Design of Process Equipment Heat Exchanger

Lecture

doc. Ing. Martin Juriga, PhD. Bratislava, February 2024

Light ga

Table 12.1.	Typical overall coefficients				
Shell and tube exchangers					
Hot fluid	Cold fluid	$U (W/m^2 °C)$			
Heat exchangers					
Water	Water	800 - 1500			
Organic solvents	Organic solvents	100 - 300			
Light oils	Light oils	100 - 400			
Heavy oils	Heavy oils	50 - 300			
Gases	Gases	10 - 50			
Coolers					
Organic solvents	Water	250-750			
Light oils	Water	350-900			
Heavy oils	Water	60-300			
Gases	Water	20-300			
Organic solvents	Brine	150 - 500			
Water	Brine	600 - 1200			
Gases	Brine	15 - 250			
Heaters					
Steam	Water	1500 - 4000			
Steam	Organic solvents	500 - 1000			
Steam	Light oils	300-900			
Steam	Heavy oils	60-450			
Steam	Gases	30-300			
Dowtherm	Heavy oils	50-300			
Dowtherm	Gases	20-200			
Flue gases	Steam	30 - 100			
Flue	Hydrocarbon vapours	30-100			
Condensers					
Aqueous vapours	Water	1000 - 1500			
Organic vapours	Water	700-1000			
Organics (some non-condensables)	Water	500-700			
Vacuum condensers	Water	200-500			
Vaporisers					
Steam	Aqueous solutions	1000 - 1500			
Steam	Light organics	900-1200			
Steam	Heavy organics	600-900			

Air-cooled exchangers

Process fluid	
Water	300-450
Light organics	300-700
Heavy organics	50-150
Gases, 5–10 bar	50-100
10-30 bar	100-300
Condensing hydrocarbons	300-600

Jacketed vessels					
Jacket	Vessel				
Steam	Dilute aqueous solutions	500-700			
Steam	Light organics	250 - 500			
Water	Dilute aqueous solutions	200 - 500			
Water	Light organics	200-300			
Gasl	keted-plate exchangers				
Hot fluid	Cold fluid				
Light organic	Light organic	2500-5000			
Light organic	Viscous organic	250 - 500			
Viscous organic	Viscous organic	100 - 200			
Light organic	Process water	2500-3500			
Viscous organic	Process water	250 - 500			
Light organic	Cooling water	2000-4500			
Viscous organic	Cooling water	250 - 450			
Condensing steam	Light organic	2500-3500			
Condensing steam	Viscous organic	250 - 500			
Process water	Process water	5000-7500			
Process water	Cooling water	5000-7000			
Dilute aqueous solutions	Cooling water	5000-7000			
Condensing steam	Process water	3500-4500			

.. .. .

Fluid	Coefficient (W/m ² °C)	Factor (resistance) (m ^{2°} C/W)
River water	3000-12,000	0.0003-0.0001
Sea water	1000-3000	0.001-0.0003
Cooling water (towers)	3000-6000	0.0003 - 0.00017
Towns water (soft)	3000-5000	0.0003 - 0.0002
Towns water (hard)	1000-2000	0.001 - 0.0005
Steam condensate	1500-5000	0.00067 - 0.0002
Steam (oil free)	4000-10,000	0.0025-0.0001
Steam (oil traces)	2000-5000	0.0005 - 0.0002
Refrigerated brine	3000-5000	0.0003-0.0002
Air and industrial gases	5000-10,000	0.0002 - 0.0001
Flue gases	2000-5000	0.0005 - 0.0002
Organic vapours	5000	0.0002
Organic liquids	5000	0.0002
Light hydrocarbons	5000	0.0002
Heavy hydrocarbons	2000	0.0005
Boiling organics	2500	0.0004
Condensing organics	5000	0.0002
Heat transfer fluids	5000	0.0002
Aqueous salt solutions	3000-5000	0.0003 - 0.0002

Table 12.2. Fouling factors (coefficients), typical values

Notes:

For example, with a fouling factor of 0.0001 (fouling factor)it's like adding a 0.2 mm layer of limestone with a thermal conductivity of 2.9 W/m°C to the surface

 $\Delta T_m = F_t \Delta T_{\rm lm}$

where ΔT_m = true temperature difference, the mean temperature difference for use in

the design equation 12.1,

 T_2

(b)

Area Density
 /Parameter β/
 Temperature
 approach
 Temperature cross
 /Cross-flow/

