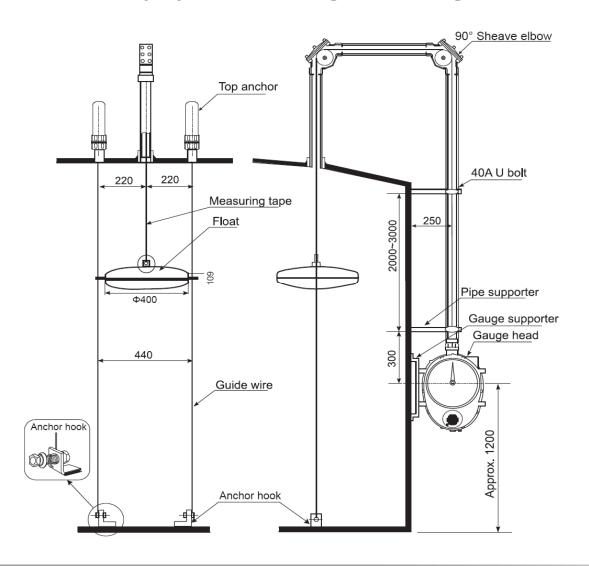






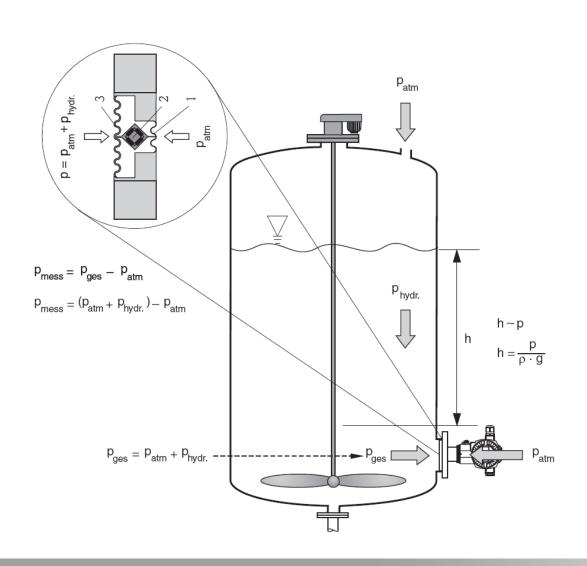





Name Anzahi Symbol Piece	Anzahl Piece	Benennung Description	DN	PN	Norm Standard	Rohr Φ x s Pipe Φ x s	Dichtfläche Facing
N1	1	Zulauf	80	16	DIN 2633	88,9 x 3	C
N2	1	Rührwerksflansch	200	16	DIN 2633	273,2 x 3	С
N3	2	Mannloch	600	16	DIN 2633	614,3 x 3,6	C
N4	1	Entlüftung	100	16	DIN 2633	114,3 x 3,6	C
N5	1.	Drucksensor	100	16	DIN 2633	114,3 x 3,6	C
N6	1	Ablauf	80	16	DIN 2633	88,9 x 3	С