 β -ratio of the heat exchange surface to the total volume of the heat exchanger::

 β –700 m²/m³ compact HE

 β - 6000 m²/m³ ceramic HE β - 20 000 m²/m³ human lungs HE

✤ Heater
✤ Cooler
✤ Boiler
� Condenser

Heater
Cooler
Boiler
Condenser

Without change of state (heaters, coolers)
With change of state (boilers, condensers)

- ✤ Parallel
- Counter
- Cross-flow
- Combination

Hot

in

- Parallel
- Counter
- Cross-flow
- Combination

- Direct /without heat exchange surface/
- Regenerative /common heat-exchange surface/
- Recuperative / one heat-exchange surface separating the media/

Types of HE - Direct

Direct steam injection

Notes:

- minimum pressure difference
- bubble size ->low vapor pressure
- max. hydrostatic pressure

Types of HE - Direct

Direct steam injection

Notes:

Types of HE - Direct

Direct water injection

Notes:

- ✤ Turbine bypass system i.e.
- injection valve
- ✤ Water cooling

Types of HE - Regenerative

Fixed or rotating heat-exchange surface

The use:

(g)-(g) at $\uparrow\uparrow$ for volumetric flow up to 150 m3/s. 25m, 1600 tons.

Advantages:

- also suitable for low temperatures,
 -small temperature differences can be achieved,
- for large volume flows.

Disadvantages:

- -losses during connection,
- -mixing of gases (residues),
- difficult to clean.

Types of HE - Regenerative

Fixed or rotating heat-exchange surface

Regenerative Heat Exchangers with *Rotating Heating Surfaces* (ROTHEMÜHLE-Rotor System, first described by Fredrik Ljungström)

Regenerative Heat Exchangers with Stationary Heating Surfaces (ROTHEMÜHLE-Stator System)

Types of HE - Recuperative

Double pipe HE /Hairpin/	DPHE	Výmenník rúrka v rúrke
Shell and Tube HE	STHE	Rúrkový výmenník tepla
Scraped-Surface HE	SSHE	VT so stieraným povrchom
✤ Plate HE	PHE	Doskový výmenník tepla
Shell Plate HE	SPHE	Doskový oplášťovaný VT
All-welded HE	AWHE	Celozváraný doskový VT
Block HE	BHE	Blokový výmenník tepla
🛠 Spiral HE	SHE	Špirálový výmenník tepla
🛠 Air HE	AHE	Vzduchové výmenník tepla

 $\begin{array}{l} \beta - 700 \; m^2/m^3 \\ compact \; VT \end{array}$

Recuperative HE - Double pipe.

The range of pressures and temperatures normally up to: $\beta = 0.6 - 5 \text{ m}^2/\text{m}^3$,

<u>The use:</u> (g)-(g), (g)-(l),

Advantages :

- it is possible to achieve clean co-current and counter-current flow,

-realization of a large temperature difference between the inner and outer tube,

-variability of material use,

-good possibility of cleaning both surfaces.

Disadvantages :

- high requirements for material and built-up area.

- low β

(a) Single hairpin

Recuperative HE - Double pipe.

The range of pressures and temperatures normally up to: p=4 MPa (max. 60 MPa – tube) T=500 °C

- For tube diameter *d*=20 mm: β = 100 m²/m³,
- For tube diameter *d*=25 mm: β = 75 m²/m³.

<u>The use:</u> (I)-(I), (g)-(I), (I)-(g), rarely (g)-(g)

Advantages :

-material version /steel, plastic, glass, graphite/,
-theory, almost 100 years of tradition, operational experience,

-use in a wide range of temperatures and pressures,

-less demanding production,

-possibility of mechanical cleaning.

<u>Disadvantages :</u>

- relative $\uparrow \uparrow$ pressure loss /multipass HE/,
- -tube heat exchangers have more weight,
- high requirements for material and built-up area.
- low β

 $\uparrow\uparrow$

TEMA

The Tubular Exchanger Manufacturers Association

globally recognized and used method of designing tubular heat exchangers

complex method of strength calculation

geometric characterization

TEMA sheet

Recommended values for fouling

- 1. Stationary Head-Channel
- 2. Stationary Head-Bonnet
- 3. Stationary Head Flange-Channel or Bonnet
- 4. Channel Cover
- 5. Stationary Head Nozzle
- 6. Stationary Tubesheet
- 7. Tubes
- 8. Shell
- 9. Shell Cover
- 10. Shell Flange-Stationary Head End
- 11. Shell Flange-Rear Head End
- 12. Shell Nozzle
- 13. Shell Cover Flange
- 14. Expansion Joint
- 15. Floating Tubesheet
- 16. Floating Head Cover
- 17. Floating Head Cover Flange
- 18. Floating Head Backing Device
- 19. Split Shear Ring
- 20. Slip-on Backing Flange

- 21. Floating Head Cover-External
- 22. Floating Tubesheet Skirt
- 23. Packing Box
- 24. Packing
- 25. Packing Gland
- 26. Lantern Ring
- 27. Tierods and Spacers
- 28. Transverse Baffles or Support Plates
- 29. Impingement Plate
- 30. Longitudinal Baffle
- 31. Pass Partition
- 32. Vent Connection
- 33. Drain Connection
- 34. Instrument Connection
- 35. Support Saddle
- 36. Lifting Lug
- 37. Support Bracket
- 38. Weir
- 39. Liquid Level Connection
- 40. Floating Head Support

WLA

Job No. Reference No. Customer Address Proposal No. Plant Location Date Rev. Item No. Service of Unit (Hor/Vert) sq ft; Shells/Unit Connected in Parallel Series Size Туре Surf/Shell (Gross/Eff.) Surf/Unit (Gross/Eff.) sa ft PERFORMANCE OF ONE UNIT Fluid Allocation Shell Side Tube Side 0 Fluid Name 11 Fluid Quantity Total lb/hr Vapor (In|Out) Liquid Steam Water Noncondensable Temperature 18 Specific Gravity 19 Viscosity, Liquid cE 20 Molecular Weight, Vapor 21 Molecular Weight, Noncondensabl 22 Specific Heat 23 Thermal Conductivity BTU / Ib °F BTUft/hrsqft°F BTU/Ib@°F 24 Latent Heat 25 Inlet Pressure psia ft/sec 26 Velocity psi hrsqft°F/BTU 27 Pressure Drop, Allow. /Calc 28 Fouling Resistance (Min.) 29 Heat Exchanged BTU / hr MTD (Corrected) BTU / hr sq ft °F 30 Transfer Rate, Service Clean CONSTRUCTION OF ONE SHELL 3 Sketch (Bundle/Nozzle Orientation) Shell Side Tube Side 33 Design / Test Pressure 34 Design Temp. Max/Min psig 35 No. Passes per Shell 36 Corrosion Allowance 37 Connections In Size & 38 39 Out Rating Intermedia 40 Tube No. OD in;Thk (Min/Avg) in;Length ft;Pitch 41 Tube Type Material 42 Shell 43 Channel or Bonnet ID OD in Shell Cover (Integ.) (Remov.) Channel Cover 44 Tubesheet-Stationary Tubesheet-Floating 45 Floating Head Cover 46 Baffles-Cross 47 Baffles-Long Impingement Protection Туре %Cut (Diam/Area) Spacing: c/c Inlet Seal Type 48 Supports-Tube U-Bend Type Tube-to-Tubesheet Joint 49 Bypass Seal Arrangemen 50 Expansion Joint 51 p v²-Inlet Nozzle Туре **Bundle Entrance** Bundle Exit 52 Gaskets-Shell Side Tube Side 53 Floating Head 54 Code Requirements TEMA Class Filled with Water Bundle 55 Weight / Shell 56 Remarks 57 59 60 6

FIGURE G-5.2 HEAT EXCHANGER SPECIFICATION SHEET

FIGURE G-5.2 HEAT EXCHANGER SPECIFICATION SHEET Job No. Reference No. 2 Customer Address Proposal No. Rev. Plant Location Date Service of Unit Item No. Connected in Parallel Size (Hor/Vert) Series Type 7 Surf/Unit (Gross/Eff.) sq ft; Shells/Unit Surf/Shell (Gross/Eff.) sq ft DEDEODWANCE OF ONE UNIT

TEMA Sheet

3 Blocks of information

1)

Heat exchanger identification. Parallel / Series Basic dimensional parameters Total heat exchange surface