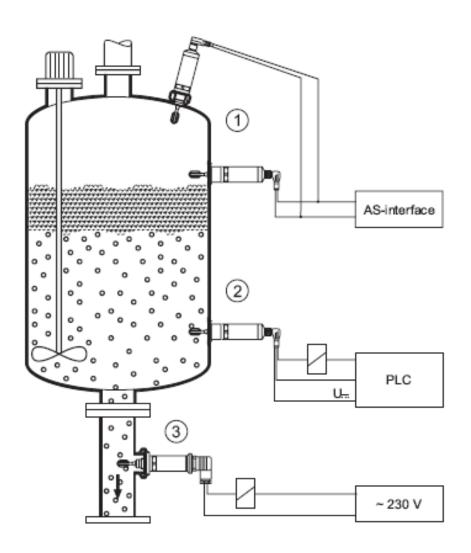
Nozzle connection

Types Position



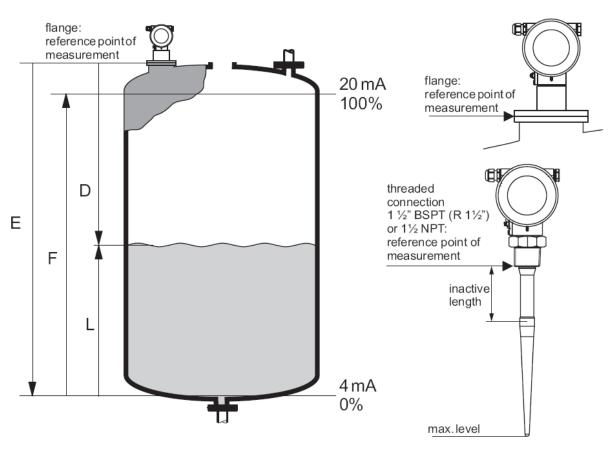
Control and Regulation

Principle: Float level gauge



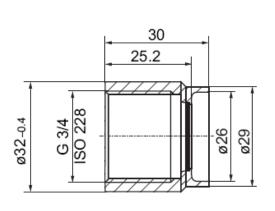
Control and Regulation

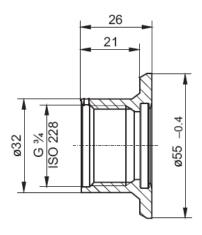
Principle: Pressure gauge

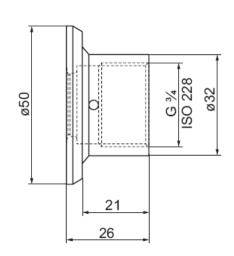


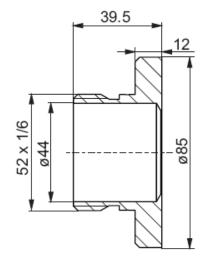
Control and Regulation

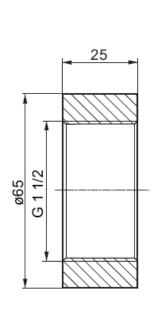
Principle: Vibrating level gauge




Control and Regulation


Principle: Radar gauge




50	Proce	ss Connection					
	GGJ	Thread EN10226 R1-1/2, 316L					Control and Dogulation
	GNJ	Thread ANSI NPT1-1/2, 316L				C	Control and Regulation
	TDJ	Tri-Clamp ISO2852 DN40-51 (2"), 316L					G
	TLJ	Tri-Clamp ISO2852 DN70-76.1 (3"), 316L					
	CFJ	DN50 PN10/16 B1, 316L flange EN1092-1 (DIN2527 C)					
	CGJ	DN50 PN25/40 B1, 316L flange EN1092-1 (DIN2527 C)				C	nacification
	CFM	DN50 PN10/16, AlloyC22 > 316L flange EN1092-1 (DIN2527)				2	Specification
	CGM	DN50 PN25/40, AlloyC22 > 316L flange EN1092-1 (DIN2527)				_	
	CMJ	DN80 PN10/16 B1, 316L flange EN1092-1 (DIN2527 C)				Р	Process Connection
	CNJ	DN80 PN25/40 B1, 316L flange EN1092-1 (DIN2527 C)				-	
	CMM	DN80 PN10/16, AlloyC22 > 316L flange EN1092-1 (DIN2527)					
	CNM	DN80 PN25/40, AlloyC22 > 316L flange EN1092-1 (DIN2527)					
	CQJ	DN100 PN10/16 B1, 316L flange EN1092-1 (DIN2527 C)					
	CRJ	DN100 PN25/40 B1, 316L flange EN1092-1 (DIN2527 C)					
	COM	DN100 PN10/16, AlloyC22 > 316L flange EN1092-1 (DIN2527)					
	CRM	DN100 PN25/40, AlloyC22 > 316L flange EN1092-1 (DIN2527)					
	CWJ	DN150 PN10/16 B1, 316L flange EN1092-1 (DIN2527 C)					
	CWM	DN150 PN10/16, AlloyC22 > 316L flange EN1092-1 (DIN2527)					
	AEJ	2" 150lbs RF, 316/316L flange ANSI B16.5					
	AFJ	2" 300lbs RF, 316/316L flange ANSI B16.5	60		Cab	ble Er	ntry
	AEM	2" 150lbs, AlloyC22 > 316/316L flange ANSI B16.5					M20 (EEx d > thread M20)
	AFM	2" 300lbs, AlloyC22 > 316/316L flange ANSI B16.5					d G1/2
	ALJ	3" 150lbs RF, 316/316L flange ANSI B16.5			4	Thread	d NPT1/2
					5	Plug M	A12
50	Proc	cess Connection				Plug 7	
	AMJ	3" 300lbs RF, 316/316L flange ANSI B16.5			9	Special	l version, TSP-no. to be spec.
	ALM	, ,	70			Addit	tional Option
	AMN	1 3" 300lbs, AlloyC22 > 316/316L flange ANSI B16.5			1 1 1		asic version
	APJ	4" 150lbs RF, 316/316L flange ANSI B16.5					N10204-3.1 material, pressurized, (316/316L pressurized) inspection certificate
	AQJ	4" 300lbs RF, 316/316L flange ANSI B16.5			1 1 1		dvanced dynamics, max. MB=70m liquids, MB=measuring range
	APM	4" 150lbs, AlloyC22 > 316/316L flange ANSI B16.5					dvanced dynamics, 3.1, max. MB=70m liquids, MB=measuring range, v10204-3.1 material (316L pressurized) inspection certificate
	AQM	4" 300lbs, AlloyC22 > 316/316L flange ANSI B16.5					point linearity protocol, see additional spec.
	AWJ	6" 150lbs RF, 316/316L flange ANSI B16.5				K 5-1	point, 3.1, pressurized, 5-point linearity protocol, see additional spec., EN10204-3.1
	AWN	6" 150lbs, AlloyC22 > 316/316L flange ANSI B16.5					aterial, pressurized, (316/316L pressurized) inspection certificate
	KEI	10K 50A RF, 316L flange JIS B2220				L 5-1	point, advanced dynamics, 3.1, 5-point linearity protocol, see additional spec., dvanced dynamics, 3.1 material, max MB=70m liquids, MB=measuring range
	KEM	, , ,					V10204-3.1 material, (316L pressurized) inspection certificate
	KLJ	10K 80A RF, 316L flange JIS B2220				-	L/ABS/NK marine certificate
	KLM	,				Y Sp	pecial version, TSP-no. to be spec.
	KPJ	10K 100A RF, 316L flange JIS B2220	995			M	larking
	KPM	, 0 -				_	Tagging (TAG), see additional spec.
	KWI	10K 150A RF, 316L flange JIS B2220	🚺			2	Bus address, see additional spec.
	KWN	, 0 -	i i	i i	1 1 1	Ī	i I
	YY9	Special version, TSP-No. to be spec.	FMR245-	+ +	+++	+	Complete product designation
	119	opecial version, for two to be spec.					