1	Carlotter Carocolens)	od id ottolioto.				
8		PER	FORMANCE OF C	NE UNIT		
9	Fluid Allocation		Sheli S	Side	Tube	Side
10	Fluid Name					
11	Fluid Quantity Total	ib/hr				
12	Vapor (In Out)					
13	Liquid					
14	Steam					
15	Water					
16	Noncondensable					· · · · · · · · · · · · · · · · · · ·
17	Temperature	°F	L			
18	Specific Gravity		l			
19	Viscosity, Liquid	cP				
20	Molecular Weight, Vapor					
21	Molecular Weight, Noncondensable					
22	Specific Heat	BTU / Ib °F				
23	Thermal Conductivity	BTUft/hr sq ft °F				
24	Latent Heat	BTU / Ib @ ºF				
25	Inlet Pressure	psia			·····	
26	Velocity	ft / sec				
27	Pressure Drop, Allow. /Calc.	psi	/			
28	Fouling Resistance (Min.)	hrsqft °F/BTU				
29	Heat Exchanged		BTU / hr MTD	(Corrected)		۴
30	Transfer Rate, Service		Clean			BTU / hr sq ft °F

TEMA Sheet

-HE process parameters

- physical and chemical parameter of medium.
- -Overall performance (Dirty / Clean) depending on

the selected Fouling Resistance..

~									
31			CONSTRU	ICTION OF O	NE SHELL		Sketch (B	undie/Nozzle	Orientation)
32				Shel	l Side	Tube Side			
33	Design / Test	Pressure	psig		/	1			
34	Design Temp.	Max/Min	۴	1		1			
35	No. Passes p	er Shell					_		
36	Corrosion Allo	wance	in					7	
37	Connections	In							
38	Size &	Out							
39	Rating	Intermediate					1		
40	Tube No.	OD	in;Thk (Min/Av	'g)	in;Length	ft;P#ch	in	<u>-</u> +30 <u>-</u> +60	⊕ 90 ↔ 45
41	Tube Type					Material			
12	Shell		ID	OD	in	Shell Cover		(Integ.)	(Remov.)
43	Channel or Bo	onnet				Channel Cover			
44	Tubesheet-St	ationary				Tubesheet-Floating			
45	Floating Head	Cover	\rightarrow			Impingement Protection			
46	Baffles-Cross		Ту	pe		%Cut (Diam/Area)	Spacing: c/c	Inlet	in
47	Baffles-Long					Seal Type			
48	Supports-Tub	8		U-Bend			Туре		
19	Bypass Seal /	Arrangement				Tube-to-Tubesheet Joint			
50	Expansion Jo	nt				Туре			
51 p v ² -Inlet Nozzle Bundle Entrance		Bundle Exit							
52	Gaskets-Shel	Side				Tube Side			
53	Floating Head								
54	Code Require	ments				TEM	A Class		
55	Weight / Shell			Filled	i with Water	Bu	Indle		Ib
56	Remarks								

TEMA Sheet

- Construction parameters of HE

Type of Design	U-Tube (Type U)	Fixed Tubesheet (Types L, M, and N)	Pull-Through Floating Head (Type T)	Floating-Head Outside-Packed Lantern Ring (Type W)	Split-Backing- Ring Floating- Head (Type S)	Floating-Head Outside-Packed Stuffing Box (Type P)
Relative cost increases from A (least expensive) through E (most expensive)	A	В	С	С	D	E
Provision for differential expansion	Individual tubes free to expand	Expansion joint in shell	Floating head	Floating head	Floating head	Floating head
Removable bundle	Yes	No	Yes	Yes	Yes	Yes
Individual tubes replaceable	Only those in outside rows	Yes	Yes	Yes	Yes	Yes
Tube interiors cleanable	Difficult to do mechani- cally; can do chemically	Yes, mechanically or chemically	Yes, mechani- cally or chemically	Yes, mechani- cally or chemically	Yes, mechani- cally or chemically	Yes, mechani- cally or chemically
Tube exteriors with triangular pitch cleanable	Chemically only	Chemically only	Chemically only	Chemically only	Chemically only	Chemically only
Tubes exterior with sqare pitch cleanable	Yes, mechan- ically or chemically	Chemically only	Yes, mechani- cally or chemically	Yes, mechani- cally or chemically	Yes, mechani- cally or chemically	Yes, mechani- cally or chemically
Number of tube passes	Any practical even number possible	No practical limitations	No practical limitations (single-pass floating-head requires packing joint)	Limited to single- or double-pass	No practical limitations (single-pass floating-head requirespacking joint)	No practical limitations
Internal gaskets eliminated	Yes	Yes	No	Yes	No	Yes

Tubular heat exchanger with phase change

AKT

Tubesheet

- generally the most expensive part of HE
- welded or pressed pipes.

Tube bundle

Baffles

Eddies

Baffle Main

Flow

Baffle

c. Ideal Baffle Cut and Baffle Spacing

Baffles

Baffles

Baffles

Baffles

1975 Phillips Petroleum Company

50% $\downarrow \downarrow$ pressure drop

 $\downarrow \downarrow$ - vibration damage 4 point contact

Tube pattern

Number of Passes

Number of connected HEs:

Serially Parallel

Sealing Separating Partition

Calculation of the correction factor F

Enter Nozzle

TEMA:

 ρ .v² – 740 kg/m.s² for media with the presence of particles ρ .v² – 2232 kg/m.s² for a particle-free medium

Expansion joint

It compensates for the differential thermal expansion of the shell/pipe

↑↑ Tube, ↓↓ Shell ~23 °C ↓↓ Tube, ↑↑ Shell ~83°C

Material

Metal materials -iron -non-ferrous

Non-metal materials

Fouling, Fouling resistance

Suitable heat exchanger Emphasis on compliance with the correct operating parameters

Fouling factor Selection of appropriate cleaning/ chemical, mechanical/

Fouling Resistances For Oil Refinery Streams

Crude An	nd Vacuum Unit Gases And Vapors:	
	Atmospheric Tower Overhead Vapors	0.001
	Light Naphthas	0.001
	Vacuum Overhead Vapors	0.002
Crude An	nd Vacuum Liquids:	
	Crude Oil	

Fouling, Fouling factor

Recuperative HE - Scraped surface HE

A heat exchanger with a scraped surface - a good solution for heat-sensitive substances (slow heating) but also for substances that are sticky, dense, with the presence of particles, crystallizing $\beta = 0.6 - 5 \text{ m}^2/\text{m}^3$,

. . . .

<u>Use in the system:</u> (I)-(I), (I)-(g),

Advantages:

- For extremely viscous substances
- particles up to approx. 25 mm,
- demountable, /cleanability/.

Disadvantages:

- high price, complicated,
- lower max. pressure in the wiped section
- low β ,
- -requires a motor.

Recuperative HE - Scraped surface HE

CONCENTRIC

ECCENTRIC

Recuperative HE - Scraped surface HE

Plate heat exchangers include a wide range of heat exchangers that use a "plate" as a heat exchange surface.

Types:

- -removable (with seal)
- not disassembled (without seal)

Plate's shape:

- rectangular shape
- circular shape

Currently, the most progressive area of HE research and development.

Currently /range of pressures and temperatures/: p=10 MPa T=500 °C

Patent from 1878 (Germany)

The range of pressures and temperatures normally up to:

p= 0,4 MPa T= 160 °C

 $\begin{array}{l} \beta: \ 250\text{--}700 \ m^2/m^3 \\ \alpha: \ (\text{I})\text{-}(\text{I})\text{:}500\text{--}2000 \ W/m^2\text{K} \end{array}$

Gasketed plate heat exchanger /GPHE/

Use in the system: (I)-(I), (I)-(g), (g)-(I).

Advantages:

it is possible to increase or decrease the heat exchange surface according to requirements, the profiling of the plates leads to turbulent flow even at low speeds, short retention times, very good cleaning option, hygienic.

Disadvantages:

limited range of temperatures and pressures (given by the material of the seal and the stiffness of the boards), sealing (long sealing surfaces).

Design

Plates

Medium 1

Medium 2

Frame

Connection, Insulation Frame

Alfa-Laval's first brazed HE in 1977

The range of pressures and temperatures normally up to:

p= 30 bar T= 200 °C / - 190 °C

 $\beta~$ - 250-700 m^2/m^3

Braze: Copper

Brazed plate heat exchanger /BHE, BPHE/

Use in the system: (I)-(I). Ideal for clean medium

Advantages:

without a seal - reliability, low price and installation and connection costs, small built-up area compared to e.g. STHE(10-20%) minimal maintenance (self-cleaning effect), short retention times,

suitable for cryogenic applications.

Disadvantages:

cannot be disassembled (cleaning only chemically - CIP) not suitable for media with particles max. pressures of about 30 bar. in case of clogging – uncleanable

Connection

Compact flanges

Internal threaded

Soldering

Welding

All-stainless HE. Significant improvement of brazed HE.

The range of pressures and temperatures normally up to:

p= 40 bar

T= 500 °C

 $\beta\,$ - 250-700 m^2/m^3

Alfa – Fusion. technology

Fusion-Bonded plate heat exchanger /FBHE, FBPHE/

Use in the system: (I)-(I). Ideal for clean medium

Advantages:

for high temperature applications, without sealing, without soldering - reliability, minimal maintenance (self-cleaning effect), resistance to pressure shocks, corrosion.

Disadvantages:

cannot be disassembled (cleaning only chemically - CIP)

not suitable for media with particles in case of clogging – uncleanable

Connection

Compact flanges

Internal threaded

Soldering

Welding

External

threaded

Welded plate VT.STHE's biggest competitor also in areas of high temperatures and pressures.

The range of pressures and temperatures normally up to:

p= 100 bar T= 900 °C

Shell Plate Heat Exchanger /SPHE/

Use in the system: (I)-(I), (I)-(g).

Advantages: for high temperature and high pressure applications, compact, possibility of cleaning.

Design

Shell Plate Heat Exchanger /SPHE/

<u>Plate:</u> Circular plates Oval plates

Welded plate VT.STHE's biggest competitor also in areas of high temperatures and pressures.

The range of pressures and temperatures normally up to:

p= 70 bar T= 350 °C Welded Plate Heat Exchanger /WPHE/

<u>Use in the system :</u> (I)-(I), (I)-(g).

<u>Advantages :</u>

all the accuracies of the plate heat exchanger for high temperature and high pressure applications, compact, 1/6 of the built-up area, 1/6 of the weight compared to STHE, heat exchange area up to 320 m2, easy cleaning.

Design

Recuperative HE - Spiral HE

... more than 70 years on the market

The range of pressures and temperatures normally up to: p= 40 bar T= 400°C

Indicative values α in system: (I)-(I): 700-2500 W/m²K (I)-(g): 900-3500 W/m²K

<u>Use in the system :</u> (I)-(I), (g)-(I)

Advantages :

little pollution of the heat exchange surface even with fluids prone to forming deposits,

- possibility of mechanical cleaning,
- no "dead" spots
- high values of heat transfer coefficients.

Disadvantages :

limited range of temperatures and pressures, more demanding production - higher price.

Recuperative HE - Spiral HE

Recuperative HE - Spiral HE

Design

Horizontal Vertical

EN: Air cooled HE, Fin Fan HE, ... The cooling medium is always air blown onto

the finned tubes (or perforated block).

The range of pressures and temperatures normally up to: p= 16 bar (higher for tube) T= 400°C

Use in the system : (I)-(g) – on one side /air, gas/

Advantages :

situations where air is the most economical cooling medium, also for high pressures, the possibility of using a wide range of materials for ribs and tubes, large outputs in MW.

Disadvantages :

restrictions - max. air temperature more demanding production, large built-up area, noise, low heat transfer coefficients.

Basic parts

Basic parts

Heat transfer surface

Tubesheet - Distributor

Design of distributor: demountable demountable (without the possibility of cleaning the pipes)

Recuperative HE - Heating coil

EN: Heating Coil,

The range of pressures and temperatures normally up to: p= 120 bar T= 600°C

 β - 10 m²/m³

Indicative values α in system: (I)-(I): 700-2500 W/m²K (I)-(g): 900-2500 W/m²K

<u>Use in the system :</u> (I)-(g), (I)-(I), kond.

Advantages : simple production, variable and high α . (questionable is α on the other side)

<u>Disadvantages :</u> higher pressure loss, small mass flows, installed inside the device / cleaning problem/.
Recuperative HE - Platecoil

EN: Heating Coil,

The range of pressures and temperatures normally up to: p= 20 bar. T= 250°C

 β - 50 or more m²/m³

Use in the system : (I)-(g), (I)-(I), kond.

<u>Advantages :</u> variable will adjust as needed

<u>Disadvantages :</u> higher pressure loss, small mass flows,

Recuperative HE - Platecoil

Recuperative HE - Block HE graphite

EN: Block HE,

The range of pressures and temperatures normally up to: p= 6 bar T= 200°C

 $\beta\text{--}10$ a viac m^2/m^3

Use in the system: (I)-(g), (I)-(I) extremely corrosive environment

<u>Advantages :</u> applications where no other material can be used

<u>Nevýhody:</u> high price for lower pressures

Recuperative HE - Block HE graphite

